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Abstract: It is well-known that the Hamilton-Jacobi-Isaacs (HJI) equation
associated with a nonlinear H∞-optimal control problem on an infinite-time
horizon generally admits nonunique, and in fact infinitely many, viscosity so-
lutions. This makes it difficult to pick the relevant viscosity solution for the
problem at hand, particularly when it is computed numerically. For the finite-
horizon version of the problem, however, there is generally a unique viscosity
solution (under appropriate conditions), which brings up the question of ob-
taining the viscosity solution relevant to the infinite-horizon problem as the
limit of the unique solution of the finite-horizon one. This paper addresses
this question for nonlinear systems affine in the control and the disturbance,
and with a cost function quadratic in the control, where the control is not
restricted to lie in a compact set. It establishes the existence of a well-defined
limit, and also obtains a result on global asymptotic stability of closed-loop
system under the H∞ controller and the corresponding worst-case distur-
bance.
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1 Introduction

An approach toward solving the nonlinear H∞-optimal control problem is to treat it as
a zero-sum differential game (e.g. [1]), for which a sufficient condition for the existence
of a solution is expressed in terms of a Hamilton-Jacobi-Isaacs (HJI) equation. Such
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equations do not generally admit classical solutions, because the values of the corre-
sponding differential games are not smooth enough to satisfy the HJI equations in the
classical sense. Evans and Souganidis [5], and Bardi and Soravia [2] were among the
first to show that the values of certain classes of differential games are viscosity solutions
of the corresponding HJI equations. In the context of nonlinear H∞ control problems,
several authors have studied before the existence of a value function, and when the value
function is a viscosity solution of the corresponding HJI equation, the uniqueness of such
viscosity solutions (see [3, 4, 9 – 12]). But most of these studies have pertained to the a
priori assumption that control sets are bounded.

The system considered in this paper has the input-affine form, leading (along with a
quadratic-in-control cost function) to a Hamiltonian that is quadratic in both the control
and the disturbance. This structure allows us to establish a comparison theorem which
yields the uniqueness of the viscosity solution of the corresponding finite-horizon HJI
equation, and this solution in turn can be used to approximate the desired viscosity
solution of the corresponding infinite-horizon HJI equation. Thus one objective of this
paper is to establish the connection between two HJI equations, one of which has multiple
solutions and the other one has a unique solution which can be used to approach the
desired solution of the former. A second objective is to show connections between such
viscosity solutions and stabilizing feedback controller design. As indicated above, most
current work which relate to nonlinear H∞ control problems requires the control set to
be compact in order to prove the uniqueness of the viscosity solution of the corresponding
HJI equations (e.g. see [7, 9]). Clearly the boundedness assumption on the control space
could be overly restrictive, and is not convenient for technical approaches. In this paper,
such a restriction is relaxed and the uniqueness of HJI equations holds under standard
assumptions.

The paper is organized as follows. In Section 2, we present the problem formulation
and describe some necessary assumptions for the systems. In Section 3, we show that
the HJI equation in the finite-horizon case admits a viscosity solution. Section 4 proves
that the viscosity solution discussed in Section 3 is unique. In Section 5, we study how to
obtain the viscosity solution of the HJI equation of infinite-horizon case from the unique
solution of the finite-horizon one. An example is given in Section 6 to illustrate the main
result of the paper. Some final remarks in Section 7 conclude the paper.

2 Preliminaries and Assumptions

Consider a system of the input-affine form

dx

ds
= a(x) +B(x)u +D(x)w, x(t) = x0, (2.1)

where x(s) is the state vector with values in Rn, and u(s) is the control vector with values
in Rp. The other input, w(s) ∈ Rm, is the driving noise, which is an unknown L2[0,∞)
function; it represents modeling errors in a and other possible errors or inaccuracies in
the dynamics. Thus the system model (2.1) accommodates uncertainties.

We will assume that there exist positive constants Ka, KB, KD such that

|a(x) − a(y)| ≤ Ka|x− y| ∀x, y ∈ Rn,

|a(x)| ≤ Ka(1 + |x|) ∀x ∈ Rn,

|B(x) −B(y)| ≤ KB|x− y| ∀x, y ∈ Rn,

|D(x) −D(y)| ≤ KD|x− y| ∀x, y ∈ Rn,

(2.2)
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where the symbol | · | denotes the Euclidean norm. Since the state of the system probably
operates over some compact subset of Rn, we may only need (2.2) to hold on this compact
set as a, B, D can be extended to all of Rn.

