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Abstract: In this paper, we use a Generalized Hamiltonian systems approach
to synchronize the time-delay-feedback Chua’s oscillator (hyperchaotic circuit
with multiple positive Lyapunov exponents). Synchronization is thus between
the transmitter and the receiver dynamics with the receiver being given by an
observer. We apply this approach to transmit private analog and binary in-
formation signals in which the quality of the recovered signal is higher than in
traditional observer techniques while the encoding remains potentially secure.
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1 Introduction

Recently, chaotic synchronization has received much attention. Many synchronization
methods for chaotic oscillators have been proposed in the literature (see e.g. (Pecora and
Carroll 1990; Wu and Chua 1993; Feldmann, et al. 1996; Nijmeijer and Mareels 1997;
Special Issue, 1997; 2000; Fradkov, et al. 1998; Chen and Dong 1998; Cruz and Ni-
jmeijer 1999; 2000; Sira-Ramı́rez and Cruz 2001; Pikovsky, et al. 2001; Aguilar and
Cruz 2002) and references therein). Data encryption using chaotic dynamics was re-
ported in the early 1990s as a new approach for signal encoding which differs from the
conventional methods using numerical algorithms as the encryption key. As a result,
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chaotic synchronization plays an important role in chaotic communications. Different
methods have been developed in order to hide the contents of a message using chaotic
synchronization, such as chaotic additive masking (Cuomo, et al. 1993), chaotic switch-
ing (Parlitz, et al. 1992; Cuomo, et al. 1993; Dedieu, et al. 1993), and chaotic parameter
modulation (Yang and Chua 1996). However, it has been shown see e.g., (Short 1994;
Pérez and Cerdeira 1995) that encrypted signals by means of comparatively simple chaos
with only one positive Lyapunov exponent does not ensure a sufficient level of security.
For higher security the hyperchaotic oscillators characterized by more than one positive
exponents are advantageous over simple chaotic oscillators. Two factors that are of pri-
mordial importance in security considerations related to chaotic communication systems.
These are; the dimensionality of the chaotic attractor, and the effort required to obtain
the necessary parameters for the matching of a receiver dynamics.

One way to enhance the level of security of the communication system can consist in
applying proper cryptographic techniques to the information signal see e.g., (Yang, et
al. 1997). Another way to solve this security problem is to encode the message by using
high dimensional chaotic attractors, or hyperchaotic attractors, which take advantage
of the increased randomness and unpredictably of the higher dimensional dynamics. In
such option one generally encounters multiple positive Lyapunov exponents. However,
the synchronization of hyperchaotic oscillators is a much more difficult problem (see e.g.
(Brucoli, et al. 1999; Peng, et al. 1996; Cruz, et al. 2002) and Aguilar and Cruz 2002
for the discrete-time context). Most of the previous work done on hyperchaotic synchro-
nization has been concentrated on finite-dimensional oscillators described by ordinary
differential equations. Thus, the number of positive Lyapunov exponents is limited by
dimension of the state space.

As alternative way of constructing synchronized hyperchaotic oscillators can be based
on delay differential equations, such oscillators have an infinite-dimensional state space
and can produce hyperchaotic dynamics with an arbitrarily large number of positive
Lyapunov exponents. It has been known that even a very simple first-order oscillator with
a time-delay-feedback can produce extremely complex hyperchaotic behaviors (Mackey
and Glass 1977; Farmer 1982; Lu and He 1996). This property has already stimulated
the work on design of systems for secure communication which claimed to have low
detectability (Mensour and Longtin 1998; Pyragas 1998).

The objective of this paper is to extend the approach developed in (Sira-Ramı́rez and
Cruz 2001) to the synchronization of time-delay-feedback Chua’s oscillator (hyperchaotic
circuit with multiple positive Lyapunov exponents) through a Generalized Hamiltonian
systems and observer approach. Moreover, we apply this method to transmit and retrieve
private/secure analog and binary information signals using hyperchaotic additive masking
and hyperchaotic switching, respectively. We can enumerate several advantages over the
existing synchronization methods:

• It enables synchronization be achieved in a systematic way;
• It can be successfully applied to several well-known chaotic or hyperchaotic os-

cillators;
• It does not require the computation of any Lyapunov exponent;
• It does not require initial conditions belonging to the same basin of attraction.

The organization of the paper is as follows. In Section 2, we obtain the synchronization
of the time-delay-feedback Chua’s oscillator through a Generalized Hamiltonian systems
and observer approach. In Section 3, we present the stability analysis related to the
synchronization error. In Section 4, we give an application to secure communication
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of private analog and binary information signals. Finally, Section 5 is devoted to some
concluding remarks and suggestions for further work.

2 Synchronization of Time-Delay Chaotic Oscillator

Consider the following dynamical system described by

ẋ = f (x, x (t − τ)) , (1)

where x (t) = (x1, . . . , xn)T ∈ R
n is the state vector, f is a nonlinear function, and τ

is the time-delay. The system (1) provides an example of infinite-dimensional oscillator
with multiple positive Lyapunov exponents (generating extremely complex hyperchaotic
signals). Following the approach developed in (Sira-Ramı́rez and Cruz 2001), the time-
delay oscillator described by equation (1) can be written in the following Generalized
Hamiltonian canonical form,

ẋ = J (x)
∂H

∂x
+ S(x)

∂H

∂x
+ F(x, x (t − τ)), x ∈ R

n (2)

where H(x) denotes a smooth energy function which is globally positive definite in R
n.

The column gradient vector of H , denoted by ∂H/∂x, is assumed to exist everywhere.
We use quadratic energy function H(x) = 1

2
xTMx with M being a, constant, symmetric

positive definite matrix. In such case, ∂H/∂x = Mx. The square matrices, J (x) and
S(x) satisfy, for all x ∈ R

n, the following properties, which clearly depict the energy
managing structure of the system, J (x) + J T (x) = 0, and S(x) = ST (x). The vector
field J (x) ∂H/∂x exhibits the conservative part of the system and it is also referred to
as the workless part, or work-less forces of the system; and S(x) depicting the working
or nonconservative part of the system. For certain systems, S(x) is negative definite or
negative semidefinite. In such cases, the vector field is addressed to as the dissipative
part of the system. If, on the other hand, S(x) is positive definite, positive semidefi-
nite, or indefinite, it clearly represents, respectively, the global, semi-global, and local
destabilizing part of the system. In the last case, we can always (although nonuniquely)
discompose such an indefinite symmetric matrix into the sum of a symmetric negative
semidefinite matrix R(x) and a symmetric positive semidefinite matrix N (x). And where
F(x, x(t − τ)) represents a locally destabilizing vector field.

