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1 Introduction

Any physical dynamic system inherently contains, more or less, some delay phenomena
because energy in the system propagates with a finite speed. Typical systems with
time delays include turbojet engine, microwave oscillator, control of epidemics, inferred
grinding model, and population dynamics model [6, 7, 17]. It is noted that for many
stable systems the introduction of arbitrarily small time delay into the loop of systems
can cause instability [4, 10]. Furthermore, the system uncertainties could be present due
to mathematical model errors, temperature varying, and element life. Thus, feedback
control of uncertain time-delay systems is crucial for practical design of control systems;
see, e.g., [2, 7 – 9, 13 –17, 19, 20] and the references therein. We wish to point out that
many systems whose dynamics contain a term that is affine-linear in control have been
investigated in the past; see, e.g., [1, 3, 11, 14, 18 – 20]. The generalization allowing some
systems whose dynamics contain a term which depends on the square of the control in
addition to an affine term has been considered in [12].
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Uncertain input nonlinearity considered in this paper is a general expression on un-
certainties and control, that is a generalization of uncertain input nonlinearity for many
time-delay systems. Moreover, we allow the dynamics of the system containing the term
which depends on the control order up to (r − 1), where r is a positive integer greater
than three.

The paper is organized as follows. In Section 2, some preliminaries are provided.
Exponential stabilization for three classes of uncertain nonlinear systems are considered
in Section 3 to Section 5, respectively. An illustrative example is provided in Section 6
to demonstrate the use of our main results. Finally, summary follows in Section 7.

2 Preliminaries

For convenience, we define some notation that will be used throughout this paper as
follows:

R+ − Set of all nonnegative reals.

R − Set of all real numbers.

Rn − n-dimensional real space.

Rn×m − Set of all real n by m matrices.

I − Unit matrix.

AT − Transpose of matrix A.

‖A‖ − Spectral norm of matrix A.

‖x‖ − Euclidean norm of x ∈ Rn.

λmin(P ) − Minimal eigenvalue of symmetric matrix P .

λmax(P ) − Maximal eigenvalue of symmetric matrix P .

C − Set of all continuous functions from [−H, 0] to Rn.

∇xV (t, x) − Gradient of smooth scalar function V (t, x).

|a| − Absolute value of real number a.

∀ − Means “for every.”

Consider the following nonlinear time-delay dynamic system:

ẋ(t) = f(t, xt), ∀ t ≥ t0 ≥ 0, (1)

xt0(t) = θ(t), t ∈ [−H, 0], (2)

where x ∈ Rn, xt(s) = x(t+ s), ∀ s ∈ [−H, 0], H ≥ 0, with ‖xt‖s = sup
−H≤τ≤0

‖x(t+ τ)‖,

and θ ∈ C is a given initial function. The function f : R+ ×C → Rn is supposed to be
completely continuous and to satisfy enough additional smoothness conditions to ensure
the solution x(t0, θ)(t) through (t0, θ) is continuous in (t0, θ, t), t ≥ t0 ≥ 0, in the domain
of definition of the function [8].

Definition 2.1 System (1) is said to be globally exponentially stable with convergence
rate α > 0 if, for each θ ∈ C and t0 ∈ R+, we have

‖x(t0, θ)(t)‖ ≤ c(t0, ‖θ‖s) exp(−α(t − t0)) for all t ≥ t0 ≥ 0,

where c(·) is a bounded function depending on t0 and ‖θ‖s.
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Lemma 2.1 Assume there exist a sufficiently smooth function V (t, x) and positive
constants λ1, λ2, λ3, p, ε, and β, with β > λ3/λ2, such that for all x ∈ Rn, t ≥ t0 ≥ 0,

λ1‖x‖p ≤ V (t, x) ≤ λ2‖x‖p, (3)

and the derivative of V along solutions of (1) satisfies

dV (t, x(t))

dt
= ∇tV (t, x(t)) + ∇T

x V (t, x(t)) · f(t, xt) ≤ −λ3‖x(t)‖p + εe−βt, (4)

then system (1) is globally exponentially stable with guaranteed convergence rate

η = λ3/(λ2p).

Proof See Appendix A.

Lemma 2.2 For any nonnegative integers i and j, define 0! = 1, i! = 1×2×3×. . .×i,
and Ci

j = i!/[j!(i − j)!], i ≥ j. Then, for any nonnegative integers i, j, and r, the
following inequalities are true:

(a) Cr−3
j−3 ≥ Cr−i

j−i , ∀ 3 ≤ i ≤ j ≤ r,

(b) 3 Cr−2
j−2 − 2 Cr−2

j−1 + Cr−2
j ≥ 3 Cr−3

j−3 , ∀ 3 ≤ j ≤ r − 2.

Proof See Appendix B.

