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1 Introduction

Model predictive control (MPC) is a popular technique and has been successfully used in
the control of various linear and nonlinear dynamic systems (see [1, 7, 17]). However, an
obvious drawback of MPC involved in the formidable on-line computational effort limits
its applicability to relatively fast and/or large processes with moderate number of inputs
([5]). Practically, there exists a great number of complex high dimensional systems, in
which the number of variables and constraints is of ten several dozens or even several hun-
dreds. Thus it has become very important to develop computationally efficient control
architectures and algorithms with less computational burden. Unfortunately, with the
possible exception of the studies by [9, 13, – 16]. Van Antwerp and Braatz [10] to reflect
the large-scale nature of typical industrial plants, references for this topic are little in open
literature. This probably is attributable to the inherent difficulties involved incomplex
computation for large-scale processes. With the rapid development of communication
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network and the field-bus technology, centralised control has not been a sole structure
in applications and has been gradually replaced by distributed control in large-scale sys-
tems. Distributed control structure brings new requirements to the traditional control
field and allows the conceivability of new challenging control applications. For economic
consideration and also no degrading performance, it is desirable to use several inexpen-
sive microcomputers to replace a very high performance computer in control systems.
The development of communication network and the field-bus technology has provided
possibility for this distributed control. Xu, et al. [13] and Xi [12] proposed a decen-
tralised predictive control algorithm. Zheng [14, 15], Zheng and Allgower [16], proposed
a one-step approximation algorithm to reduce the on-line computation by decreasing the
number of the decision variables. More recently Gurfil and Kasdin [3] developed an it-
erative ellipsoid algorithm to allow the quick computation of sub-optimal control moves.
It should be pointed out that these approaches still take centralised computation and
therefore need high cost computers. In this study, an efficient distributed optimisation
scheme is developed based on Nash optimality for MPC of large-scale systems. Under
this scheme, on-line optimisation of the whole system is decomposed into that of several
small co-operative agents. These agents can co-operate and communicate each other in
a distributed structure to achieve the objective of the whole system. Accordingly the
computational complexity for such large-scale systems is significantly reduced. Since the
protocol of mutual communication and information exchange is adequately taken into
account, this approach can efficiently improve control performance and guarantee the
Nash optimality ([6]). The second part of the study is to analyse the relevant perfor-
mance of the developed method. The nominal stability and the convergent condition of
this distributed control system are derived. The performance deviation on single-step
horizon under the communication disturbance is also analysed with an assumption that
the algorithm is convergent. The significance of this scheme is to reduce the computa-
tional burden in complex large-scale systems. Also it can be extended to the remote
control and multi-agent systems. The main contents of the study is divided into five
sections. In Section 2 distributed MPC algorithm based on Nash optimality is proposed.
In Section 3 the convergent condition of the distributed predictive control algorithm for
linear models is analysed. In Sections 4 and 5 the nominal stability and the performance
deviation under disturbance are analysed respectively. In Section 6 a simulation example
is presented to demonstrate the efficiency of the distributed MPC algorithm.

2 Distributed Model Predictive Control Algorithm Based

on Nash Optimality

2.1 Model predictive control

Model predictive control (MPC) is formulated as resolving an on-lineopen-loop optimal
control problem in moving horizon style. Using the current state, an input sequence is
calculated to minimise a performance index while satisfying some specified constraints.
Only the first element of the sequence is taken as controller output. At the next sam-
pling time, the optimisation is resolved with new measurements from the plant. Thus
both the control horizon and the prediction horizon move or recede ahead by one step
at next sampling time. This is the reason why MPC is also sometimes referred to as re-
ceding horizon control (RHC) or moving horizon control (MHC). The purpose of taking
new measurements at each sampling time is to compensate for unmeasured disturbances
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and model inaccuracy, both of which cause the system output to be different from its
prediction. Suppose the prediction output model of the whole system is described as

Y (k + j | k) = f(Y (k), ∆u(k|k)) (j = 1, . . . , P ), (1)

where ∆uM (k) =
(
∆uT

1,M (k) . . . ∆uT
m,M (k)

)T
is the increment of the manipulated (the

controller output, also the input toplant) variables of the system, denotes the prediction
horizon, denotes the control horizon, is the mapping function vector, where the element
satisfied some smooth condition. The performance index of the whole system is

min
∆uM (k|k)

J =
P∑

i=1

L[y(k + i | k), ∆uM (k | k)], (2)

where L is the nonlinear function of input and output variables. The objective of the
whole system is to regulate the system output to the expected values while keeping the
performance minimal. For large-scale systems, because of the effect of control horizon
M , the optimised variables ∆uM (k) at each sampling time are highly dimensional, the
computation is intensive, especially for nonlinear systems, which accordingly requires
high performance computers or some advanced algorithms. To avoid the prohibitively
high on-line computational demand, this study proposes a distributed scheme with inex-
pensive agent computers under network environment.