In the context of observer design, we consider a special class of Generalized Hamilton-
ian systems with destabilizing vector field and linear output map, y(t), given by

ẋ = J (y)
∂H

∂x
+ (I + S)

∂H

∂x
+ F(y, y(t − τ)), x ∈ R

n,

y = C
∂H

∂x
, y ∈ R

m,

(3)

where S is a constant symmetric matrix, not necessarily of definite sign. The matrix I is
a constant skew symmetric matrix. The vector variable y(t) is referred to as the system
output. The matrix C is a constant matrix.

We denote the estimate of the state vector x(t) by ξ(t), and consider the Hamiltonian
energy function H(ξ) to be the particularization of H in terms of ξ(t). Similarly, we
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denote by η(t) the estimated output, computed in terms of the estimated state ξ(t).
The gradient vector ∂H(ξ)/∂ξ is, naturally, of the form Mξ with M being a, constant,
symmetric positive definite matrix.

A dynamic nonlinear state observer for the Generalized Hamiltonian system (3) is
readily obtained as

ξ̇ = J (y)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F(y, y(t − τ)) + K(y − η), ξ ∈ R

n,

η = C
∂H

∂ξ
,

(4)

K is a constant matrix, known as the observer gain.

The state estimation error, defined as e(t) = x(t) − ξ(t) and the output estimation
error, defined as ey(t) = y(t) − η(t), are governed by

ė = J (y)
∂H

∂e
+ (I + S − KC)

∂H

∂e
, e ∈ R

n,

ey = C
∂H

∂e
, ey ∈ R

m,

(5)

where the vector, ∂H/∂e actually stands, with some abuse of notation, for the gradient
vector of the modified energy function, ∂H(e)/∂e = ∂H/∂x−∂H/∂ξ = M(x−ξ) = Me.
We set, when needed, I + S = W .

Remark 1 Note that the error state dynamics described by equation (5) is independent
of time-delay τ , i.e. equation (5) is a simple linear ordinary differential equation.

Definition 1 Synchronization problem: We say that the receiver dynamics (4)
synchronizes with the transmitter dynamics (3), if

lim
t→∞

‖x(t) − ξ(t)‖ = 0, (6)

no matter which initial conditions x(0) and ξ(0) have. Where the state estimation error
e(t) = x(t) − ξ(t) represents the synchronization error.

Example 1 Time-delay-feedback Chua’s oscillator The state equations of “standard”
or “classic” Chua’s oscillator are given by

C1ẋ1 = G(x2 − x1) − F (x1),

C2ẋ2 = G(x1 − x2) + x3,

Lẋ3 = −x2 − R0x3,

(7)

with nonlinear function

F (x1) = bx1 +
1

2
(a − b)(|x1 + 1| − |x1 − 1|), a, b < 0. (8)
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Figure 2.1. Time-delay-feedback Chua’s oscillator.

The classic Chua’s oscillator (7) – (8) can only produce low-dimensional chaos with one
positive Lyapunov exponent. The time-delay-feedback Chua’s oscillator considered in
this paper is shown in Figure 2.1, and can be described by (Wang, et al. 2001):

C1ẋ1 = G(x2 − x1) − F (x1),

C2ẋ2 = G(x1 − x2) + x3,

Lẋ3 = −x2 − R0x3 − w(x1(t − τ)),

(9)

with F (x1) given by (8) and where the time-delay term is taken as

w(x1(t − τ)) = ε sin(σx1(t − τ)), (10)

with ε and σ are two positive constants, and τ represents the time-delay. Clearly, the
maximum amplitude of the time-delay term is ε, i.e.

|w(x1(t − τ))| ≤ ε. (11)

For arbitrarily given ε > 0, the time-delay-feedback Chua’s oscillator (9) can be chaotic
for sufficiently large σ and τ , even if the corresponding standard Chua’s oscillator (7)
has stable period orbits.

The time-delay-feedback Chua’s oscillator is characterized by the following parameters:
R = 1910 Ω, R0 = 16 Ω, C1 = 10 nF , C2 = 100 nF , L = 18.68 mH , Ga = −0.75 mS,
Gb = −0.41 mS, Bp = 1 V , and τ = 0.001. These values assure the existence of very
complex hyperchaotic behavior. Figure 2.2 shows several different types of attractors
from the time-delay-feedback Chua’s oscillator for τ = 0.001:

(a) ε = 0.07 and σ = 0.4;
(b) ε = 0.2 and σ = 0.5;
(c) ε = 0.5 and σ = 3;
(d) ε = 1 and σ = 1.
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Figure 2.2. Several different types of chaotic attractors from the time-delay-

feedback Chua’s oscillator for τ = 0.001: (a) ε = 0.07 and σ = 0.4. (b) ε = 0.2
and σ = 0.5. (c) ε = 0.5 and σ = 3. (d) ε = 1 and σ = 1.

The state equations describing the time-delay-feedback Chua’s oscillator (9) in Hamil-
tonian canonical form with a destabilizing vector field (transmitter circuit) is given by





ẋ1

ẋ2

ẋ3



 =





0 0 0
0 0 1

LC2

0 − 1

LC2

0





∂H

∂x
+







− G
C2

1

G
C1C2

0

G
C1C2

− G
C2

2

0

0 0 −R0

L2







∂H

∂x
+





− 1

C1

F (x1)
0

− 1

L
w (x1 (t − τ))



 (12)

taking as the Hamiltonian energy function

H(x) =
1

2
[C1x

2
1 + C2x

2
2 + Lx2

3] (13)

and gradient vector as

∂H

∂x
=





C1 0 0
0 C2 0
0 0 L









x1

x2

x3



 =





C1x1

C2x2

Lx3



 .

The destabilizing vector field evidently calls for x1(t) to be used as the output, y1(t), of
the transmitter circuit (12). The matrices C, S and I, are given by

C = [ 1

C1

0 0 ] , S =







− G
C2

1

G
C1C2

0

G
C1C2

− G
C2

2

0

0 0 −R0

L2






, I =





0 0 0
0 0 1

LC2

0 − 1

LC2

0



 .

