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1 Introduction and Statement of Results

Let G ∈ C1(Rn,R) be a convex function, A, B ∈ C(R,Mn(R)) be periodic with minimal
period T (T > 0), B(t) be invertible for all t ∈ R and h = (f, g) ∈ C(R,Rn × R

n) be
T -periodic with mean value zero.

Let H(t, (r, p)) = G(A(t)r +B(t)p)+ ≺ h(t), (r, p) ≻, ∀ (r, p) ∈ R
n × R

n, ∀ t ∈ R.
In this paper we consider the Hamiltonian system of ordinary differential equations

u̇(t) = J∇H(t, u(t)), (Hh)

where ∇H is the first derivative of the Hamiltonian H with respect to (r, p) and J is the
standard symplectic (2n× 2n)-matrix

J =

(
0 −In
In 0

)
.

The motion of a relativist particle submitted to an electromagnetic field is governed
by a noncoercive Hamiltonian system. However, most of results proving the existence of
solutions to systems like (Hh) have been made use of a coercivity assumption on H , i.e.,

lim
|x|→+∞

H(t, x) = ∞, see for example [5, 8, 9, 12] and references therein.
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Timoumi investigates the case of non coercivity when H is convex (see [10, 11]). The
purpose of this paper is to improve and complete the results obtained in [10, 11] dealing
with this problem.

In the first theorem we establish the existence of subharmonic solutions, i.e., periodic
solutions with minimal period in the set {kT, k ∈ N, k ≥ 2} for the Hamiltonian system
of ordinary differential equations (H0).

The problem of search for subharmonics is classical, it has been dealt with using
various methods, especially index theories in different settings, see [3, 5, 6, 12].

In [10], Timoumi studied the question when the Hamiltonian has the form

H(t, (r, p)) = f(|p−A(t)r|),

where f : R+ → R+ such that:

∃λ, µ > 0/f(t) ≤ λt+ µ ∀ t ≥ 0

and the matrix A(t) satisfies

1. A∗(t) = −A(t) ∀ t ∈ R

2.
T∫
0

A(t) dt 6= 0.

Here, we try to conserve the same results when the Hamiltonian is subquadratic and
A(t) belongs to a larger set of matrices.

Precisely, we assume

(H1) lim
|x|→+∞

G(x) = +∞;

(H2) lim
|x|→∞

G(x)
|x|2 = 0;

(H3) G
′ is one to one;

(H4) C0 =
T∫
0

B−1(t)A(t) dt is non symmetric.

Theorem 1.1 Under the above assumptions, for all k ∈ N
∗, (H0) possesses a kT

periodic solution uk = (rk, pk) satisfying

(i) lim
k→+∞

‖Ark +Bpk‖∞ = +∞.

(ii) The minimal period of uk is kT for any sufficiently large and prime integer k.

Corollary 1.1 Under the assumptions (H2), (H4) and

(H5) G is strictly convex;

(H6) lim
|x|→∞

G(x)
|x| = +∞

the conclusion of Theorem 1.1 holds.

The second result concerns the forced case (h 6= 0), where h is interpreted as exterior
forcing term. Here we prove the existence of a non constant T-periodic solution for (Hh)
without the following assumption, needed in [11]

∀ r ∈ R
n\{0} t 7−→ A(t)r is non constant.

Assume that

(H7) G(x) > G(0), ∀x ∈ R
n\{0};

(H8) (B−1A)∗g 6= f .
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Theorem 1.2 Under assumptions (H1), (H2), (H7), (H8), the problem (Hh) pos-

sesses a non constant T -periodic solution.

Remark 1.1 The assumption (H8) is technical, it will be used only to guarantee the
non constancy of solution for (Hh).

2 Proof of Theorem 1.1

Proof of the first part:

We use the dual action of Clarke-Ekeland.
Denote H0(t, r, p) = G(A(t)r + B(t)p). H0 is convex with respect to (r, p) and its

Fenchel’s conjugate H∗
0 is given by

∀ (s, q) ∈ R
n × R

n, H∗
0 (t, s, q) =

{
G∗(B−1∗q) if s = (B−1A)∗q,

+∞ otherwise.