Let the running cost be q(x) + uTR(x)u, where q(x) ≥ 0, ∀x ∈ Rn, and satisfies the
following bounds and growth conditions:

|q(x) − q(y)| ≤ Cq(1 + |x| + |y|)|x− y|, Cq ≥ 0.

For R(x), on the other hand, there exist positive constants k1, k2 such that for all x ∈ Rn

k1I
p×p ≤ R(x) ≤ k2I

p×p,

which in particular implies that R(x) is invertible for all x.
Further let the terminal state cost function be g(x), satisfying the bound

|g(x) − g(y)| ≤ Kg(r)|x − y|, ∀ |x| ≤ r, |y| ≤ r.

For a given tf > 0, we consider the lower-value function

V (t;x, tf ) = sup
w

inf
u
J

tf
γ (t, x, u, w), (2.3)

where J
tf
γ (t, x, u, w) = g(x(tf )) + L

tf
γ (t, x, u, w) and

Lτ
γ(t, x, u, w) =

τ
∫

t

(

q(x(s)) + uTR(x(s))u − γ2|w(s)|2
)

ds.

The corresponding Hamilton-Jacobi-Isaacs (HJI) equation is

−Vt(t;x, tf ) +H(x, V (t;x, tf )) = 0 and V (tf ;x, tf ) = g(x), (2.4)

where the Hamiltonian for this case is given by

H(x, p) : = − sup
w

inf
u
{q + uTRu− γ2wTw + pT [a+ Bu+Dw]}

= −q − pTa+
1

4
pT

(

BR−1BT − 1

γ2
DDT

)

p

with the assumption that for fixed x

|p| → ∞ implies |H(x, p)| → ∞. (2.5)

Remark 2.1 Let M be the space of all state-feedback controllers, i.e. measurable map-
pings from Rn into Rp. Then, the quantity we are really interested in (the one that is rele-

vant to nonlinearH∞ control) is in fact the upper value of the game: inf
M

sup
w
J

tf
γ (t, x, u, w).

Note, however, that since the Isaacs’ condition is satisfied, the Hamiltonian admits a
saddle-point solution, which makes the upper and lower values equal. In view of this,
we are allowed to work with the lower value of the game and thus avoid some technical
issues that arise in a direct study of the upper value of the game.
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3 Lower Value of the Differential Game and the Viscosity Solution

Lemma 3.1 Let V be defined as in (2.3). Then, for any 0 ≤ t ≤ τ ≤ tf , and with
x(t) = x,

V (t;x, tf ) ≥ sup
w

inf
u

{

Lτ
γ(t;x, u, w) + V (τ ;x(τ), tf )

}

.

If the upper value of the game is finite, then the above inequality becomes an equality.

Proof This involves a standard dynamic programming type argument in the context
of differential games.

Theorem 3.1 If in (2.3) V (·; ·, tf ) ∈ C([0, tf ] × Ω), then V is a viscosity superso-

lution of (2.4). Furthermore, if the upper value of the game, inf
M

sup
w
J

tf
γ (t;x, µ, w), is

finite, then V is a viscosity solution of (2.4).

Proof Suppose that to the contrary V is not a viscosity supersolution of (2.4). Then
there would exist an ε > 0, and a pair (t0, x0) ∈ [0, tf ]×Ω and a function Φ: [0, tf ]×Ω →
R such that V (·; ·, tf ) − Φ has a local minimum at (t0, x0), and

−Φt(t0, x0) +H(x0,Φx(t0, x0)) ≤ −ε.

By making use of (2.1), as t ↓ t0, we have

Φ(t0, x0) − Φ(t, x(t)) ≤ −ε(t− t0) + inf
u
Lt

γ(t0;x0, u, w).

Since (t0, x0) is a local minimizer of V (·; ·, tf ) − Φ, in a small neighborhood of (t0, x0),

V (t0;x0, tf ) − V (t;x, tf ) ≤ Φ(t0, x0) − Φ(t, x(t)).