The pair (C,S) is neither observable nor detectable. However, the pair (C,W) is
observable. The system lacks damping in the x3(t) variable, and either in the x1(t) or
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Figure 2.3. Time-delay-feedback Chua’s oscillator state trajectories and synchro-

nized receiver trajectories.

the x2(t) variable as inferred from the negative semi-definite nature of the dissipation
structure matrix, S. If x1(t) is used as output, then the output error injection term can
enhance the dissipation in the error state dynamics. The receiver circuit is designed as





ξ̇1

ξ̇2

ξ̇3



=





0 0 0
0 0 1

LC2

0 − 1

LC2

0





∂H

∂ξ
+







− G
C2

1

G
C1C2

0

G
C1C2

− G
C2

2

0

0 0 −R0

L2







∂H

∂ξ

+





− 1

C1

F (y)
0

− 1

L
w(y(t − τ))



 +





k1

k2

k3



 ey,

(14)

where the gain vector K = (k1, k2, k3)
T is chosen in order to guarantee the asymptotic

exponential stability to zero of the state reconstruction error trajectories (synchronization
error e(t)). From (12) and (14) the synchronization error dynamics is governed by





ė1

ė2

ė3



 =







0 k2

2C1

k3

2C1

− k2

2C1

0 2

LC2

− k3

2C1

− 2

LC2

0







∂H

∂e
+









−G+C1k1

C2

1

2G−C2k2

2C1C2

− k3

2C1

2G−C2k3

2C1C2

− G
C2

2

0

− k3

2C1

0 −R0

L









∂H

∂e
. (15)

With x(0) = (−1, −0.1, 1) and ξ(0) = (0, 0, 0) we obtain the following numerical
results. Figure 2.3 shows the time-delay-feedback Chua’s oscillator state trajectories
and synchronized receiver trajectories. Figure 2.4 illustrates the time behaviors of the
synchronization error trajectories ei(t) = xi(t) − ξi(t), i = 1, 2, 3 for k1 = k2 = k3 = 5.
To ease the numerical simulations we resorted the following normalized version of the
time-delay-feedback Chua’s oscillator:
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Figure 2.4. Synchronization error trajectories ei(t) = xi(t) − ξi(t), i = 1, 2, 3.

ẋ1 = α(x2 − x1 − f(x1)),

ẋ2 = x1 − x2 + x3,

ẋ3 = −βx2 − γx3 − β ε sin(σx1(t − τ)),

(16)

where the nonlinear function is given by

f(x1) = bx1 +
1

2
(a − b)(|x1 + 1| − |x1 − 1|)

with α = 10, β = 19.53, γ = 0.1636, a = −1.4325, b = −0.7831, σ = 0.5, ε = 0.2, and
τ = 0.001.

3 Synchronization Stability Analysis

In this section, we examine the stability of the synchronization error (15) between time-
delay-feedback Chua’s oscillator in Hamiltonian canonical form (12) and nonlinear state
observer (14).

Theorem 1 (Sira-Ramı́rez and Cruz 2001) The state x(t) of the nonlinear sys-
tem (12) can be globally, exponentially, asymptotically estimated by the state ξ(t) of an
observer of the form (14), if the pair of matrices (C,W), or the pair (C,S), is either
observable or, at least, detectable.

An observability condition on either of the pairs (C,W), or (C,S), is clearly a suffi-
cient but not necessary condition for asymptotic state reconstruction. A necessary and
sufficient condition for global asymptotic stability to zero of the estimation error is given
by the following theorem.
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Figure 4.1. Chaotic secure communication system with two transmission chan-

nels: m(t) is the private message to be hidden and transmitted. x1(t) is the syn-

chronizing signal. x2(t) + m(t) is a hyperchaotic signal, and m̂(t) is the retrieved

message at the receiver end.

Theorem 2 (Sira-Ramı́rez and Cruz 2001) The state x(t) of the nonlinear sys-
tem (12) can be globally, exponentially, asymptotically estimated, by the state ξ(t) of the
observer (14) if and only if there exists a constant matrix K such that the symmetric
matrix

[W − KC] + [W − KC]T = [S − KC] + [S − KC]T = 2

[

S −
1

2
(KC + CT KT )

]

is negative definite.

4 Application to Chaotic Communications

In this section, we apply the Hamiltonian synchronization of time-delay-feedback Chua’s
oscillator to send secret messages. In particular, we propose two hyperchaotic communi-
cation schemes to transmit analog and binary information signals using two transmission
channels and using a single transmission channel, respectively.

4.1 Secret communication using two transmission channels

The secret analog communication system is achieved by using the hyperchaotic addi-
tive masking technique. With this scheme, we obtain faster synchronization and higher
privacy; one channel is used to send the hyperchaotic synchronizing signal x1(t) from
the transmitter (12), with no connection with the secret message m(t). While the other
channel is used to transmit hidden message m(t) which is recovered at the receiver end
by means of the comparison between the signals x2(t) + m(t) and ξ2(t). Figure 4.1
shows the hyperchaotic secure communication system with two transmission channels.
Figure 4.2 shows the secret message communication of an audio message: the private
signal information to be hidden and transmitted m(t), audio message (top of figure),
the transmitted hyperchaotic signal x2(t) + m(t) (middle of figure), and the recovered
audio message m̂(t) at the receiver end (bottom of figure) which is obtained after a short
transient behavior.
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Figure 4.2. Transmission and recovering of an audio message: Private message to

be hidden and transmitted (top of figure). Transmitted hyperchaotic signal x2(t)+
m(t) (middle of figure). Recovered audio message at the receiver end m̂(t) (bottom

of figure).

4.2 Secret communication using a single transmission channel

As second communication scheme, we propose the secret binary communication system
using a single transmission channel, this objective is achieved by hyperchaotic switching
technique (see e.g. Parlitz, et al. 1992; Cuomo, et al. 1993; Dedieu, et al. 1993 for chaotic
systems). In this technique, the binary message m(t) is used to modulate one or more
parameter of the (switching) transmitter, i.e. m(t) controls a switch whose action changes
the parameter values of the transmitter. Thus, according to the value of m(t) at any
given time t, the transmitter has either the parameter set value p or the parameter set
value p′. At the receiver m(t) is decoded by using the synchronization error to decide
whether the received signal corresponds to one parameter value, or the other (it can
be interpreted as an ‘one’ or ‘zero’). To transmit m(t), let β be the parameter to be
modulated in the hyperchaotic Chua transmitter (16), the parameter α and γ were fixed.
We use a ‘modulation rule’ to modulate m(t) as follows

β(t) = β + r · m(t),

where r = 0.41 while the private message is defined as

m(t) = 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 1 1 0 · · · .