For all k ∈ N
∗ we consider the functional

Φk(w) =
1

2

kT∫

0

≺ Jw, πw ≻ dt+

kT∫

0

H∗
0 (t, w) dt

defined on the space

L2
0(0, kT,R

2n) =

{
w ∈ L2(0, kT,R2n)

/ kT∫

0

w(t) dt = 0

}
,

where πw is the primitive of w with mean value zero.
Also, for all v ∈ L2

0(0, kT,R
n) we define

Ψk(v) =

kT∫

0

≺ B−1Aπv, v ≻ dt+

kT∫

0

G∗(B−1∗v) dt.

Obviously, we have Φk(w) = Ψk(v) for all w = ((B−1A)∗v, v) ∈ L2
0(0, kT,R

2n).
Hence, we use the functional Ψk on the space Ek = L2

0(0, kT,R
n).

For v ∈ Ek we set

g(v) =

kT∫

0

G∗(B−1∗v) dt

and

Q(v) =

kT∫

0

≺ B−1Aπv, v ≻ dt.
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Lemma 2.1 Ψk has a global minimum on Ek attained in v̄k.

Proof Using Wirtinger’s inequality, there exists a constant α0 > 0 such that

Q(v) ≥ −α0‖v‖
2
L2, ∀ v ∈ Ek. (1)

By (H2), for all α > 0 there exists β > 0 such that

G(x) ≤ α|x|2 + β, ∀x ∈ R
n (2)

and by going to the conjugate, we get

G∗(y) ≥
1

4α
|y|2 − β, ∀ y ∈ R

n

so

g(v) ≥
1

4α
‖B−1∗v‖2

L2 − βkT, ∀ v ∈ Ek. (3)

From (1) and (3) there exists a constant γ > 0 such that

Ψk(v) ≥ γ‖v‖2
L2 − βkT, ∀ v ∈ Ek. (4)

Let (vn) ∈ Ek be a minimizing sequence of Ψk. From (4), (vn) is bounded and since
Ek is reflexive, there exists a subsequence (vnj

) weakly convergent to v̄k.
Moreover, g is weakly lower semi-continuous, so

lim

kT∫

0

G∗(B−1∗vnj
) dt ≥

kT∫

0

G∗(B−1∗v̄k) dt.

Since the operator π is compact then

πvnj
−→ πv̄k

and so

lim
j→+∞

kT∫

0

≺ B−1Aπvnj
, vnj

≻ dt =

kT∫

0

≺ B−1Aπv̄k, v̄k ≻ dt.

Consequently
min
Ek

Ψk = Ψk(v̄k).

Lemma 2.2 For all v ∈ Ek on which g is finite we have

∂̄g(v) =
{
u ∈ L2(0, kT,Rn)/∃ ξ ∈ R

n : B(t)(u(t) + ξ) ∈ ∂G∗(B−1∗v) a.e.
}
,

where ∂̄g denotes the restriction of g on Ek.

Proof Let u ∈ L2(0, kT,Rn) and ξ ∈ R
n such that

B(t)(u(t) + ξ) ∈ ∂G∗(B−1∗v) a.e.
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so it’s easy to show that u ∈ ∂̄g(v).
Conversely, it’s clear that for v ∈ Ek

∂̄g(v) = ∂(g + δEk
)(v),

where

δEk
(v) =

{
0 if v ∈ Ek,

+∞ otherwise.

Since
∂g(v) = {u ∈ L2(0, kT,Rn)/B(t)u(t) ∈ ∂G∗(B−1∗v) a.e.}

and
∂δEk

= R
n

the result will be proved if
∂(g + δEk

) = ∂g + ∂δEk
.

The functionals g and δEk
are proper convex and l.s.c., it suffices to prove that the

inf-convolute g∗∇δ∗Ek
is exact (i.e., the infimum is attained).

Indeed, we have

(g∗∇δ∗Ek
)(v) = inf

x∈Rn

kT∫

0

G(B(t)v +B(t)x) dt.

The function

F (x) =

kT∫

0

G(B(t)v +B(t)x) dt, ∀x ∈ R
n

is continuous on R
n, so by (H1) and the fact that B(t) is invertible it’s clear that

lim
|x|→+∞

F (x) = +∞ and consequently F attains its minimum on R
n.

Conclusion of the first part:

Let v̄k ∈ Ek, where Ψk attains its minimum, we have

0 ∈ Q′(v̄k) + ∂̄g(v̄k)

which implies that
−Q′(v̄k) ∈ ∂̄g(v̄k).