Therefore we arrive at

V (t0;x0, tf ) ≤ sup
w

inf
u

{

Lt
γ(t0;x0, u, w) + V (t;x, tf )

}

− ε(t− t0),

which contradicts the statement of Lemma 3.1. For the case of viscosity subsolution, let
(t0, x0) ∈ [0, tf ] × Ω and Ψ ∈ C1([0, tf ] × Ω) be such that (t0, x0) is a local maximizer
of V − Ψ with V (t0;x0, tf ) = Ψ(t0, x0). By Lemma 3.1, for any t ∈ (t0, tf ],

Ψ(t0, x0) = V (t0;x0, tf ) ≤ sup
w

{

Lt
γ(t0, x0, u

∗, w) + V (t;x(t), tf )
}

, (3.1)

where u∗ = −R−1BT Ψx. Observing that {x(t, x0, u
∗, w)} is continuous in t, when t > t0

is sufficiently close to t0, we have

V (t0;x0, tf ) − V (t;x, tf ) ≥ Ψ(t0, x0) − Ψ(t, x(t, x0, u
∗, w)).

Divide (3.1) by t− t0, and let t ↓ t0, to obtain

sup
w

{

1

2
[q + (u∗)TRu∗ − γ2|w|2] + Ψt + ΨT

x (a+Bu∗ +Dw)

}

≥ 0
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which yields at (t, x) = (t0, x0)

Ψt + q + ΨT
x a−

1

4
ΨT

x

(

BR−1BT − 1

γ2
DDT

)

Ψx ≥ 0

that is to say, V is a viscosity solution of (2.4).

4 Uniqueness of the Viscosity Solution of (2.4)

In this section, we show that the viscosity solution of (2.4) is unique. Suppose that
V , W are a viscosity supersolution and a viscosity subsolution, respectively, of (2.4) on
QΩ

tf
= [0, tf ] × Ω. Furthermore, assume that

W ≤ V on ({t = tf} × Ω) ∪ ([0, tf ] × ∂Ω).

Lemma 4.1 Let R < ∞, and a function Λ ∈ C1(QΩ
tf

) be such that Λ ≥ 0 if

|x| ≥ R, and

Λt < 0 on( supp Λ)o ∩
(

QΩ
tf

)o
, (4.1)

where the superscript “o” indicates interior. Then W ≤ V on (supp Λ)o ∩ (QΩ
tf

)o.

Proof Suppose that (t0, x0) ∈ (supp Λ)o ∩ (QΩ
tf

)o such that

M0 = Λ(t0, x0)[W (t0, x0) − V (t0, x0)] = max
QΩ

tf

Λ(t, x)[W (t, x) − V (t, x)] > 0 (4.2)

since otherwise the result has already been established. Introduce a function Φε,δ : QΩ
tf
×

QΩ
tf

→ Rn by

Φε,δ = Λ(s, y)W (t, x) − Λ(t, x)V (s, y) − 1

2ε
|x− y|2 − 1

2δ
|t− s|2. (4.3)

Since Φε,δ is upper semicontinuous and Λ has a compact support, there exists (tδ, xε, sδ, yε)
∈ QΩ

tf
×QΩ

tf
such that

Φε,δ(tδ, xε, sδ, yε) = max
QΩ

tf
×QΩ

tf

Φε,δ(t, x, s, y). (4.4)

Let M ε,δ = Φε,δ(tδ, xε, sδ, yε), and consider 0 < ε2 ≤ ε1 and 0 < δ2 ≤ δ1. Then

M ε1,δ1 −
(

1

ε2
− 1

ε1

) |xε2
− yε2

|2
2

−
(

1

δ2
− 1

δ1

) |tδ2
− sδ2

|2
2

≥ Φε1,δ1(tδ2
, xε2

, sδ2
, yε2

) −
(

1

ε2
− 1

ε1

) |xε2
− yε2

|2
2

−
(

1

δ2
− 1

δ1

) |tδ2
− sδ2

|2
2

= Λ(sδ2
, yε2

)W (tδ2
, xε2

) − Λ(tδ2
, xε2

)V (sδ2
, yε2

) − 1

2ε1
|xε2

− yε2
|2
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− 1

2δ2
|tδ2

− sδ2
|2 −

(

1

ε2
− 1

ε1

) |xε2
− yε2

|2
2

−
(

1

δ2
− 1

δ1

) |tδ2
− sδ2

|2
2

= Φε2,δ2(tδ2
, xε2

, sδ2
, yε2

) = M ε2,δ2 .