2.2 Distributed MPC strategy based on Nash optimality

The main idea of the distributed model predictive control algorithm is the on-line op-
timisation of MPC. Since an optimisation formulation in large-scale systems can be de-
composed into a number of small-scale optimisations. These autonomous agents are
connected via network with dynamic input coupling among them, share the common
resources, communicate and co-ordinate each other in order to accomplish the whole
objective. Suppose the behaviour of the whole system is described by m agents and the
performance index (2) is separable for m agents. The local performance index for the
i-th agent can be expressed as

min
∆ui,M

Ji =

P∑

j=1

Li[yi(k + j | k), ∆ui,M (k | k)]. (3)

This indicates the global performance index of the whole system is

min J =

m∑

i=1

Ji. (4)

At time instant k, the future predictive output of the i-th agent can be expressed as

yi(k + j | k) = fi[yi(k), ∆u1,M (k | k), · · · , ∆um,M (k | k)], (i = 1, . . . , P ). (5)

It can be seen that the global performance index can be decomposed into a number of
local performance indices, but the output of each agent is still related to all the input
variables due to the input coupling. Such distributed control problem with different
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goals can be resolved by means of Nash optimal concept ([6]). Concretely speaking, each
agent optimises its objective (local performance index) only using its own input variables
assuming that the other agent’s optimal solutions are known, that is

∂Ji

∂∆ui,M (k)

∣
∣
∣
∣
∆u∗

j,M
(k), j=1,...,m, j 6=i

= 0 (i = 1, . . . , m). (6)

Thus the resulted Nash optimal solution satisfies the Nash optimality condition

Ji(∆u∗
1,M (k), · · · , ∆u∗

m,M (k)) ≤ Ji(∆u∗
1,M (k), · · · , ∆u∗

i−1,M (k),

∆ui,M (k), ∆u∗
i+1,M (k), · · ·∆u∗

m,M (k)).
(7)

Inspection of (5) to obtain the Nash optimal solution ∆u∗
i,M (k) of the i-th agent, it is

necessary to know the other agent’s Nash optimal solutions ∆u∗
j,M (k) (j 6= i), so that

the whole system could arrive at Nash optimal equilibrium in this coupling decision
process. Here an iterative algorithm is proposed to seek the Nash optimal solution of
the whole system at each sampling time. Each agent compares the newly computed
optimal solution with that obtained in last iteration, and checks if its terminal condition
is satisfied. If the algorithm is convergent, all the terminal conditions of the m agents
will be satisfied, and the whole system will arrive at Nash equilibrium at this time. This
Nash optimisation process will be repeated at next sampling time.

Algorithm:

Step 1: At sampling time k, each agent makes initial estimation of the input variables
and announces it to the other agents, let the iterative index l = 0,

∆ūl
i,M (k) = [∆ūl

i(k), ∆ūl
i(k + 1), · · · , ∆ūl

i(k + M − 1)]T ,

(i = 1, · · · , m).

Step 2: Each agent resolves its optimal problem simultaneously to obtain its solution
∆u∗

i,M (k), (i = 1, · · · , m).

Step 3: Each agent checks if its terminal iteration condition is satisfied, that is, for the
given error accuracy εi, (i = 1, · · · , m), if there exist

‖∆ul+1
i,M (k) − ∆ūl

i,M (k)‖ ≤ εi (i = 1, · · · , m).

If all the terminal conditions are satisfied, then end the iteration and go to step 4;
otherwise, let l = l + 1, ∆ūl

i,M (k) = ∆u∗
i,M (k), (i = 1, · · · , m) all agents communicate

to exchange this information, and take the latest solution to step 2.

Step 4: Compute the instant control law

∆ui(k) = [I · · · 0]∆u∗
i,M (k) (i = 1, · · · , m)

and take the first element as the controller output from each agent.