By Lemma 2.2, there exists ξk ∈ R
n such that

B(−B−1Aπv̄k + π(B−1A)∗v̄k + ξk) ∈ ∂G∗(B−1∗v̄k) a.e.

Setting
rk = −πv̄k, pk = π(B−1A)∗v̄k + ξk, uk = (rk, pk). (5)

We get, by Fenchel’s reciprocity

B−1∗v̄k = ∇G(Ark +Bpk) (6)
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and 




ṙk = −v̄k = −B∗∇G(Ark +Bpk) = −
∂H0

∂p
(t, uk(t))

ṗk = (B−1A)∗v̄k = A∗∇G(Ark +Bpk) =
∂H0

∂r
(t, uk(t)).

Therefore uk is a solution of (H0), moreover since v̄k ∈ Ek, rk is kT periodic.
In the other hand rk is C1 so ṙk is kT periodic. By (H3) and (6), we have

pk = B−1[∇G−1(−B−1∗ṙk) −Ark]

so pk is kT periodic and then uk is kT periodic.

Proof of the second part:

By (H1) and the convexity assumption of G there exist two constants m, M > 0 such
that

G(x) ≥ m|x| −M, ∀x ∈ R
n (7)

so for all y ∈ R
n such that |y| ≤ m we have

−G(0) ≤ G∗(y) ≤M. (8)

Let

q(t) = a cos

(
2π

kT
t

)
+ b sin

(
2π

kT
t

)

with any (a, b) ∈ R
2n.

It’s clear that q ∈ Ek and a simple computation gives for all k ≥ 3

Q(q) =
k2T 2

4π
≺ (C0 − C∗

0 )a, b ≻ .

By the assumption (H4), we can choose (a, b) such that

{
≺ (C0 − C∗

0 )a, b ≻< 0

‖B−1∗q‖∞ ≤ m.
(9)

Setting δ = − T
4π

≺ (C0 − C∗
0 )a, b ≻, we have

Q(q) = −δTk2, with δ > 0 independent of k.

Now, by (8) and (9) we have

Ψk(v̄k) ≤ Ψk(q) ≤ −δTk2 +MkT, ∀ k ≥ 3 (10)

and
Q(v̄k) ≤ −δTk2 +MkT +G(0)kT ≤ 0 (11)

for all k ≥ k0 sufficiently large.
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In the other hand, by duality we have

G(Ark +Bpk) +G∗(B−1∗v̄k) =≺ Ark +Bpk, B
−1∗v̄k ≻

and by integration, we obtain

kT∫

0

G(Ark +Bpk) dt+

kT∫

0

G∗(B−1∗v̄k) dt = −2

kT∫

0

≺ B−1Aπv̄k, v̄k ≻ dt.

Then it follows from (10) and (11) that

kT∫

0

G(Ark +Bpk) dt = −Q(v̄k) − Ψk(v̄k) ≥ δTk2 −MkT, ∀ k ≥ k0

which gives

1

kT

kT∫

0

G(Ark +Bpk) dt ≥ δk −M, ∀ k ≥ k0.

Hence by (2) we obtain

δk −M ≤
α

kT

kT∫

0

|Ark + Bpk|
2dt+ β ≤ α‖Ark +Bpk‖

2
∞ + β, ∀ k ≥ k0

and consequently
lim

k→+∞
‖Ark +Bpk‖∞ = +∞.

To prove (ii) of Theorem 1.1, we need the following lemma:

Lemma 2.3 For all T -periodic solution u = (r, p) of (H0) we have

1.
T∫
0

|u̇|2dt ≤ 2α(β+M)πT

π−αT
,

2. 1
T

T∫
0

|Ar +Bp| dt ≤ (β+M)π
m(π−αT ) .

Proof By (H2) and (7), for all α ∈
]
0, π

T

[
there exists β > 0 only dependent on α

such that

−M ≤ H0(t, x) ≤
α

2
|x|2 + β, ∀x ∈ R

2n, ∀ t ∈ [0, T ].

A result of convex analysis gives

1

2α
|∇H0(t, x)|

2 ≤ ≺ ∇H0(t, x), x ≻ +β +M, ∀x ∈ R
2n.