The following results illustrate the transmission of m(t) for t = 10 sec, when β is
switched between β(1) = β′ = 19.53 and β(0) = β = 19.12. Figure 4.3 shows the
chaotic secure communication system by chaotic switching. While Figure 4.4 shows
the transmission and recovering of secret binary message: the private message m(t)
(top of figure), the transmitted hyperchaotic signal x1(t) (middle of figure), and the
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Figure 4.3. Chaotic secure communication system using chaotic switching.

Figure 4.4. Transmission and recovery of a secret binary message: Binary private

signal to be hidden and transmitted m(t) (top of figure). Transmitted hyperchaotic

signal x1(t) (middle of figure). Recovered binary message at the receiver end by

synchronization error detection e1(t) = x1(t) − ξ1(t) (bottom of figure).

recovered binary message at the receiver end (bottom of figure) by synchronization error
detection e1(t) = x1(t) − ξ1(t).

5 Conclusions

In this paper, we have approached the problem of synchronization of time-delay-feedback
Chua’s circuit from the perspective of Generalized Hamiltonian systems developed in
(Sira-Ramı́rez and Cruz 2001). The approach allows one to give a simple design pro-
cedure for the receiver circuit given by a nonlinear observer, and clarifies the issue of
deciding on the nature of the output signal to be transmitted. The suggested approach
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has been successfully applied to a secure communication schemes to transmit analog and
binary secret messages. Simulation results have been reported to illustrate the capability
of the proposed approach, and shows great potential for actual private/secure communi-
cation systems in which the encoding is required to be secure. Because of the increased
complexity of the transmitted signal as well as the adoption of infinite-dimensional Chua’s
oscillator with multiple positive Lyapunov exponents.

In a forthcoming article we will be concerned with a physical implementation of the
method with a specific quantization of the degree of safety of the proposal in actual
communication systems.
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1 Introduction

Any physical dynamic system inherently contains, more or less, some delay phenomena
because energy in the system propagates with a finite speed. Typical systems with
time delays include turbojet engine, microwave oscillator, control of epidemics, inferred
grinding model, and population dynamics model [6, 7, 17]. It is noted that for many
stable systems the introduction of arbitrarily small time delay into the loop of systems
can cause instability [4, 10]. Furthermore, the system uncertainties could be present due
to mathematical model errors, temperature varying, and element life. Thus, feedback
control of uncertain time-delay systems is crucial for practical design of control systems;
see, e.g., [2, 7 – 9, 13 –17, 19, 20] and the references therein. We wish to point out that
many systems whose dynamics contain a term that is affine-linear in control have been
investigated in the past; see, e.g., [1, 3, 11, 14, 18 – 20]. The generalization allowing some
systems whose dynamics contain a term which depends on the square of the control in
addition to an affine term has been considered in [12].

c© 2004 Informath Publishing Group. All rights reserved. 15
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Uncertain input nonlinearity considered in this paper is a general expression on un-
certainties and control, that is a generalization of uncertain input nonlinearity for many
time-delay systems. Moreover, we allow the dynamics of the system containing the term
which depends on the control order up to (r − 1), where r is a positive integer greater
than three.

The paper is organized as follows. In Section 2, some preliminaries are provided.
Exponential stabilization for three classes of uncertain nonlinear systems are considered
in Section 3 to Section 5, respectively. An illustrative example is provided in Section 6
to demonstrate the use of our main results. Finally, summary follows in Section 7.

2 Preliminaries

For convenience, we define some notation that will be used throughout this paper as
follows:

R+ − Set of all nonnegative reals.

R − Set of all real numbers.

Rn − n-dimensional real space.

Rn×m − Set of all real n by m matrices.

I − Unit matrix.

AT − Transpose of matrix A.

‖A‖ − Spectral norm of matrix A.

‖x‖ − Euclidean norm of x ∈ Rn.

λmin(P ) − Minimal eigenvalue of symmetric matrix P .

λmax(P ) − Maximal eigenvalue of symmetric matrix P .

C − Set of all continuous functions from [−H, 0] to Rn.

∇xV (t, x) − Gradient of smooth scalar function V (t, x).

|a| − Absolute value of real number a.

∀ − Means “for every.”

Consider the following nonlinear time-delay dynamic system:

ẋ(t) = f(t, xt), ∀ t ≥ t0 ≥ 0, (1)

xt0(t) = θ(t), t ∈ [−H, 0], (2)

where x ∈ Rn, xt(s) = x(t+ s), ∀ s ∈ [−H, 0], H ≥ 0, with ‖xt‖s = sup
−H≤τ≤0

‖x(t+ τ)‖,

and θ ∈ C is a given initial function. The function f : R+ ×C → Rn is supposed to be
completely continuous and to satisfy enough additional smoothness conditions to ensure
the solution x(t0, θ)(t) through (t0, θ) is continuous in (t0, θ, t), t ≥ t0 ≥ 0, in the domain
of definition of the function [8].

Definition 2.1 System (1) is said to be globally exponentially stable with convergence
rate α > 0 if, for each θ ∈ C and t0 ∈ R+, we have

‖x(t0, θ)(t)‖ ≤ c(t0, ‖θ‖s) exp(−α(t − t0)) for all t ≥ t0 ≥ 0,

where c(·) is a bounded function depending on t0 and ‖θ‖s.
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Lemma 2.1 Assume there exist a sufficiently smooth function V (t, x) and positive
constants λ1, λ2, λ3, p, ε, and β, with β > λ3/λ2, such that for all x ∈ Rn, t ≥ t0 ≥ 0,

λ1‖x‖
p ≤ V (t, x) ≤ λ2‖x‖

p, (3)

and the derivative of V along solutions of (1) satisfies

dV (t, x(t))

dt
= ∇tV (t, x(t)) + ∇T

x V (t, x(t)) · f(t, xt) ≤ −λ3‖x(t)‖p + εe−βt, (4)

then system (1) is globally exponentially stable with guaranteed convergence rate

η = λ3/(λ2p).

Proof See Appendix A.

Lemma 2.2 For any nonnegative integers i and j, define 0! = 1, i! = 1×2×3×. . .×i,
and Ci

j = i!/[j!(i − j)!], i ≥ j. Then, for any nonnegative integers i, j, and r, the
following inequalities are true:

(a) Cr−3

j−3
≥ Cr−i

j−i , ∀ 3 ≤ i ≤ j ≤ r,

(b) 3 Cr−2

j−2
− 2 Cr−2

j−1
+ Cr−2

j ≥ 3 Cr−3

j−3
, ∀ 3 ≤ j ≤ r − 2.