3 First Class of Systems

Consider the following uncertain system with a time-varying delay:

ẋ(t) = F (t, x(t))

+ G(t, x(t), x(t − h(t)))∆Ψ(t, x(t), x(t − h(t)), u(t)), t ≥ t0 ≥ 0,
(5)

xt0(t) = θ(t), t ∈ [−H, 0], (6)

where x ∈ Rn, h(t) is a delay argument with 0 ≤ h(t) ≤ H , u ∈ Rm is the input vector,
and θ ∈ C is a given initial function. The functions F , G, and ∆Ψ (uncertain input
nonlinearity) are assumed to be continuous with F (t, 0) = 0, t ≥ t0 ≥ 0.

Before presenting our main results, we make some assumptions as follows.

Assumption (A1) [18] There exist a sufficiently smooth function W (t, x(t)) and
positive constants λ1, λ2, λ3, and p such that, for all x ∈ Rn, t ≥ t0 ≥ 0,

λ1‖x‖p ≤ W (t, x) ≤ λ2‖x‖p, (7)

and the derivative of W along solutions of ẋ(t) = F (t, x(t)) satisfies

dW (t, x(t))

dt
= ∇tW (t, x(t)) + ∇T

x W (t, x(t)) · F (t, x(t)) ≤ −λ3‖x(t)‖p. (8)
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Assumption (A2) [12] There exist positive continuous functions f1(t, x, y),
f2(t, x, y), and nonnegative continuous functions f3(t, x, y), . . . , fr(t, x, y) such that for
all t ≥ t0 ≥ 0, x, y ∈ Rn, and u ∈ Rm,

uT · ∆Ψ(t, x, y, u) ≥ −f1(t, x, y)‖u‖ + f2(t, x, y)‖u‖2 −
r∑

j=3

fj(t, x, y)‖u‖j, (9)

with

f r−1
2 (t, x, y) ≥

r∑

j=3

2j−1f j−2
1 (t, x, y)f r−j

2 (t, x, y)fj(t, x, y). (10)

Remark 3.1 For r = 3, r = 4, and r = 5, inequality (10) becomes, respectively,

f2
2 ≥ 4f1f3, (11)

f3
2 ≥ 4f1f2f3 + 8f2

1f4, (12)

f4
2 (t, x, y) ≥ 4f1f

2
2 f3 + 8f2

1f2f4 + 16f3
1f5. (13)

It is interesting to note that (13) reduces to (12) by setting f5 = 0 and (12) reduces to
(11) by setting f4 = 0. Similar statement can be made for higher r.

Theorem 3.1 System (5) satisfying Assumptions (A1)∼(A2) is globally exponen-
tially stabilizable with convergence rate η = λ3/(λ2p) under the control

u(t) = −γ(t, x(t), x(t − h(t)))K(t, x(t), x(t − h(t))), (14)

where

γ(t, x(t), x(t − h(t)))

=
2f2

1 (t, x(t), x(t − h(t)))

f2(t, x(t), x(t − h(t)))[f1(t, x(t), x(t − h(t)))‖K(t, x(t), x(t − h(t)))‖ + ε∗(t)]
,

(15)

ε∗(t) = 3 exp(−βt), (16)

K(t, x(t), x(t − h(t))) = GT(t, x(t), x(t − h(t)))∇xW (t, x(t)), (17)

with β > λ3/λ2.

Proof Let W (t, x(t)), satisfying (7) – (8), be a Lyapunov function candidate of the
system (5) with (14) – (17). The time derivative of W (t, x(t)) along trajectories of the
closed-loop system is given by

Ẇ = ∇tW + ∇T
x W (F + G · ∆Ψ) ≤ −λ3‖x‖p + ∇T

x WG · ∆Ψ. (18)

From (9) and (14), we have

−γKT · ∆Ψ > −f1γ‖K‖+ f2γ
2‖K‖2 −

r∑

j=3

fjγ
j‖K‖j,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(1) (2004) 15–30 19

which implies

KT · ∆Ψ ≤ f1‖K‖ − f2γ‖K‖2 +

r∑

j=3

fjγ
j−1‖K‖j. (19)

Applying (19) to (18) with (15) – (17), we have

Ẇ ≤ −λ3‖x‖p + f1‖K‖ − f2γ‖K‖2 +
r∑

j=3

fjγ
j−1‖K‖j.

In the following, the proof is made by setting r = 3, r = 4, and r ≥ 5, respectively.

For r = 3, we have

Ẇ ≤ −λ3‖x‖p + f1‖K‖ − f2γ‖K‖2 + f3γ
2‖K‖3

= −λ3‖x‖p + f1‖K‖ − 2f2f
2
1 ‖K‖2

f2(f1‖K‖ + ε∗)
+

4f3f
4
1 ‖K‖3

f2
2 (f1‖K‖ + ε∗)2

+ (−e−βt + e−βt)

=
f2
2 (f1‖K‖ − e−βt)(f1‖K‖ + ε∗)2 − 2f2

2 f2
1 ‖K‖2(f1‖K‖+ ε∗)

f2
2 (f1‖K‖+ ε∗)2

+
4f3f

4
1 ‖K‖3

f2
2 (f1‖K‖ + ε∗)2

− λ3‖x‖p + e−βt

=
−‖K‖3f3

1 (f2
2 − 4f1f3) − ‖K‖2f2

1 f2
2 e−βt + 3‖K‖f1f

2
2 e−2βt − 9f2

2 e−3βt

f2
2 (f1‖K‖ + ε∗)2

− λ3‖x‖p + e−βt.