It follows from (H0) that

1

2α

T∫

0

|u̇|2dt+

T∫

0

≺ Ju̇, u ≻ dt ≤ (β +M)T
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so
(

1

2α
−
T

2π

) T∫

0

|u̇|2dt ≤ (β +M)T

and therefore
T∫

0

|u̇|2dt ≤
2α(β +M)πT

π − αT
. (12)

By convexity and (7), for all T -periodic solution u = (r, p) of (H0) we have

m

T∫

0

|Ar +Bp| dt−MT ≤ TG(0) +
T

2π

T∫

0

|u̇|2dt. (13)

By (12) and (13), we deduce the desired result.
Now, we shall prove that the minimal period of uk tends to +∞ as k tends to +∞. If

not, there exists τ > 0 and a subsequence (kn) such that the minimal period Tkn
of ukn

satisfies Tkn
≤ τ , ∀n ∈ N. By Lemma 2.3, with T replaced by Tkn

, we get

Tkn∫

0

|u̇kn
|2dt ≤

2α(β +M)πTkn

π − αTkn

≤
2α(β +M)πτ

π − ατ
(14)

and

1

Tkn

Tkn∫

0

|Arkn
+Bpkn

| dt ≤
π(β +M)

m(π − ατ)
. (15)

Writing uk = ūk + ũk with ūk = 1
Tk

Tk∫
0

uk(t) dt.

By Sobolev’s inequality and (14), we obtain

‖ũkn
‖2
∞ ≤

τ

12

(
2α(β +M)πτ

π − ατ

)

thus ‖ũkn
‖∞ is bounded. By (5) we have

ūkn
= (r̄kn

, p̄kn
) = (0, ξkn

).

Since ‖ukn
‖∞ −→ +∞ and ‖ũkn

‖∞ is bounded so |ξkn
| −→ +∞.

In the other hand, by (15) we deduce that

1

T

T∫

0

|B(t)ξkn
| dt =

1

Tkn

Tkn∫

0

|A(t)r̄kn
+B(t)p̄kn

| dt

is bounded, but this is in contradiction with the fact that

|B(t)ξkn
| −→ +∞, ∀ t ∈ [0, T ].
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Then, the minimal period Tk of uk tends to +∞ as k tends to +∞ and so for sufficiently
large prime integer k, the minimal period of uk is kT .

3 Proof of Theorem 1.2

We consider the functional Φ defined on the space L2
0 = L2

0(0, T,R
2n) by

Φ(w) =
1

2

T∫

0

≺ Jw, πw ≻ dt+

T∫

0

H∗
0 (t, w − h) dt.

Let for w ∈ L2
0

Q(w) =
1

2

T∫

0

≺ Jw, πw ≻ dt and ψ(w) =

T∫

0

H∗
0 (t, w − h) dt.

We follow the same ideas of the proof of Theorem 1.1.

Lemma 3.1 Φ achieves its minimum over L2
0 in v̄.

Proof By (H2), for all α ∈]0, 2π
T

[ there exists β > 0 such that

H0(t, x) ≤
α

2
|x|2 + β, ∀x ∈ R

2n, ∀ t ∈ [0, T ],

and by going to the conjugate, we get

H∗
0 (t, y) ≥

1

2α
|y|2 − β, ∀ y ∈ R

2n, ∀ t ∈ [0, T ]

so
T∫

0

H∗
0 (t, w) dt ≥

1

2α
‖w‖2

L2 − βT, ∀w ∈ L2
0.

Moreover, by Wirtinger’s inequality, we get for all w ∈ L2
0

Φ(w) ≥
1

2

(
1

α
−

T

2π

)
‖w‖2

L2 +
1

2α
‖h‖2

L2 −
1

α
‖w‖L2‖h‖L2 − βT. (16)

Let (vn) ∈ L2
0 be a minimizing sequence of Φ. From (16), (vn) is bounded and since L2

0

is reflexive, there exists a subsequence (vnk
) weakly convergent to v̄.

Moreover, ψ is weakly l.s.c., so

lim

T∫

0

H∗
0 (t, vnk

− h) dt ≥

T∫

0

H∗
0 (t, v̄ − h) dt

and

lim
k→+∞

T∫

0

≺ Jvnk
, πvnk

≻ dt =

T∫

0

≺ Jv̄, πv̄ ≻ dt.

Consequently
min
L2

0

Φ = Φ(v̄).
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Lemma 3.2 For every v ∈ L2
0 on which ψ is finite, we have

∂̄ψ(v) =
{
u ∈ L2/∃ξ ∈ R

2n : u(t) + ξ ∈ ∂H∗
0 (t, v(t) − h(t)) a.e.