Hence, we can see that (ε, δ) 7→ M ε,δ is nondecreasing. Let ε1 = 2ε, ε2 = ε and
δ1 = δ2 = δ; then

M2ε,δ −M ε,δ ≥ 1

2ε

|xε − yε|2
2

. (4.5)

Note that M2ε,δ −M ε,δ → 0 as ε ↓ 0. Hence, (ε, δ) →M ε,δ is nondecreasing. Thus we
have

1

2ε
|xε − yε|2 → 0 as ε ↓ 0. (4.6)

Similarly, we have
1

2δ
|tδ − sδ|2 → 0 as δ ↓ 0. (4.7)

Since Λ has compact support, and (4.6), (4.7) hold, there exist sequences {εn} and {δm}
which converge to zero such that

xεn
→ x̂, yεn

→ x̂, as n→ ∞ (4.8)

and
tδm

→ t̂, sδm
→ t̂ as m→ ∞, (4.9)

where (t̂, x̂) ∈ QΩ
tf

. In fact it is easy to see that x̂ = x0, t̂ = t0. Note that under the

initial hypotheses, (t0, x0) ∈ (supp Λ)o ∩ (QΩ
tf

)o. Therefore, for sufficiently large n and

m, we have that (tδm
, xεn

), (sδm
, yεn

) ∈ (supp Λ)o ∩ (QΩ
tf

)o. Since the function

W (t, x) − 1

Λ(sδm
, yεn

)

[

Λ(t, x)V (tδm
, xεn

) +
1

2εn

|x− yεn
|2 +

1

2δm
|t− sδm

|2
]

(4.10)

attains its maximum at (t, x) = (tδm
, xεn

), by the definition of viscosity subsolution, we
have

Λt(tεn
, xεn

)V (tδm
, xεn

) + (tδm
− sδm

)/δm
Λ(sδm

, yεn
)

+H

(

xεn
,
Λx(tδm

, xεn
)V (tδm

, xεn
) + (xεn

− yεn
)/εn

Λ(sδm
, yεn

)

)

≤ 0.

(4.11)

Similarly, the function

V (s, y) − 1

Λ(tδm
, xεn

)

[

Λ(s, y)W (tδm
, xεn

) − 1

2εn

|xεn
− y|2 − 1

2δm
|tδm

− s|2
]

(4.12)

has a minimum at (sδm
, yεn

). Note that W (·, ·) is a supersolution, which results in

Λs(sδm
, yεn

)W (tδm
, xεn

) + (tδm
− sδm

)/δm
Λ(tδm

, xεn
)

+H

(

yεn
,
Λy(sδm

, yεn
)W (tδm

, xεn
) + (xεn

− yεn
)/εn

Λ(tδm
, xεn

)

)

≥ 0.

(4.13)
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Fix εn and let m→ ∞; (4.11) and (4.13) then imply that the sequence {(tδm
−sδm

)/δm}
is bounded. Thus there exists a converging subsequence, which we still denote by {(tδm

−
sδm

)/δm}. By (4.11) and assumption (2.5), we have that (xεn
−yεn

)/εn is also bounded.
Note that by (4.8) and (4.9), the difference between

H

(

xεn
,
Λx(tδm

, xεn
)V (tδm

, xεn
) + (xεn

− yεn
)/εn

Λ(sδm
, yεn

)

)

and

H

(

yεn
,
Λy(sδm

, yεn
)W (tδm

, xεn
) + (xεn

− yεn
)/εn

Λ(tδm
, xεn

)

)

approaches zero as m, n → ∞. Hence letting m → ∞ in both (4.11) and (4.13),
subtracting (4.13) from (4.11), and letting n→ ∞, leads to

−Λt(t0, x0)[W (t0, x0) − V (t0, x0)]

Λ(t0, x0)
≤ 0. (4.14)

This, in turn, implies that Λt(t0, x0) ≥ 0, which contradicts the assumption of the lemma.
Therefore

max
QΩ

tf
×QΩ

tf

Λ(t, x)[W (t, x) − V (t, x)] ≤ 0 (4.15)

and this completes the proof of Lemma 4.1.

Now we are ready to state the following comparison theorem:

Theorem 4.2 If condition (4.1) holds, then we have

W ≤ V on QΩ
tf
. (4.16)

Proof We are interested in finding a function Λ such that the conditions of Lemma 4.1
are satisfied. A natural choice for this function is:

Λ(t, x) =











exp

{

R2

|x|2 −R2
− t

}

, |x| < R,

0, |x| ≥ R

. (4.17)

Suppose that there were (t0, x0, i0) ∈ QΩ
tf

such that

W (t0, x0) > V (t0, x0). (4.18)

Let R > |x0|, and Λ be as above. Clearly, (3.2) is satisfied under this specific choice of
Λ. Applying Lemma 4.1, we know that (4.18) could not hold. Therefore (4.16) must be
true.