Step 5: Move horizon to the next sampling time, that is, k + 1 → k, and go to step 1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(2) (2003) 163–176 167

3 Computational Convergence for Linear Systems

Consider this distributed model predictive control of linear dynamic plants. At sampling
time k, the output prediction model of the i-th agent can be described as

ỹi,PM (k) = ỹi,P0(k) + Aii∆ui,M (k) +

m∑

j=1
j 6=i

Aij∆uj,M ,

(i = 1, · · · , m),

(8)

where Aii and Aij are the dynamic matrix of the i-th agent and the step response matrix
of the i-th agent stimulated by the j-th agent respectively. They are expressed in terms
of matrix

Aij =











aij(1) . . . 0
...

. . .
...

aij(M) . . . aij(1)
...

...
...

aij(P ) · · · aij(P − M + 1)











, A =





A11 · · · A1m

...
. . .

...
Am1 · · · Amm



 ,

where aij(k), (k = 1, 2, . . . , i, j = 1, . . . , m) is the step response matrix array. The local
performance index for the i-th agent can be expressed as

min Ji = ‖̟i(k) − ỹi,PM (k)‖2
Qi

+ ‖∆ui,M (k)‖2
Ri

(i = 1, · · · , m), (9)

where ̟i(k) = [̟i(k +1) · · · ̟i(k +P )]T , (i = 1, · · · , m) is the expected output of the
i-th agent, and

ỹi,PM (k) = [ỹi,M (k + 1 | k) · · · ỹi,M (k + P | k)]T ,

ỹi,P0(k) = [ỹi,0(k + 1 | k) · · · ỹi,0(k + P | k)]T ,

∆ui,M (k) = [∆ui(k|k) · · · ∆ui(k + M − 1 | k)]T .

According to Nash optimality, at sampling time k, the Nash optimal solution of the i-th
agent can be derived as

∆u∗
i,M (k) = Dii[̟i(k) − ỹi,P0(k) −

m∑

j=1
j 6=i

Aij∆uj,M (k)] (i = 1, · · · , m), (10)

where Dii = (AT
iiQAii + Ri)

−1AT
iiQi. If the algorithm is convergent, the Nash optimal

solution of the whole system can be written as

∆uM (k) = D1[̟(k) − ỹP0(k)] + D0∆uM (k), (11)
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where

D1 =







D11

D22

. . .

Dmm







,

D0 =







0 −D11A12 . . . −D11A1m

−D22A21 0 . . . −D22A2m

...
...

. . .
...

−DmmAm1 . . . . . . 0







.

In the iteration procedure, equation (10) can be expressed as

∆ul+1
M (k) = D1[̟(k) − ỹP0(k)] + D0∆ul

M (k) (l = 0, 1, . . . ). (12)

At time instant k, ̟(k) and ỹP0(k) are known in advance, hence D1[̟(k)− ỹP0(k)] is
the constant term irrelevant to the iteration. The convergence of expression (11) is then
equivalent to that of the following

∆ul+1
M (k) = D0∆ul

M (k). (13)

From the above analysis the convergence condition for the algorithm in application to
distributed linear model predictive control is

|ρ(D0)| < 1. (14)

That is the spectrum radius must be less than 1 to guarantee a convergent computa-
tion.

4 Nominal Stability of Distributed Model Predictive Control System

In order to analyse the nominal stability, rewrite the prediction output model of (8) in
terms of state space equation ([11]). The predictive state space model of the i-th agent
at time instant can be written as

xi(k + 1) = Sxi(k) + aii∆ui(k) +

m∑

j=1
j 6=i

aij∆uj,

Yi(k) = GSxi(k) + Aii∆ui,M (k) +

m∑

j=1
j 6=i

Aij∆uj,M ,

(i = 1, · · · , m),

(15)

where ∆ui(k) = [1 · · · 0]∆ui,M (k)

S =






0 1 . . . 0
. . . . . . . . . . . . . .

0 . . . 0 1
0 . . . 0 1






(N∗N)

,
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where N is the modelling horizon, and

aij = [aij(1) · · · aij(N)]T , xi(k) = [xi1(k) · · · xiN (k)]T ,

Yi(k) = [yi(k + 1) · · · yi(k + P )]T .