(20)

By using the fact that 2ab ≤ a2 + b2 for any a, b ≥ 0, one has

3‖K‖f1f
2
2 e−2βt = f2

2 e−βt

[
2 f1‖K‖ 3e−βt

2

]
≤ f2

2 e−βt

[
(f1‖K‖)2 +

9e−2βt

4

]
. (21)

From (11), (20), and (21), we have

Ẇ ≤ −‖K‖3f3
1 (f2

2 − 4f1f3) − (27/4)f2
2 e−3βt

f2
2 (f1‖K‖ + ε∗)2

− λ3‖x‖p + e−βt ≤ −λ3‖x‖p + e−βt.

Next for r = 4, we have

Ẇ ≤ −λ3‖x‖p + f1‖K‖ − f2γ‖K‖2 + f3γ
2‖K‖3 + f4γ

3‖K‖4

= −‖K‖4f4
1 (f3

2 − 4f1f2f3 − 8f2
1 f4) + ‖K‖3f3

1 e−βt(4f3
2 − 4f1f2f3(3)) + 27f3

2 e−4βt

f3
2 (f1‖K‖ + ε∗)3

− λ3‖x‖p + e−βt.

(22)
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From (12) and (22), we have

Ẇ ≤ −‖K‖4f4
1 (f3

2 − 4f1f2f3 − 8f2
1 f4) + 4‖K‖3f3

1 e−βt(f3
2 − 4f1f2f3) + 27f3

2 e−4βt

f3
2 (f1‖K‖ + ε∗)3

−λ3‖x‖p + e−βt ≤ −λ3‖x‖p + e−βt.

Finally for r ≥ 5, we have

Ẇ ≤ −λ3‖x‖p + f1‖K‖ − f2γ‖K‖2 +

r∑

j=3

fjγ
j−1‖K‖j

= −λ3‖x‖p + f1‖K‖ − 2f2f
2
1 ‖K‖2

f2(f1‖K‖ + ε∗)
+

r∑

j=3

(2)j−1fjf
2(j−1)
1 ‖K‖j

f j−1
2 (f1‖K‖ + ε∗)j−1

+ (−e−βt + e−βt)

=
f r−1
2 (f1‖K‖ − e−βt)(f1‖K‖ + 3e−βt)r−1 − 2f r−1

2 f2
1 ‖K‖2(f1‖K‖ + 3e−βt)r−2

f r−1
2 (f1‖K‖+ 3e−βt)r−1

+

r∑
j=3

(2)j−1fjf
2(j−1)
1 ‖K‖jf r−j

2 (f1‖K‖ + 3e−βt)r−j

f r−1
2 (f1‖K‖ + 3e−βt)r−1

− λ3‖x‖p + e−βt

= −
‖K‖rf r

1

(
f r−1
2 −

r∑
j=3

2(j−1)f j−2
1 f r−j

2 fj

)

f r−1
2 (f1‖K‖+ 3e−βt)r−1

−
‖K‖r−1e−βtf r−1

1

[
f r−1
2 (3Cr−2

r−3 − 2Cr−2
r−2) −

r−1∑
j=3

2(j−1)f j−2
1 f r−j

2 fj(3Cr−j
r−1−j)

]

f r−1
2 (f1‖K‖ + 3e−βt)r−1

−

r−2∑
j=3

‖K‖je−(r−j)βt3r−j−1f j
1

[
f r−1
2 (3Cr−2

j−2−2Cr−2
j−1+Cr−2

j )−
j∑

i=3

2(i−1)f i−2
1 f r−i

2 fi(3Cr−i
j−i )

]

f r−1
2 (f1‖K‖+3e−βt)r−1

− ‖K‖2f r−1
2 f2

1 3r−3e−(r−2)βt(3 − 2Cr−2
1 +Cr−2

2 )+‖K‖f r−1
2 f1(3)r−2e−(r−1)βt(−2 + Cr−2

1 )

f r−1
2 (f1‖K‖ + 3e−βt)r−1

− f r−2
2 (3)r−1e−rβt

f r−1
2 (f1‖K‖ + 3e−βt)r−1

− λ3‖x‖p + e−βt

= −
‖K‖rf r

1

(
f r−1
2 −

r∑
j=3

2(j−1)f j−2
1 f r−j

2 fj

)

f r−1
2 (f1‖K‖+ 3e−βt)r−1

−
‖K‖r−1e−βtf r−1

1

[
f r−1
2 (3r − 8) −

r−1∑
j=3

2(j−1)f j−2
1 f r−j

2 fj(3(r − j))

]

f r−1
2 (f1‖K‖ + 3e−βt)r−1

−

r−2∑
j=3

‖K‖je−(r−j)βt3r−j−1f j
1

[
f r−1
2 (3Cr−2

j−2−2Cr−2
j−1+Cr−2

j )−
j∑

i=3

2(i−1)f i−2
1 f r−i

2 fi(3Cr−i
j−i )