Under our assumptions, the comparison theorem leads to uniqueness of the viscosity
solution of (2.4):
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Corollary 4.1 Let V , W be two viscosity solutions of (2.4) with boundary and ter-
minal conditions

V (t, x) = W (t, x) = ϕ(t, x) on [0, tf ] × ∂Ω,

V (tf , x) = W (tf , x) = g(x) on Ω.

Under assumptions (2.2) – (2.3) and (2.5), we have

V = W on [0, tf ] × Ω. (4.19)

5 Feedback Optimal Control

Letting V (t;x, tf ) denote the unique viscosity solution of (2.4), we consider in this section
the limit lim

tf→∞
V (t;x, tf ) provided that such a limit exits. Toward this end, we introduce

another HJI equation which corresponds to the infinite-horizon case:

H(x, V (x)) = 0, (5.1)

where H is as given in (2.5). Henceforth we denote the viscosity solution of (5.1) by V̂ .

Lemma 5.1 V̂ is a viscosity solution of (5.1) with x ∈ Ω if and only if

H(x, p(x)) = 0, (5.2)

for p ∈ D−V̂ (x), where

D−V̂ (x) :=

{

p ∈ Rn, lim inf
y→x

V̂ (y) − V̂ (x) − p(y − x)

|y − x| ≥ 0

}

.

Proof See page 80 of [7].

Theorem 5.1 Let g ≡ 0. Assume that V̂ is the smallest nonnegative viscosity
solution on any open bounded subset Ω ⊂ Rn with properties

(1) The state feedback controller

µ(x) = −1

2
R−1(x)BT (x)p(x), p ∈ D−V̂ (x), (5.3)

is an admissible state feedback controller, that is, under it, the state equation
admits at least one solution in L2

loc(0,∞;Rn).
(2) There exists a nonnegative function ϕ : Ω → R, with ∇xϕ existing a.e. on Ω,

such that

∇xϕ = p, a.e. x ∈ Ω. (5.4)

(3) q(x(·)) ∈ L1(R+;R) implies x ∈ L2(R+;Rn).
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Then, under the feedback controller (5.3), the worst-case system trajectory generated
by

ẋ∗ = a(x∗) − 1

2
B(x∗)R−1(x)B(x∗)T p(x∗) +

1

2γ2
D(x∗)D(x∗)T p(x∗)

is globally asymptotically stable, i.e.

x∗ ∈ C(R+;Rn) ∩ L2(R+;Rn); lim
t→∞

x∗(t) = 0,

and for any w ∈ L2([0,∞);Rm) we have

t2
∫

t1

{

q(x) + µ(x)TR(x)µ(x) − γ2|w|2
}

dt+ ϕ(x(t2)) ≤ ϕ(x(t1)), (5.5)

where x satisfies
ẋ = a(x) +B(x)µ(x) +D(x)w. (5.6)

Proof By hypothesis (2) of the theorem, and Lemma 5.1, we have

q + ∇xϕ
T a− 1

4

(

∇xϕBR
−1BT∇xϕ− 1

γ2
∇xϕ

TDTD∇xϕ

)

= 0 a.e. x ∈ Ω. (5.7)

Note that
dϕ(x(t))

dt
= ∇xϕ

T
[

a(x) +B(x)µ(x) +D(x)w
]

(5.8)

and integrating (5.8) on (t1, t2), and making use of (5.7), we get

ϕ(x(t2)) +

t2
∫

t1

{

q(x) + µ(x)TR(x)µ(x) − γ2|w|2
}

ds

= ϕ(x(t1)) −
t2

∫

t1

∣

∣

∣

∣

γw(s) +
1

2γ
D(x(s))p(x(s))

∣

∣

∣

∣

2

ds ≤ ϕ(x(t1)).

Let t1 = 0, t2 = T , and note that by above inequality we have, for some constant C,

t
∫

0

q(x∗(s)) ds ≤ C, ∀T > 0.

In view of this, and hypothesis (3), we have x∗ ∈ L2([0,∞);Rn). Hence x∗(t) → 0 as
t→ ∞.