}
.

Proof Let I(v) =
T∫
0

H∗
0 (t, v) dt, ∀ v ∈ L2, then ψ(v) = I(v − h).

For u, v ∈ L2
0 and ξ ∈ R

2n such that

u(t) + ξ ∈ ∂H∗
0 (t, v(t)) a.e.,

we can prove easily that u ∈ ∂̄I(v).
Conversely, it’s clear that for v ∈ L2

0 we have

∂̄I(v) = ∂(I + δL2

0

)(v),

where

δL2

0

(v) =

{
0 if v ∈ L2

0,

+∞ otherwise.

Arguing as in proof of Lemma 2.2, it suffices to prove that the inf-convolution I∗∇δ∗
L2

0

is

exact.

In fact, for u = (r, p) ∈ L2 we have

(I∗∇δ∗L2

0

)(u) = inf
x∈R2n

T∫

0

H0(t, u(t) + x) dt

= inf
(a,b)∈R2n

T∫

0

G[A(t)r +B(t)p+A(t)a+B(t)b] dt.

We need the following lemma:

Lemma 3.3 The function

F (a, b) =

T∫

0

G(A(t)r +B(t)p+A(t)a+B(t)b) dt, ∀ (a, b) ∈ R
2n

attains its minimum on R
2n.

Proof Let

E =
{
a ∈ R

n/B−1(t)A(t)a = B−1(0)A(0)a, ∀ 0 ≤ t ≤ T
}
,

E is a linear subspace of R
n, so for all a ∈ R

n there exists a0 ∈ R
n such that a−a0 ∈ E⊥.

Notice that
F (a, b) = F (a− a0, b+B−1A(0)a0) ∈ F (E⊥ × R

n)
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so
inf
R2n

F = inf
E⊥×Rn

F.

Arguing by contradiction, we suppose that inf
E⊥×Rn

F is not attained so there exists a

sequence (an, bn) ∈ E⊥ × R
n such that

lim
n→+∞

(a2
n + b2n) = +∞ and lim

n→+∞
F (an, bn) = inf F.

It follows that

lim
n→+∞

F (an, bn)√
a2

n + b2n
= 0.

In the other hand, by convexity of G, we have for n large enough

T∫

0

G

(
A(t)r +B(t)p+A(t)an +B(t)bn√

a2
n + b2n

)
dt ≤

F (an, bn)√
a2

n + b2n
+

(
1 −

1√
a2

n + b2n

)
G(0)T.

The sequence (
an√
a2

n + b2n
,

bn√
a2

n + b2n

)
∈ E⊥ × R

n

is bounded, then by going to the limit in the above inequality through a subsequence,
we obtain

T∫

0

G(A(t)a+B(t)b) dt ≤ G(0)T

for some (a, b) ∈ E⊥ × R
n such that a2 + b2 = 1. Then

T∫

0

[G(A(t)a +B(t)b) −G(0)] dt ≤ 0

and by (H7) we obtain
A(t)a+B(t)b = 0, ∀ t ∈ [0, T ]

which is equivalent to
B−1(t)A(t)a + b = 0, ∀ t ∈ [0, T ],

but this is in contradiction with a ∈ E⊥ and a2 + b2 = 1.

Conclusion of the proof

Let v̄ ∈ L2
0 where Φ attains its minimum so

0 ∈ Jπv̄ + ∂̄ψ(v̄).

By Lemma 3.2, there exists ξ ∈ R
2n such that

Jπv̄ + ξ ∈ ∂H∗
0 (t, v̄(t) − h(t)) a.e.
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Let u = Jπv̄ + ξ, by Fenchel’s reciprocity, we get

u̇ = Jv̄ = J∇H(t, u(t))

and it’s clear that u(0) = u(T ).
It remains to prove that u is not constant.
Setting u = (r, p), (Hh) is equivalent to

u̇(t) =



ṙ

ṗ


 = J






A∗

B∗


∇G(Ar +Bp) +



f

g







but u̇ = 0 gives

−



f

g


 =



A∗

B∗


∇G(Ar +Bp)

and then (B−1A)∗g = f , which is in contradiction with the assumption (H8).

References

[1] Aubin, J.P. and Ekeland, I. Applied Non Linear Analysis. Wiley, New York, 1986.
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