]

f r−1
2 (f1‖K‖+ 3e−βt)r−1
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− ‖K‖2f r−1
2 f2

1 (3)r−3e−(r−2)βt[(r − 4)(r − 5)] + ‖K‖f r−1
2 f1(3)r−2e−(r−1)βt(r − 4)

f r−1
2 (f1‖K‖ + 3e−βt)r−1

− f r−2
2 (3)r−1e−rβt

f r−1
2 (f1‖K‖ + 3e−βt)r−1

− λ3‖x‖p + e−βt. (23)

By (23), Lemma 2.2, and the fact that 3r − 8 > 3(r − j), ∀ 3 ≤ j ≤ r − 1, one has

Ẇ ≤ −
‖K‖rf r

1

(
f r−1
2 −

r∑
j=3

2(j−1)f j−2
1 f r−j

2 fj

)

f r−1
2 (f1‖K‖ + 3e−βt)r−1

− (3r − 8) ·
‖K‖r−1e−βtf r−1

1

[
f r−1
2 −

r−1∑
j=3

2(j−1)f j−2
1 f r−j

2 fj

]

f r−1
2 (f1‖K‖ + 3e−βt)r−1

−

r−2∑
j=3

‖K‖je−(r−j)βt3r−j−1f j
1 (3Cr−2

j−2 − 2Cr−2
j−1 + Cr−2

j )

[
f r−1
2 −

j∑
i=3

2(i−1)f i−2
1 f r−i

2 fi

]

f r−1
2 (f1‖K‖ + 3e−βt)r−1

− ‖K‖2f r−1
2 f2

1 (3)r−3e−(r−2)βt[(r − 4)(r − 5)] + ‖K‖f r−1
2 f1(3)r−2e−(r−1)βt(r − 4)

f r−1
2 (f1‖K‖ + 3e−βt)r−1

− f r−2
2 (3)r−1e−rβt

f r−1
2 (f1‖K‖ + 3e−βt)r−1

− λ3‖x‖p + e−βt ≤ −λ3‖x‖p + e−βt.

This completes our proof in view of Lemma 2.1.

Remark 3.2 In [18], exponential stability can be guaranteed via nonlinear state feed-

back control for system (4) with G(t, x(t), x(t − h(t))) = G̃(t, x(t)), ∆Ψ(t, x(t), x(t −
h(t)), u(t) = u(t) + ξ(t, x(t)), ‖ξ(t, x(t))‖ ≤ ρ(t, x(t)), p = 2, where ξ(·, ·) : R × Rn →
Rm and ρ(·, ·) is a nonnegative continuous function. In this case, there exists a positive
continuous function ρ̃(t, x) ≥ ρ(t, x), ∀ t ≥ t0 ≥ 0, x ∈ Rn, such that

uT∆Ψ(t, x, x(t − h), u) = ‖u‖2 + uTξ(t, x) ≥ −ρ̃(t, x)‖u‖ + ‖u|2.
In view of (9), we have

f1 = ρ̃(t, x), f2 = 1, f3 = 0, . . . , fr = 0,

and (10) is satisfied. Hence, global exponential stability can be guaranteed by memoryless
controller (14) with f1 = ρ̃(t, x) and f2 = 1 by Theorem 3.1. However, our global
exponential stability result holds for more general systems.

4 Second Class of Systems

Consider the following uncertain system with a time-varying delay:

ẋ(t) = Ax(t) + B∆Φ(t, x(t), x(t − h(t)), u(t)), t ≥ t0 ≥ 0, (24)

xt0(t) = θ(t), t ∈ [−H, 0], (25)

where x ∈ Rn, h(t) is a delay argument with 0 ≤ h(t) ≤ H , (A, B) is stabilizable, where
A ∈ Rn×n, B ∈ Rn×m, and ∆Φ, representing uncertain input nonlinearity, is assumed
to be a continuous function satisfying the following assumption.
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Assumption (A3) There exist positive continuous functions f̃1(t, x, y) and

f̃2(t, x, y) such that for all t ≥ t0 ≥ 0, x, y ∈ Rn, and u ∈ Rm,

uT∆Φ(t, x, y, u) ≥ −f̃1(t, x, y)‖u‖ + f̃2(t, x, y)‖u‖2.

Since the pair (A, B) is assumed to be stabilizable, we can find a matrix M ∈ Rm×n

such that Ã = A − BM is a Hurwitz matrix and the following Lyapunov equation

ÃTP + PÃ = −2I, (26)

has a unique positive definite symmetric solution P .

Theorem 4.1 System (24) satisfying Assumption (A3) is globally exponentially sta-
bilizable with convergence rate η = λmax(P )−1 under the control

u(t) = −γ(t, x(t), x(t − h(t)))K(x(t)), (27)

where

γ(t, x(t), x(t − h(t)))

=
2[f̃1(t, x(t), x(t − h(t))) + ‖Mx(t)‖]2

f̃2(t, x(t), x(t − h(t)))[(f̃1(t, x(t), x(t − h(t))) + ‖Mx(t)‖)‖K(x(t))‖ + ε∗(t)]
,

ε∗(t) = 3 exp(−βt),

K(x(t)) = 2BTPx(t),

with β > 2/λmax(P ), and P is the solution of (26).