G = [IP∗P 0P∗(N−P )] denotes the operation of taking out the first P vectors from the
N dimensional vectors. The Nash optimal solution in state space expression of the i-th
agent at time instant k is

∆ui,M (k) = Dii[̟i(k) − GSxi(k) −

m∑

j=1
j 6=i

Aij∆uj,M (k)]. (16)

The integral Nash optimal solution of the whole system provided that the algorithm is
convergent at each sampling time can be written as

∆U(k) = (I − D0)
−1D1[̟(k) − F2X(k)]. (17)

This is the state feedback control law. The instant control law of the whole system is
∆u(k) = L∆U(k), where

L = Block − diag(L0 · · · L0
︸ ︷︷ ︸

m

),

L0 = (1 0 · · · 0)1∗M ,

F2 = Block − diag(GS, · · · , GS
︸ ︷︷ ︸

m

),

∆U(k) = [∆u1,M (k) · · · ∆um,M (k)]T ,

̟(k) = [̟1(k) · · · ̟m(k)]T ,

X(k) = [x1(k) · · · xm(k)]T .

Without loss of generality, let the expected output

̟i(k + 1) = 0, (i = 1, · · · , m).

Then the state space model of the whole system at time instant k can be expressed as

X(k + 1) = F1X(k) + BL∆U(k) = [F1 − BL(I − D0)
−1D1F2]X(k), (18)

where

F1 = Block − diag(S, · · · , S
︸ ︷︷ ︸

m

),

B =





a11 . . . a1m

...
. . .

...
am1 . . . amm



 .
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The expression (17) shows the state mapping relationship of the distributed system be-
tween time instant k and time instant k +1. According to contraction mapping principle
([11]), the nominal stability of the whole distributed system can be guaranteed, if and
only if

λ(F1 − (I − D0)D1F2) < 1. (19)

That is, the eigen values of state mapping are less than 1.

5 Disturbance Analysis with Single-Step Horizon Control

In distributed control, each agent can work independently to achieve its local objective,
but cannot accomplish the whole task on its own. These autonomous agents can com-
municate and co-ordinate each other, exchange information through network in order to
accomplish the whole task or objective. If a distributed system is subjected to distur-
bance, does this strategy work well and what does the performance of the whole system
change? In this section, the performance deviation on single-step horizon under the
communication disturbance is discussed. Because MPC takes a receding-horizon control
policy in which the optimisation is resolved on-line at each sampling time with updated
measurements, it is reasonable to focus on single-step horizon.

In the following analysis, assume that the prediction horizon and the control horizon
are equal and the communication disturbance is confined within stable region. To indi-
cate the communication connection between agents, define a connection matrix E. All
elements in the main diagonal of E are zeros and other elements in the non-main diagonal
of E are 1 or 0. 1 denotes no communication disturbance, and 0 shows communication
disturbance existed and the corresponding communication channel is shut up. The out-
put prediction model and the Nash optimal solution of the i-th agent at time instant k

can be respectively rewritten as

ỹi,PM (k) = ỹi,P0(k) + Aii∆ui,M (k) +

m∑

j=1
j 6=i

eijAij∆uj,M

(i = 1, · · · , m),

(20)

and

∆u∗
i,M (k) = (AT

iiQiAii + Ri)
−1AT

iiQi[̟i − ỹi,P0(k) −
m∑

j=1
j 6=i

Gij∆u∗
j,M (k)]

(i = 1, · · · , m).

(21)

Here G = E · A, “·” denotes the dot multiplication. The Nash optimal solution of the
whole system under convergent computation is

∆u∗
M (k) = (I − DE)−1D1[̟(k) − ỹP0(k)], (22)

where

DE =







0 −D11e12A12 . . . −D11e1NA1N

−D22e21A21 0 −D22e2NA2N

...
. . .

−DNNeN1AN1 0







.
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To analyse system performance deviation, define a disturbance matrix T . The dis-
turbance matrix T is a diagonal matrix or block diagonal matrix. For diagonal matrix,
define the elements of its main diagonal as 1 or 0. For block diagonal matrix, the elements
of its main diagonal block are all 1s or all 0s. The value 0 corresponds to no disturbance,
and 1 for the communication disturbance existed.