Theorem 5.2 Let V̂ be the smallest nonnegative viscosity solution of (5.1) and V be
the viscosity solution of (2.4) with g ≡ 0. Under the three hypotheses of Theorem 5.2,
we have:

(1) There exists a function ψ : Ω → R∪ {∞} such that ∀x ∈ Ω

V (0;x, tf ) ↑ ψ(x) as tf → ∞. (5.9)

(2) If the above convergence is uniform on compact subsets of Ω, then ψ = V̂ .
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Proof (1) According to Theorem 3.1, we know that

V (0;x, tf ) = sup
w

inf
u
J tf (0;x, u, w). (5.10)

Note that V (0; ·, tf ) is monotonically nondecreasing with increasing tf , since the lower
value of the game J tf (0;x, ·, ·) defined on [0, tf ] cannot be larger than that of the one
defined on a longer interval, [0, tf ′ ], tf ′ > tf , as the maximizing player can always play
zero control on the subinterval [tf , tf ′ ]. According to the proof of Theorem 5.2, we have
V (0;x, tf ) = sup

w
inf
u
J tf (0;x, u, w) ≤ ϕ(x0). Hence there exists a function ψ such that

V (0;x, tf ) ↑ ψ(x) ∀x ∈ Ω. (5.11)

(2) For all x ∈ Ω and t ≥ −tf , introduce

V tf (t, x) = V (0;x, t+ tf ) (5.12)

and note that V tf is a viscosity solution of

−V tf

t (t, x) +H(x, V tf (t, x)) = 0. (5.13)

Thus ψ is a continuous viscosity solution of (5.13) according to the uniform convergence
theorem of [7]. Since ψ is t-invariant, it is a continuous viscosity solution of

H(x, V (x)) = 0. (5.14)

The proof of Theorem 5.2 is thus complete.

6 Example

Revisiting the example in Chapter 4 of [1] (p. 170), consider the bilinear system

ẋ(t) = (u(t) + w(t))x(t), x(0) = x0, (6.1)

and the cost function

Jγ(x;u,w) =

∞
∫

0

{x2(t) + u2(t) − γ2w2(t)} dt.

The associated HJI equation is

−x2 +
1

4

(

1 − 1

γ2

)

V 2
x x

2 = 0 (6.2)

whose smallest nonnegative viscosity solution is

V̂ (x) =
2γ

√

γ2 − 1
|x| (6.3)
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provided that γ > 1. It can be shown that V̂ is in fact the lower value of the game
Jγ(x, ·, ·) (e.g. see [11]), that is,

V̂ (x) = sup
w

inf
u
Jγ(x;u,w). (6.4)

The subdifferential D−V̂ (x) of V̂ is

D−V̂ (x) =
2γ

√

γ2 − 1

x

|x| , x 6= 0. (6.5)

In this case, the function ϕ introduced in (5.4) is ϕ(x) = V̂ (x). According to Theo-
rem 5.1, the H∞ optimal state feedback controller is

µ(x) = − γ
√

γ2 − 1
|x|. (6.6)

For any positive tf > 0, let

J tf (t, x;u,w) =

tf
∫

t

{

x2(s) + u2(s) − γ2w2(s)
}

ds.

The associated HJI equation

−Vt − x2 +
1

4

(

1 − 1

γ2

)

V 2
x x

2 = 0 (6.7)

with terminal condition Vt(tf ;x, tf ) = 0 has a unique viscosity solution according to
Corollary 4.1, and such a viscosity solution is also the lower value of the game with

cost function J tf (t, x; ·, ·). Theorem 5.2 assures V (0;x, tf ) → V̂ (x) as tf → ∞. This
conclusion, however, can also be verified directly by the Arzelá-Ascoli Theorem for this
particular example. Consider the system ẏ = (µ(y) + ν(y))y, y(0) = y, where µ(·) is as
given by (6.6), and ν(x) = 1

γ
√

γ2−1
|x|. Note that by the proof of Theorem 5.1, we have

|V (0, x; tf ) − V (0, y; tf)| = |ϕ(x) − ϕ(y) + ϕ(y(tf )) − ϕ(x(tf ))|

≤ γ
√

γ2 − 1
(|x− y| + |y(tf ) − x(tf )|)

≤ γ
√

γ2 − 1
C|x− y|, for some C > 0.

By the Arzelá-Ascoli Theorem, we have that V converges to V̂ uniformly on compact
sets.

7 Concluding Remarks

In this paper we have shown that for input-affine nonlinear systems the relevant viscosity
solution of the HJI equation associated with the infinite-horizon nonlinear H∞-optimal
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control problem can be obtained as the limit of the unique viscosity solution of the HJI
equation associated with a particular finite-horizon version, as the length of the time
interval goes to infinity. This result has been obtained without necessarily restricting
the control to a bounded set. Once such a viscosity solution is obtained, the resulting
unique H∞ controller makes the closed-loop system asymptotically stable under worst-
case disturbances. The result also extends to more general nonlinear systems, as long as
the underlying differential game admits a saddle-point solution.
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