Proof System (24) can be rewritten as

ẋ(t) = Ãx(t) + B[∆Φ(t, x(t), x(t − h(t)), u(t)) + Mx(t)], t ≥ t0 ≥ 0.

In the following, we use Theorem 3.1 to prove this theorem. Choose

F (t, x) = Ãx, G(t, x(t), x(t − h(t))) = B,

∆Ψ(t, x(t), x(t − h(t)), u) = Mx + ∆Φ(t, x(t), x(t − h(t)), u).

Let W (t, x(t)) = xT(t)Px(t), then we have

λmin(P )‖x‖2 ≤ W (t, x) ≤ λmax(P )‖x‖2, ∀ t ≥ t0 ≥ 0, x ∈ Rn, (28)

and the derivative of W along solutions of ẋ(t) = Ãx(t) is given by

dW (t, x(t))

dt
= x(t)T(ÃTP + PÃ)x(t) = −2‖x(t)‖2. (29)

In view of Assumption (A3), we obtain

uT∆Ψ(t, x, x(t − h(t)), u) = uTMx + uT∆Φ(t, x, x(t − h(t)), u)

≥ −[‖Mx‖ + f̃1(t, x(t), x(t − h(t)))] · ‖u‖ + f̃2(t, x(t), x(t − h(t))) · ‖u‖2.
(30)
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Comparing (28) – (30) with (7) – (9), one obtains

λ1 = λmin(P ), λ2 = λmax(P ), λ3 = 2, p = 2,

f1 = ‖Mx‖ + f̃1, f2 = f̃2, f3 = 0, . . . , fr = 0,

and (10) is satisfied. The rest follows immediately from Theorem 3.1.

In the following remarks, we show that the preceding result is a generalization of
several results reported in recent literature.

Remark 4.1 In [1], practical stability can be guaranteed for system (20) with
∆Φ(t, x, x(t − h(t)), u) = D(q)x + u + E(q)u + v(q), ‖E(q)‖ < 1, where A is a Hurwitz
matrix, D(·), E(·), and v(·) depend continuously on their arguments, and the uncertainty
q belongs to a compact set Q. In this case, we have

uT∆Φ = uT(D(q)x + u + E(q)u + v(q)) ≥ −(ρD‖x‖ + ρv) · ‖u‖ + (1 − ρE) · ‖u‖2

≥ −(ρD‖x‖ + ρ̃v) · ‖u‖ + (1 − ρE) · ‖u‖2,

where ρ̃v > 0, ρ̃v ≥ ρv = max
q∈Q

‖v(q)‖, ρE = max
q∈Q

‖E(q)‖ < 1, and ρD = max
q∈Q

‖D(q)‖.
By the preceding theorem, global exponential stability can be guaranteed by memoryless

controller (27) with f̃1 = ρD‖x‖ + ρ̃v and f̃2 = 1 − ρE .

Remark 4.2 In [3], global practical stability can be guaranteed for system (24) with
∆Φ(t, x, x(t − h(t)), u) = u + e(t, x, u) and ‖e(t, x, u)‖ ≤ k0 + k1‖x‖ + k2‖u‖, where
k0, k1, k2 ∈ R+ and k2 < 1. In this case, we have

uT∆Φ = uT(u + e(t, x, u)) ≥ −(k0 + k1‖x‖) · ‖u‖ + (1 − k2) · ‖u‖2

≥ −(k3 + k1‖x‖) · ‖u‖ + (1 − k2) · ‖u‖2,

where k3 > 0 and k3 ≥ k0. By the preceding theorem, global exponential stability can

be guaranteed by memoryless controller (27) with f̃1 = k3 + k1‖x‖ and f̃2 = 1 − k2.

Remark 4.3 In [11], global exponential stability can be guaranteed by a linear control
for system (24) with ∆Φ = D(q)x + u + E(q)u, ‖D(q)‖ ≤ δ, δ ∈ R+, and δE =
λmin(ET(q) + E(q)) > −1, ∀ q ∈ Q, where D(·) and E(·) depend continuously on their
arguments, and the uncertainty q belongs to a compact set Q. In this case, we have

uT∆Φ = uT(D(q)x + u + E(q)u)

≥ −(δ‖x‖) · ‖u‖ + (1 + δE/2) · ‖u‖2

≥ −(δ1 + δ‖x‖) · ‖u‖ + (1 + δE/2) · ‖u‖2,

where δ1 is a any positive constant. By the preceding theorem, global exponential sta-

bility can be guaranteed by memoryless controller (27) with f̃1 = δ1 + δ‖x‖ and f̃2 =
1 + δE/2.