Remark 5.1 Here the communication disturbance is classified into three cases

(1) Row disturbance, that is, the disturbance happens on the receiving channels.
In this case the agent cannot receive the information coming from other agents,
equivalently the corresponding row of matrix G becomes 0 and G becomes G′,
or, G′ = G−G′′, G′′ = TG and the corresponding element of disturbance matrix
T has changed from 0 to 1;

(2) Column disturbance, that is, the disturbance happens on the transmitting chan-
nels. In this case, the agent cannot send its information to other agents, equiva-
lently the corresponding column of matrix G becomes 0 and G becomes G′, or,
G′ = G − G′′, G′′ = GT ;

(3) Mixed disturbance. In this case, both row and column disturbances exist and
G′ = G − G′′ = G − TGT .

With these preliminaries a theorem is presented.

Theorem 5.1 For a distributed system, assume that the prediction horizon and the

control horizon are equal and the communication disturbance cannot affect the stability.

Its performance at time instant k under the local communication disturbance is degrading.

The degrading magnitude δ satisfies 0 ≤ δ ≤ δmax, and the upper bound of this magnitude

δmax is

δmax =
tW (Wmax)

λm(F )
,

where tW (Wmax) denotes the norm of Wmax and λm(F ) is the minimal eigen value of F

with

F = [D−1
1 (I − DE) − A]T Q[D−1

1 (I − DE) − A] + R,

Wmax = (A − A − G)T Q(A − A − G) + [D−1
1 (I − DE) − A]T Q(A − A − G)

+ (A − A − G)T Q[D−1
1 (I − DE) − A],

A =





A11

.

.

.

ANN



 .

Proof Without loss of generality, take the column disturbance as an example, it has

D′′
E = DET D′

E = DE − D′′
E = DE − DET.

The Nash optimal solution of the whole system in this case is

∆udis
M (k) = (I − DE + DET )−1D1[̟(k) − ỹP0(k)]. (23)
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Using the matrix decomposition technique, it gives

(I − DE + DET )−1 = [2(I − DE) + (DE + DET − I)]−1

= [2(I − DE)]−1 − [2(I − DE)]−1{[2(I − DE)]−1

+ (DE + DET − I)−1}−1[2(I − DE)]−1.

(24)

In general (DE + DET − I)−1 and (I −DE)−1 all exist, therefore the above equation
holds. Substitute (24) into (23) to give

∆udis
M (k) =

1

2
∆u∗

M (k) −
1

4
(I − DE)−1 ∆u∗

M (k)
1
2 (I − DE)−1 + (DE + DET − I)−1

= S∆u∗
M (k)

(25)

with

S =
1

2
I −

1

4
(I − DE)−1

[
1

2
(I − DE)−1 + (DE + DET − I)−1

]−1

.

From ∆u∗
M (k) = (I − DE)−1D1[̟(k) − ỹP0(k)], it has

̟(k) − ỹP0(k) = D−1
1 (I − DE)∆u∗

M (k).

Then it gives

J∗ = ‖̟(k) − ỹP0(k) − A∆u∗
M (k)‖2

Q + ‖∆u∗
M (k)‖2

R

= ‖D−1
1 (I − DE)∆u∗

M (k) − A∆u∗
M (k)‖2

Q + ‖∆u∗
M (k)‖2

R = ‖∆u∗
M (k)‖2

F

(26)

with F = [D−1
1 (I − DE) − A]T Q[D−1

1 (I − DE) − A] + R, let

A =





A11

. . .

ANN



 .

Then the prediction model of the whole distributed system under the column disturbance
can be written as

ỹdis
M (k) = ỹP0(k) + (A + G − GT )∆udis

M (k) = ỹP0(k) + L∆udis
M (k), (27)

where L = A + G − GT .
Substitute (25) and (27) into (9), it can be derived

Jdis = ‖̟(k) − ỹP0(k) − LS∆u∗
M (k)‖2

Q + ‖S∆u∗
M(k)‖2

R

= ‖̟(k) − ỹP0(k) − A∆u∗
M (k) + (A − LS)∆u∗

M (k)‖2
Q

+ ‖∆u∗
M (k) + (S − I)∆u∗

M (k)‖2
R

= J∗ + ‖∆u∗
M(k)‖2

W ,

(28)
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where

W = (A − LS)T Q(A − LS) + (S − I)T R(S − I) + R(S − I)

+ (S − I)T R + (M − A)T Q(A − LS) + (A − LS)T Q(M − A).