Proof See Appendix B.

3 First Class of Systems

Consider the following uncertain system with a time-varying delay:

ẋ(t) = F (t, x(t))

+ G(t, x(t), x(t − h(t)))∆Ψ(t, x(t), x(t − h(t)), u(t)), t ≥ t0 ≥ 0,
(5)

xt0(t) = θ(t), t ∈ [−H, 0], (6)

where x ∈ Rn, h(t) is a delay argument with 0 ≤ h(t) ≤ H , u ∈ Rm is the input vector,
and θ ∈ C is a given initial function. The functions F , G, and ∆Ψ (uncertain input
nonlinearity) are assumed to be continuous with F (t, 0) = 0, t ≥ t0 ≥ 0.

Before presenting our main results, we make some assumptions as follows.

Assumption (A1) [18] There exist a sufficiently smooth function W (t, x(t)) and
positive constants λ1, λ2, λ3, and p such that, for all x ∈ Rn, t ≥ t0 ≥ 0,

λ1‖x‖
p ≤ W (t, x) ≤ λ2‖x‖

p, (7)

and the derivative of W along solutions of ẋ(t) = F (t, x(t)) satisfies

dW (t, x(t))

dt
= ∇tW (t, x(t)) + ∇T

x W (t, x(t)) · F (t, x(t)) ≤ −λ3‖x(t)‖p. (8)



18 CHANG-HUA LIEN

Assumption (A2) [12] There exist positive continuous functions f1(t, x, y),
f2(t, x, y), and nonnegative continuous functions f3(t, x, y), . . . , fr(t, x, y) such that for
all t ≥ t0 ≥ 0, x, y ∈ Rn, and u ∈ Rm,

uT · ∆Ψ(t, x, y, u) ≥ −f1(t, x, y)‖u‖ + f2(t, x, y)‖u‖2 −
r

∑

j=3

fj(t, x, y)‖u‖j, (9)

with

f r−1

2 (t, x, y) ≥
r

∑

j=3

2j−1f j−2

1 (t, x, y)f r−j
2 (t, x, y)fj(t, x, y). (10)

Remark 3.1 For r = 3, r = 4, and r = 5, inequality (10) becomes, respectively,

f2
2 ≥ 4f1f3, (11)

f3
2 ≥ 4f1f2f3 + 8f2

1f4, (12)

f4
2 (t, x, y) ≥ 4f1f

2
2 f3 + 8f2

1f2f4 + 16f3
1f5. (13)

It is interesting to note that (13) reduces to (12) by setting f5 = 0 and (12) reduces to
(11) by setting f4 = 0. Similar statement can be made for higher r.

Theorem 3.1 System (5) satisfying Assumptions (A1)∼(A2) is globally exponen-
tially stabilizable with convergence rate η = λ3/(λ2p) under the control

u(t) = −γ(t, x(t), x(t − h(t)))K(t, x(t), x(t − h(t))), (14)

where

γ(t, x(t), x(t − h(t)))

=
2f2

1 (t, x(t), x(t − h(t)))

f2(t, x(t), x(t − h(t)))[f1(t, x(t), x(t − h(t)))‖K(t, x(t), x(t − h(t)))‖ + ε∗(t)]
,

(15)

ε∗(t) = 3 exp(−βt), (16)

K(t, x(t), x(t − h(t))) = GT(t, x(t), x(t − h(t)))∇xW (t, x(t)), (17)

with β > λ3/λ2.

Proof Let W (t, x(t)), satisfying (7) – (8), be a Lyapunov function candidate of the
system (5) with (14) – (17). The time derivative of W (t, x(t)) along trajectories of the
closed-loop system is given by

Ẇ = ∇tW + ∇T
x W (F + G · ∆Ψ) ≤ −λ3‖x‖

p + ∇T
x WG · ∆Ψ. (18)

From (9) and (14), we have

−γKT · ∆Ψ > −f1γ‖K‖+ f2γ
2‖K‖2 −

r
∑

j=3

fjγ
j‖K‖j,
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which implies

KT · ∆Ψ ≤ f1‖K‖ − f2γ‖K‖2 +

r
∑

j=3

fjγ
j−1‖K‖j. (19)

Applying (19) to (18) with (15) – (17), we have

Ẇ ≤ −λ3‖x‖
p + f1‖K‖ − f2γ‖K‖2 +

r
∑

j=3

fjγ
j−1‖K‖j.

In the following, the proof is made by setting r = 3, r = 4, and r ≥ 5, respectively.

For r = 3, we have

Ẇ ≤ −λ3‖x‖
p + f1‖K‖ − f2γ‖K‖2 + f3γ

2‖K‖3

= −λ3‖x‖
p + f1‖K‖ −

2f2f
2
1 ‖K‖2

f2(f1‖K‖ + ε∗)
+

4f3f
4
1 ‖K‖3

f2
2 (f1‖K‖ + ε∗)2

+ (−e−βt + e−βt)

=
f2
2 (f1‖K‖ − e−βt)(f1‖K‖ + ε∗)2 − 2f2

2 f2
1 ‖K‖2(f1‖K‖+ ε∗)

f2
2 (f1‖K‖+ ε∗)2

+
4f3f

4
1 ‖K‖3

f2
2 (f1‖K‖ + ε∗)2

− λ3‖x‖
p + e−βt

=
−‖K‖3f3

1 (f2
2 − 4f1f3) − ‖K‖2f2

1 f2
2 e−βt + 3‖K‖f1f

2
2 e−2βt − 9f2

2 e−3βt

f2
2 (f1‖K‖ + ε∗)2

− λ3‖x‖
p + e−βt.

(20)

By using the fact that 2ab ≤ a2 + b2 for any a, b ≥ 0, one has

3‖K‖f1f
2
2 e−2βt = f2

2 e−βt

[

2 f1‖K‖
3e−βt

2

]

≤ f2
2 e−βt

[

(f1‖K‖)2 +
9e−2βt

4

]

. (21)

From (11), (20), and (21), we have

Ẇ ≤
−‖K‖3f3

1 (f2
2 − 4f1f3) − (27/4)f2

2 e−3βt

f2
2
(f1‖K‖ + ε∗)2

− λ3‖x‖
p + e−βt ≤ −λ3‖x‖

p + e−βt.