Remark 4.4 In [14], global practical stability can be guaranteed via a linear control
for system (24) with ∆Φ(t, x, x(t− h(t)), u) = φ(u) + a(t, x, u), γ1‖u‖2 ≤ uTφ(u), and
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‖a(t, x, u)‖ ≤ k0 + k1‖x‖ + k2‖u‖, where k0, k1, k2 ∈ R+ and k2 < γ1. In this case, we
have

uT∆Φ = uT(φ(u) + a(t, x, u))

≥ −(k0 + k1‖x‖) · ‖u‖ + (γ1 − k2) · ‖u‖2

≥ −(k3 + k1‖x‖) · ‖u‖ + (γ1 − k2) · ‖u‖2,

where k3 > 0 and k3 ≥ k0. By the preceding theorem, global exponential stability can

be guaranteed by memoryless controller (27) with f̃1 = k3 + k1‖x‖ and f̃2 = γ1 − k2.

Remark 4.5 In [19], global exponential stability can be guaranteed by a composite
control for system (24) with ∆Φ = u + ξ(t, x) + ξh(t, x(t − h(t))), ‖ξ(t, x)‖ ≤ ρ(t, x),
and ‖ξh(t, x(t − h(t)))‖ ≤ δ‖x(t − h(t))‖, where δ > 0 and ρ(·, ·) : R+ ×Rn → R+ is a
bounded continuous function. In this case, we have

uT∆Φ = uT(u + ξ(t, x) + ξh(t, x(t − h(t))))

≥ −(ρ(t, x) + δ‖x(t − h(t))‖) · ‖u‖ + ‖u‖2

≥ −(ρ1(t, x) + δ‖x(t − h(t))‖) · ‖u‖ + ‖u‖2,

where ρ1(t, x) ≥ ρ(t, x) and ρ1(t, x) > 0, ∀ t ≥ t0 ≥ 0, x ∈ Rn. By the preceding
theorem, global exponential stability can also be guaranteed by controller (27) with

f̃1 = ρ1(t, x) + δ‖x(t − h(t))‖ and f̃2 = 1.

5 Third Class of Systems

Consider the following uncertain system with a time-varying delay:

ẋ(t) = Ax(t) + A1x(t − h(t)) + ∆f(t, x(t), x(t − h(t)))

+ B∆Φ(t, x(t), x(t − h(t)), u(t)), t ≥ t0 ≥ 0,
(31)

xt0(t) = θ(t), t ∈ [−H, 0], (32)

where x ∈ Rn, h(t) is a delay argument with 0 ≤ h(t) ≤ H , u ∈ Rm is the input
vector, θ ∈ C is a given initial function, A, A1 ∈ Rn×n, and B ∈ Rn×m are constant
matrices, (A, B) is stabilizable, rank(B) = n, ∆Φ is assumed to be continuous and
satisfies Assumption (A3), and the mismatch uncertainty ∆f is assumed to be continuous
and satisfies the following assumption.

Assumption (A4) There exists a nonnegative continuous function q(t, x, y) such
that for all t ≥ t0 ≥ 0 and x, y ∈ Rn,

‖∆f(t, x, y)‖ ≤ q(t, x, y).
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Theorem 5.1 System (31) satisfying Assumptions (A3) and (A4) is globally expo-
nentially stabilizable with convergence rate η = λmax(P )−1 under the control

u(t) = −γ(t, x(t), x(t − h(t)))K(x(t)), (33)

where

γ(t, x(t), x(t − h(t))) =
2f̂2

1

f̃2(t, x(t), x(t − h(t)))[f̂1‖K(x(t))‖ + ε∗(t)]
,

f̂1 = ‖BT(BBT)−1A1x(t − h(t))‖ + ‖BT(BBT)−1‖q + ‖Mx‖ + f̃1,

ε∗(t) = 3 exp(−βt),

K(x(t)) = 2BTPx(t),

with β > 2/λmax(P ), M is a matrix such that Ã = A − BM is Hurwitz, and P is the
solution of (26).

Proof Since rank(B) = n, the matrix BBT is nonsingular. System (31) can be
rewritten as

ẋ(t) = Ãx(t) + BBT(BBT)−1[A1x(t − h(t)) + ∆f(t, x(t), x(t − h(t)))]

+ B[∆Φ(t, x(t), x(t − h(t)), u(t)) + Mx(t)], t ≥ t0 ≥ 0.

Define

∆Ψ(t, x(t), x(t − h(t)), u) = BT(BBT)−1[A1x(t − h(t)) + ∆f(t, x(t), x(t − h(t)))]

+ Mx + ∆Φ(t, x(t), x(t − h(t)), u),

then we have

uT∆Ψ(t, x, x(t − h(t)), u) ≥ −
[
‖BT(BBT)−1A1x(t − h(t))‖

+ ‖BT(BBT)−1‖ q + ‖Mx‖ + f̃1

]
‖u‖ + f̃2‖u‖2.

Hence the result follows in view of Theorem 4.1.