Let tW (W ) denotes the norm of W , it gives

‖∆u∗
M (k)‖2

W ≤ ∆u∗T
M (k)‖W‖∆u∗

M (k) = tW (W )‖∆u∗
M (k)‖2

≤
tW (W )

λm(F )
‖∆u∗

M (k)‖2
F =

tW (W )

λm(F )
J∗.

Here λm(F ) is the minimal eigen value of F . From the above derivations, the performance
relationship between the free disturbance and disturbance can be expressed as

Jdis ≤ J∗ +
tW (W )

λm(F )
J∗ = (1 + δ)J∗. (29)

Inspection of (29), that tW (W ) depends on G′′ and D′′
E, while G′′ and D′′

E are affected by
disturbance matrix T . So in case of free disturbance, tW (W ) can arrive at the maximal

value, at this time, ‖T ‖ = 0, G′′ = 0, D′′
E = 0, L = A + G, S = I and

W = Wmax = (A − A − G)T Q(A − A − G) + [D−1
1 (I − DE) − A]T Q(A − A − G)

+ (A − A − G)T Q(D−1
1 (I − DE) − A).

Therefore the upper bound of the performance deviation under the local communica-
tion disturbance is

δmax =
tW (W )

λm(F )
.

Theorem 5.2 The convergence condition of the distributed linear model predictive

control system under the communication disturbance is |ρ(DE)| < 1. DE is the same as

defined before. This proof is similar to the analysis in Section 3.

Remark 5.2 Under the communication disturbance, each agent cannot exchange in-
formation properly. In an extreme case the elements in matrix E are all 1s, DE becomes
null matrix, |ρ(DE)| < 1 is always satisfied, which corresponds to the full decentralised
architecture.

6 Simulation Study

Consider a linear continuous time dynamic plant model with three inputs and three
outputs

G(s) =







e−2s

100s+1
e−6s

100s+1
e−4s

200s+1

−1.25e−2s

50s+1
3.75e−6s

50s+1
e−3s

50s+1

−2e−2s

200s+1
2e−4s

200s+1
3.5e−2s

100s+1







.
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The expected output of this system is to follow a set of unit step reference signals. With
the proposed distributed algorithm, first of all divide the whole system into three agents,
they are

Agent 1: G1(x) = e−2s

100s+1 .

Agent 2: G2(x) = 3.75e−6s

50s+1 .

Agent 3: G3(x) = 3.5e−3s

100s+1 .

The control parameters for each agent are set with P = 8, M = 3, Qi = I, Ri =
0.5I, (i = 1, 2, 3), sampling time of 20 sec, and εi = 0.01 (i = 1, 2, 3). The Matlab
based simulation results are shown in Figure 6.1. It can be observed that each agent
in this distributed structure can properly arrive at the expected outputs while keeping
the satisfactory performance to some extent. In addition, the design parameters for each
agent such as prediction horizon, control horizon, weighting matrix and sample time etc.
can all be designed and tuned separately, which is superior to the centralised control
and significantly reduce the on-line computational burden. Notice that each agent is not
necessary limited to SISO case and also it can be MIMO agent, whose dimension is still
much lower than the whole system’s.

Figure 6.1. Output responses and manipulated/control signals on the experi-

mental plant.
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7 Conclusions

In this study a distributed model predictive control method based on Nash optimality is
developed for large-scale linear systems. To avoid the prohibitively high on-line compu-
tational demand, the MPC is implemented in distributed scheme with the inexpensive
agents within the network environment. These agents can co-operate and communicate
each other to achieve the objective of the whole system. Coupling effects between the
agents are fully taken into account in this scheme, which is superior to other traditional
decentralised control methods. The main advantage of this scheme is that the on-line op-
timisation of a large-scale system can be converted to that of several small-scale systems,
thus can significantly reduce the computational complexity while keeping satisfactory
performance. In addition, the design parameters for each agent such as prediction hori-
zon, control horizon, weighting matrix and sample time etc. can all be designed and
tuned separately, which provides more flexibility for the analysis and applications. The
second part of this study is to investigate the performance of the distributed control
scheme. The nominal stability and the performance deviation on the single-step hori-
zon under the communication disturbance are analysed. These will provide users better
understanding of the developed algorithm and sensible guidance in applications. As the
method is also expandable to complex large-scale nonlinear model predictive control with
certain constraints, a further study to control nonlinear Hammertien models is under in-
vestigation.
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