Next for r = 4, we have

Ẇ ≤ −λ3‖x‖
p + f1‖K‖ − f2γ‖K‖2 + f3γ

2‖K‖3 + f4γ
3‖K‖4

= −
‖K‖4f4

1 (f3
2 − 4f1f2f3 − 8f2

1 f4) + ‖K‖3f3
1 e−βt(4f3

2 − 4f1f2f3(3)) + 27f3
2 e−4βt

f3
2 (f1‖K‖ + ε∗)3

− λ3‖x‖
p + e−βt.

(22)
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From (12) and (22), we have

Ẇ ≤ −
‖K‖4f4

1 (f3
2 − 4f1f2f3 − 8f2

1 f4) + 4‖K‖3f3
1 e−βt(f3

2 − 4f1f2f3) + 27f3
2 e−4βt

f3
2 (f1‖K‖ + ε∗)3

−λ3‖x‖
p + e−βt ≤ −λ3‖x‖

p + e−βt.

Finally for r ≥ 5, we have

Ẇ ≤ −λ3‖x‖
p + f1‖K‖ − f2γ‖K‖2 +

r
∑

j=3

fjγ
j−1‖K‖j

= −λ3‖x‖
p + f1‖K‖ −

2f2f
2
1 ‖K‖2

f2(f1‖K‖ + ε∗)
+

r
∑

j=3

(2)j−1fjf
2(j−1)

1 ‖K‖j

f j−1

2 (f1‖K‖ + ε∗)j−1
+ (−e−βt + e−βt)

=
f r−1

2 (f1‖K‖ − e−βt)(f1‖K‖ + 3e−βt)r−1 − 2f r−1

2 f2
1 ‖K‖2(f1‖K‖ + 3e−βt)r−2

f r−1

2 (f1‖K‖+ 3e−βt)r−1

+

r
∑

j=3

(2)j−1fjf
2(j−1)

1 ‖K‖jf r−j
2 (f1‖K‖ + 3e−βt)r−j

f r−1

2 (f1‖K‖ + 3e−βt)r−1
− λ3‖x‖

p + e−βt

= −

‖K‖rf r
1

(

f r−1

2 −
r

∑

j=3

2(j−1)f j−2

1 f r−j
2 fj

)

f r−1

2 (f1‖K‖+ 3e−βt)r−1

−

‖K‖r−1e−βtf r−1

1

[

f r−1

2 (3Cr−2

r−3 − 2Cr−2

r−2) −
r−1
∑

j=3

2(j−1)f j−2

1 f r−j
2 fj(3Cr−j

r−1−j)

]

f r−1

2 (f1‖K‖ + 3e−βt)r−1

−

r−2
∑

j=3

‖K‖je−(r−j)βt3r−j−1f j
1

[

f r−1

2
(3Cr−2

j−2
−2Cr−2

j−1
+Cr−2

j )−
j

∑

i=3

2(i−1)f i−2

1
f r−i
2

fi(3Cr−i
j−i )

]

f r−1

2 (f1‖K‖+3e−βt)r−1

−
‖K‖2f r−1

2 f2
1 3r−3e−(r−2)βt(3 − 2Cr−2

1 +Cr−2

2 )+‖K‖f r−1

2 f1(3)r−2e−(r−1)βt(−2 + Cr−2

1 )

f r−1

2 (f1‖K‖ + 3e−βt)r−1

−
f r−2

2 (3)r−1e−rβt

f r−1

2 (f1‖K‖ + 3e−βt)r−1
− λ3‖x‖

p + e−βt

= −

‖K‖rf r
1

(

f r−1

2 −
r

∑

j=3

2(j−1)f j−2

1 f r−j
2 fj

)

f r−1

2 (f1‖K‖+ 3e−βt)r−1

−

‖K‖r−1e−βtf r−1

1

[

f r−1

2
(3r − 8) −

r−1
∑

j=3

2(j−1)f j−2

1
f r−j
2

fj(3(r − j))

]

f r−1

2 (f1‖K‖ + 3e−βt)r−1

−

r−2
∑

j=3

‖K‖je−(r−j)βt3r−j−1f j
1

[

f r−1

2 (3Cr−2

j−2
−2Cr−2

j−1
+Cr−2

j )−
j

∑

i=3

2(i−1)f i−2

1 f r−i
2 fi(3Cr−i

j−i )

]

f r−1

2 (f1‖K‖+ 3e−βt)r−1
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−
‖K‖2f r−1

2 f2
1 (3)r−3e−(r−2)βt[(r − 4)(r − 5)] + ‖K‖f r−1

2 f1(3)r−2e−(r−1)βt(r − 4)

f r−1

2 (f1‖K‖ + 3e−βt)r−1

−
f r−2

2 (3)r−1e−rβt

f r−1

2 (f1‖K‖ + 3e−βt)r−1
− λ3‖x‖

p + e−βt. (23)

By (23), Lemma 2.2, and the fact that 3r − 8 > 3(r − j), ∀ 3 ≤ j ≤ r − 1, one has

Ẇ ≤ −

‖K‖rf r
1

(

f r−1

2 −
r
∑

j=3

2(j−1)f j−2

1 f r−j
2 fj

)

f r−1

2 (f1‖K‖ + 3e−βt)r−1

− (3r − 8) ·

‖K‖r−1e−βtf r−1

1

[

f r−1

2 −
r−1
∑

j=3

2(j−1)f j−2

1 f r−j
2 fj

]

f r−1

2
(f1‖K‖ + 3e−βt)r−1

−

r−2
∑

j=3

‖K‖je−(r−j)βt3r−j−1f j
1 (3Cr−2

j−2
− 2Cr−2

j−1
+ Cr−2

j )

[

f r−1

2 −
j

∑

i=3

2(i−1)f i−2

1 f r−i
2 fi

]

f r−1

2 (f1‖K‖ + 3e−βt)r−1

−
‖K‖2f r−1

2
f2
1 (3)r−3e−(r−2)βt[(r − 4)(r − 5)] + ‖K‖f r−1

2
f1(3)r−2e−(r−1)βt(r − 4)

f r−1

2
(f1‖K‖ + 3e−βt)r−1

−
f r−2

2 (3)r−1e−rβt

f r−1

2 (f1‖K‖ + 3e−βt)r−1
− λ3‖x‖

p + e−βt ≤ −λ3‖x‖
p + e−βt.

This completes our proof in view of Lemma 2.1.