Remark 5.1 In [13], global exponential stabilization has been considered for a class of
uncertain systems with multiple time-varying delays and input deadzone nonlinearities.
If they consider only single time-varying delay, their system can be put in the form of (26)
with q(t, x, y) = a0‖x‖ + a1‖y‖, ∆Φ(t, x, y, u) = ∆Φ3(t, x, y) + φ(u), ‖∆Φ3(t, x, y)‖ ≤
f(t, x, y), where y = x(t − h(t)), a0, a1 ∈ R+, ∆Φ3(·) and f(·) depend continuously
on their arguments, φ(u) = [φ1(u1), . . . , φm(um)]T with each φi(ui) ∈ D(ui, d1, d2)
representing the input deadzone nonlinearity, and D(ui, d1, d2) is defined in [13] with
d1 ≥ 0, d2 > 0. In this case, we have

uT∆Φ = uT[∆Φ3 + φ(u) − d2u + d2u] ≥ −‖u‖ · [‖∆Φ3‖ + ‖φ(u) − d2u‖] + d2‖u‖2

≥ −‖u‖ · [f + md1d2] + d2‖u‖2 ≥ −‖u‖ · [f + md̃1d2] + d2‖u‖2,

where d̃1 > 0, d̃1 ≥ d1. By the preceding theorem, global exponential stability can also

be guaranteed by controller (33) with f̃1 = f + md̃1d2 and f̃2 = d2.
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6 Example

Consider the following uncertain system with a time-varying delay:

ẋ(t) =

[−2x1 + 2x1x
2
2 + 2x1x2

√
|x1x2|

−2x2 − x2
1x2 − x2

1

√
|x1x2|

]

+

[
x2(t − h(t))

−x2
1

]
[a(t) + (b(t) + c(t)|x1(t − h(t))|)u + d(t)u3],

(34)

where u ∈ R, x = [x1, x2]
T ∈ R2, h(t) = 2 + cos(2t), −1 ≤ a(t) ≤ 1, 4 ≤ b(t) ≤ 4.5,

1 ≤ c(t) ≤ 2, −2 ≤ d(t) ≤ 2 for all t ≥ t0 ≥ 0. Comparing (34) with (5), one has

F (t, x(t)) =

[−2x1 + 2x1x
2
2 + 2x1x2

√
|x1x2|

−2x2 − x2
1x2 − x2

1

√
|x1x2|

]
,

G(t, x(t), x(t − h(t))) =

[
x2(t − h(t))

−x2
1

]
,

∆Ψ(t, x(t), x(t − h(t)), u) = a(t) + (b(t) + c(t)|x1(t − h(t))|)u + d(t)u3.

Choose a simple quadratic functional

W (t, x) = xT

[
2 0
0 4

]
x.

Then (7) and (8) are evidently satisfied with λ1 = 2, λ2 = 4, p = 2, and λ3 = 8. In
view of (9), we have

uT∆Ψ(t, x, x(t − h(t)), u) = a(t)u + (b(t) + c(t)|x1(t − h(t))|)u2 + d(t)u4

≥ −|u| + (4 + |x1(t − h(t))|)|u|2 − 2|u|4.

This suggests that in (9) we choose f1 = 1, f2 = 4 + |x1(t − h(t))|, f3 = 0, and f4 = 2.
It is easy to show that (10) is satisfied with r = 4. According to (16) with β = 2.1 >

λ3/λ2 = 2, we have
ε∗(t) = 3 exp(−2.1t).

By (17) and (15), we obtain

K(t, x(t), x(t − h(t))) = 4x1(t)x2(t − h(t)) − 8x2
1(t)x2(t),

γ(t, x, x(t − h(t))) =
2

(4 + |x1(t − h(t))|)(|K(t, x(t), x(t − h(t)))| + ε∗(t))
.

Finally, owing to (14), it can be readily obtained that

u = −γ(t, x, x(t − h(t)))(4x1(t)x2(t − h(t)) − 8x2
1x2). (35)

By Theorem 3.1, we conclude that system (34) with control (35) is globally exponen-
tially stable with guaranteed convergence rate η = 1. With, e.g., a(t) = 1, b(t) = 4,
c(t) = 1, d(t) = 2, and x1(t) = 4, x2(t) = −2, ∀ t ∈ [−3, 0], state trajectories of the
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Figure 6.1. State trajectories of feedback-controlled system of (28).

Figure 6.2. Typical control signal for system (28).

feedback-controlled system and control signal are depicted in Figure 6.1 and Figure 6.2,
respectively.

7 Summary

In this paper, exponential stabilization for three classes of uncertain nonlinear systems
with time-varying delay has been considered. A continuous state feedback control has
been proposed in each case for exponential stability of feedback-controlled systems. Guar-
anteed convergence rate has also been provided. Our results have also been shown to
be generalizations of several results reported in recent literature. Finally, a numerical
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example has been provided to illustrate the use of our main results. It is interesting
to consider the problem of exponential stabilization for more general uncertain systems
with time-varying delay.
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Appendix A

Proof of Lemma 2.1 Let

Q(t, x) = V (t, x) exp(λ3t/λ2). (B1)

From (3), (4) and (B1), we have

dQ(t, x)

dt
=

d V (t, x)

dt
exp(λ3t/λ2) + λ3Q/λ2

≤ [(−λ3/λ2)V + ε exp(−βt)] exp(λ3t/λ2) + λ3Q/λ2

= ε exp[−(β − λ3/λ2)t].