Remark 3.2 In [18], exponential stability can be guaranteed via nonlinear state feed-

back control for system (4) with G(t, x(t), x(t − h(t))) = ˜G(t, x(t)), ∆Ψ(t, x(t), x(t −
h(t)), u(t) = u(t) + ξ(t, x(t)), ‖ξ(t, x(t))‖ ≤ ρ(t, x(t)), p = 2, where ξ(·, ·) : R × Rn →
Rm and ρ(·, ·) is a nonnegative continuous function. In this case, there exists a positive
continuous function ρ̃(t, x) ≥ ρ(t, x), ∀ t ≥ t0 ≥ 0, x ∈ Rn, such that

uT∆Ψ(t, x, x(t − h), u) = ‖u‖2 + uTξ(t, x) ≥ −ρ̃(t, x)‖u‖ + ‖u|2.

In view of (9), we have

f1 = ρ̃(t, x), f2 = 1, f3 = 0, . . . , fr = 0,

and (10) is satisfied. Hence, global exponential stability can be guaranteed by memoryless
controller (14) with f1 = ρ̃(t, x) and f2 = 1 by Theorem 3.1. However, our global
exponential stability result holds for more general systems.

4 Second Class of Systems

Consider the following uncertain system with a time-varying delay:

ẋ(t) = Ax(t) + B∆Φ(t, x(t), x(t − h(t)), u(t)), t ≥ t0 ≥ 0, (24)

xt0(t) = θ(t), t ∈ [−H, 0], (25)

where x ∈ Rn, h(t) is a delay argument with 0 ≤ h(t) ≤ H , (A, B) is stabilizable, where
A ∈ Rn×n, B ∈ Rn×m, and ∆Φ, representing uncertain input nonlinearity, is assumed
to be a continuous function satisfying the following assumption.
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Assumption (A3) There exist positive continuous functions f̃1(t, x, y) and

f̃2(t, x, y) such that for all t ≥ t0 ≥ 0, x, y ∈ Rn, and u ∈ Rm,

uT∆Φ(t, x, y, u) ≥ −f̃1(t, x, y)‖u‖ + f̃2(t, x, y)‖u‖2.

Since the pair (A, B) is assumed to be stabilizable, we can find a matrix M ∈ Rm×n

such that Ã = A − BM is a Hurwitz matrix and the following Lyapunov equation

ÃTP + PÃ = −2I, (26)

has a unique positive definite symmetric solution P .

Theorem 4.1 System (24) satisfying Assumption (A3) is globally exponentially sta-
bilizable with convergence rate η = λmax(P )−1 under the control

u(t) = −γ(t, x(t), x(t − h(t)))K(x(t)), (27)

where

γ(t, x(t), x(t − h(t)))

=
2[f̃1(t, x(t), x(t − h(t))) + ‖Mx(t)‖]2

f̃2(t, x(t), x(t − h(t)))[(f̃1(t, x(t), x(t − h(t))) + ‖Mx(t)‖)‖K(x(t))‖ + ε∗(t)]
,

ε∗(t) = 3 exp(−βt),

K(x(t)) = 2BTPx(t),

with β > 2/λmax(P ), and P is the solution of (26).

Proof System (24) can be rewritten as

ẋ(t) = Ãx(t) + B[∆Φ(t, x(t), x(t − h(t)), u(t)) + Mx(t)], t ≥ t0 ≥ 0.

In the following, we use Theorem 3.1 to prove this theorem. Choose

F (t, x) = Ãx, G(t, x(t), x(t − h(t))) = B,

∆Ψ(t, x(t), x(t − h(t)), u) = Mx + ∆Φ(t, x(t), x(t − h(t)), u).

Let W (t, x(t)) = xT(t)Px(t), then we have

λmin(P )‖x‖2 ≤ W (t, x) ≤ λmax(P )‖x‖2, ∀ t ≥ t0 ≥ 0, x ∈ Rn, (28)

and the derivative of W along solutions of ẋ(t) = Ãx(t) is given by

dW (t, x(t))

dt
= x(t)T(ÃTP + PÃ)x(t) = −2‖x(t)‖2. (29)

In view of Assumption (A3), we obtain

uT∆Ψ(t, x, x(t − h(t)), u) = uTMx + uT∆Φ(t, x, x(t − h(t)), u)

≥ −[‖Mx‖ + f̃1(t, x(t), x(t − h(t)))] · ‖u‖ + f̃2(t, x(t), x(t − h(t))) · ‖u‖2.
(30)
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Comparing (28) – (30) with (7) – (9), one obtains

λ1 = λmin(P ), λ2 = λmax(P ), λ3 = 2, p = 2,

f1 = ‖Mx‖ + f̃1, f2 = f̃2, f3 = 0, . . . , fr = 0,

and (10) is satisfied. The rest follows immediately from Theorem 3.1.

In the following remarks, we show that the preceding result is a generalization of
several results reported in recent literature.

Remark 4.1 In [1], practical stability can be guaranteed for system (20) with
∆Φ(t, x, x(t − h(t)), u) = D(q)x + u + E(q)u + v(q), ‖E(q)‖ < 1, where A is a Hurwitz
matrix, D(·), E(·), and v(·) depend continuously on their arguments, and the uncertainty
q belongs to a compact set Q. In this case, we have

uT∆Φ = uT(D(q)x + u + E(q)u + v(q)) ≥ −(ρD‖x‖ + ρv) · ‖u‖ + (1 − ρE) · ‖u‖2

≥ −(ρD‖x‖ + ρ̃v) · ‖u‖ + (1 − ρE) · ‖u‖2,

where ρ̃v > 0, ρ̃v ≥ ρv = max
q∈Q

‖v(q)‖, ρE = max
q∈Q

‖E(q)‖ < 1, and ρD = max
q∈Q

‖D(q)‖.

By the preceding theorem, global exponential stability can be guaranteed by memoryless

controller (27) with f̃1 = ρD‖x‖ + ρ̃v and f̃2 = 1 − ρE .

Remark 4.2 In [3], global practical stability can be guaranteed for system (24) with
∆Φ(t, x, x(t − h(t)), u) = u + e(t, x, u) and ‖e(t, x, u)‖ ≤ k0 + k1‖x‖ + k2‖u‖, where
k0, k1, k2 ∈ R+ and k2 < 1. In this case, we have

uT∆Φ = uT(u + e(t, x, u)) ≥ −(k0 + k1‖x‖) · ‖u‖ + (1 − k2) · ‖u‖
2

≥ −(k3 + k1‖x‖) · ‖u‖ + (1 − k2) · ‖u‖
2,

where k3 > 0 and k3 ≥ k0. By the preceding theorem, global exponential stability can

be guaranteed by memoryless controller (27) with f̃1 = k3 + k1‖x‖ and f̃2 = 1 − k2.