(B2)

Set δ = β − λ3/λ2 > 0. Integrating both sides of (B2), we have, for all t ≥ t0 ≥ 0,

Q(t, x(t)) − Q(t0, x(t0)) ≤ −εδ−1[exp(−δt) − exp(−δt0)]

= εδ−1[exp(−δt0) − exp(−δt)] ≤ εδ−1 exp(−δt0) ≤ εδ−1 = ε(β − λ3/λ2)
−1.

This implies that, for all t ≥ t0 ≥ 0,

Q(t, x(t)) ≤ Q(t0, x(t0)) + ε(β − λ3/λ2)
−1

= V (t0, x(t0)) exp(λ3t0/λ2) + ε(β − λ3/λ2)
−1

≤ λ2‖θ‖p
s exp(λ3t0/λ2) + ε(β − λ3/λ2)

−1 = a(t0, ‖θ‖s).

(B3)

From (3), (B1), and (B3), we have, for all t ≥ t0 ≥ 0,

‖x(t0, θ)(t)‖ ≤ [(1/λ1)V (t, x(t))]1/p = [(1/λ1) exp(−λ3t/λ2) · Q(t, x(t))]1/p

≤ [(a/λ1) exp(−λ3t/λ2)]
1/p = c(t0, ‖θ‖s) exp(−ηt)

≤ c(t0, ‖θ‖s) exp[−η(t − t0)],

where c(t0, ‖θ‖s) = [a(t0, ‖θ‖s)/λ1]
1/p and η = λ3/(λ2p) > 0.

This completes our proof.

Appendix B

Proof of Lemma 2.2 For any integers i, j, and r such that 3 ≤ i ≤ j < r, one has

[(r − 3) × (r − 4) × . . . × (j − 3 + 1)] ≥ [(r − i) × (r − i − 1) × . . . × (j − i + 1)].



30 CHANG-HUA LIEN

This implies

Cr−3
j−3 =

(r − 3)!

(j − 3)!(r − j)!
≥ (r − i)!

(j − i)!(r − j)!
= Cr−i

j−i , ∀ 3 ≤ i ≤ j < r,

and
Cr−3

j−3 = 1 = Cr−i
j−i , ∀ 3 ≤ i ≤ j = r.

Hence statement (a) is true. Now for any integers j, r such that r ≥ 5 and 3 ≤ j ≤ r−2,
one has

3 Cr−2
j−2 − 2 Cr−2

j−1 + Cr−2
j − 3 Cr−3

j−3

=
(r − 2)!

j!(r − j)!

[
3j(j − 1) − 2j(r − j) + (r − j)(r − j − 1) − 3

j(j − 1)(j − 2)

(r − 2)

]

=
(r − 2)!

j!(r − j)!(r − 2)
[r3 + r2(−4j − 3) + r(6j2 + 6j + 2) − (3j3 + 3j2 + 2j)]

=
(r − 2)!

j!(r − j)!(r − 2)
[−3j3 + (6r − 3)j2 − (4r2 − 6r + 2)j + (r3 − 3r2 + 2r)].

For any given r ≥ 5, consider the following continuous function

g(y) = −3y3 + (6r − 3)y2 − (4r2 − 6r + 2)y + (r3 − 3r2 + 2r), y ∈ [3, r − 2].

The derivative of g(·) is given by

d

dy
g(y) = −9y2 + (12r − 6)y − (4r2 − 6r + 2).

Furthermore, the roots of the equation ġ(y) = 0 is given by

a =
2r − 1 −

√
2r − 1

3
, b =

2r − 1 +
√

2r − 1

3
.

With given r ≥ 5, define

g1(r) = g(a) =
1

9

(
r3 − 3r2 + 4 − 2(2r − 1)

√
2r + 1

)
,

g2(r) = g(b) =
1

9

(
r3 − 3r2 + 4 + 2(2r − 1)

√
2r + 1

)
,

g3(r) = g(3) = r3 − 15r2 + 74r − 114,

g4(r) = g(r − 2) = 2r2 − 12r + 16 = 2(r − 2)(r − 4).

Clearly we have

g1(5) = 0,

d

dr
g1(r) =

1

9

[
3r2 − 6r − 6

√
2r − 1

]
>

1

9

[
3r(r − 5) + (9 − 6

√
2)r

]
> 0, ∀ r ≥ 5,

g2(r) ≥ g1(r) ≥ g1(5) = 0, ∀ r ≥ 5,

g4(r) > 0, ∀ r ≥ 5.

Moreover, by Sturm’s theorem [5], it is easy to show that g3(r) > 0, ∀ r ≥ 5. Conse-
quently, g(y) ≥ 0 for all y ∈ [3, r − 2] and for each r ≥ 5. This completes the proof of
statement (b).