Remark 4.3 In [11], global exponential stability can be guaranteed by a linear control
for system (24) with ∆Φ = D(q)x + u + E(q)u, ‖D(q)‖ ≤ δ, δ ∈ R+, and δE =
λmin(ET(q) + E(q)) > −1, ∀ q ∈ Q, where D(·) and E(·) depend continuously on their
arguments, and the uncertainty q belongs to a compact set Q. In this case, we have

uT∆Φ = uT(D(q)x + u + E(q)u)

≥ −(δ‖x‖) · ‖u‖ + (1 + δE/2) · ‖u‖2

≥ −(δ1 + δ‖x‖) · ‖u‖ + (1 + δE/2) · ‖u‖2,

where δ1 is a any positive constant. By the preceding theorem, global exponential sta-

bility can be guaranteed by memoryless controller (27) with f̃1 = δ1 + δ‖x‖ and f̃2 =
1 + δE/2.

Remark 4.4 In [14], global practical stability can be guaranteed via a linear control
for system (24) with ∆Φ(t, x, x(t− h(t)), u) = φ(u) + a(t, x, u), γ1‖u‖

2 ≤ uTφ(u), and
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‖a(t, x, u)‖ ≤ k0 + k1‖x‖ + k2‖u‖, where k0, k1, k2 ∈ R+ and k2 < γ1. In this case, we
have

uT∆Φ = uT(φ(u) + a(t, x, u))

≥ −(k0 + k1‖x‖) · ‖u‖ + (γ1 − k2) · ‖u‖
2

≥ −(k3 + k1‖x‖) · ‖u‖ + (γ1 − k2) · ‖u‖
2,

where k3 > 0 and k3 ≥ k0. By the preceding theorem, global exponential stability can

be guaranteed by memoryless controller (27) with f̃1 = k3 + k1‖x‖ and f̃2 = γ1 − k2.

Remark 4.5 In [19], global exponential stability can be guaranteed by a composite
control for system (24) with ∆Φ = u + ξ(t, x) + ξh(t, x(t − h(t))), ‖ξ(t, x)‖ ≤ ρ(t, x),
and ‖ξh(t, x(t − h(t)))‖ ≤ δ‖x(t − h(t))‖, where δ > 0 and ρ(·, ·) : R+ ×Rn → R+ is a
bounded continuous function. In this case, we have

uT∆Φ = uT(u + ξ(t, x) + ξh(t, x(t − h(t))))

≥ −(ρ(t, x) + δ‖x(t − h(t))‖) · ‖u‖ + ‖u‖2

≥ −(ρ1(t, x) + δ‖x(t − h(t))‖) · ‖u‖ + ‖u‖2,

where ρ1(t, x) ≥ ρ(t, x) and ρ1(t, x) > 0, ∀ t ≥ t0 ≥ 0, x ∈ Rn. By the preceding
theorem, global exponential stability can also be guaranteed by controller (27) with

f̃1 = ρ1(t, x) + δ‖x(t − h(t))‖ and f̃2 = 1.

5 Third Class of Systems

Consider the following uncertain system with a time-varying delay:

ẋ(t) = Ax(t) + A1x(t − h(t)) + ∆f(t, x(t), x(t − h(t)))

+ B∆Φ(t, x(t), x(t − h(t)), u(t)), t ≥ t0 ≥ 0,
(31)

xt0(t) = θ(t), t ∈ [−H, 0], (32)

where x ∈ Rn, h(t) is a delay argument with 0 ≤ h(t) ≤ H , u ∈ Rm is the input
vector, θ ∈ C is a given initial function, A, A1 ∈ Rn×n, and B ∈ Rn×m are constant
matrices, (A, B) is stabilizable, rank(B) = n, ∆Φ is assumed to be continuous and
satisfies Assumption (A3), and the mismatch uncertainty ∆f is assumed to be continuous
and satisfies the following assumption.

Assumption (A4) There exists a nonnegative continuous function q(t, x, y) such
that for all t ≥ t0 ≥ 0 and x, y ∈ Rn,

‖∆f(t, x, y)‖ ≤ q(t, x, y).
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Theorem 5.1 System (31) satisfying Assumptions (A3) and (A4) is globally expo-
nentially stabilizable with convergence rate η = λmax(P )−1 under the control

u(t) = −γ(t, x(t), x(t − h(t)))K(x(t)), (33)

where

γ(t, x(t), x(t − h(t))) =
2f̂2

1

f̃2(t, x(t), x(t − h(t)))[f̂1‖K(x(t))‖ + ε∗(t)]
,

f̂1 = ‖BT(BBT)−1A1x(t − h(t))‖ + ‖BT(BBT)−1‖q + ‖Mx‖ + f̃1,

ε∗(t) = 3 exp(−βt),

K(x(t)) = 2BTPx(t),

with β > 2/λmax(P ), M is a matrix such that Ã = A − BM is Hurwitz, and P is the
solution of (26).

Proof Since rank(B) = n, the matrix BBT is nonsingular. System (31) can be
rewritten as

ẋ(t) = Ãx(t) + BBT(BBT)−1[A1x(t − h(t)) + ∆f(t, x(t), x(t − h(t)))]

+ B[∆Φ(t, x(t), x(t − h(t)), u(t)) + Mx(t)], t ≥ t0 ≥ 0.

Define

∆Ψ(t, x(t), x(t − h(t)), u) = BT(BBT)−1[A1x(t − h(t)) + ∆f(t, x(t), x(t − h(t)))]

+ Mx + ∆Φ(t, x(t), x(t − h(t)), u),

then we have

uT∆Ψ(t, x, x(t − h(t)), u) ≥ −
[

‖BT(BBT)−1A1x(t − h(t))‖

+ ‖BT(BBT)−1‖ q + ‖Mx‖ + f̃1

]

‖u‖ + f̃2‖u‖
2.

Hence the result follows in view of Theorem 4.1.

Remark 5.1 In [13], global exponential stabilization has been considered for a class of
uncertain systems with multiple time-varying delays and input deadzone nonlinearities.
If they consider only single time-varying delay, their system can be put in the form of (26)
with q(t, x, y) = a0‖x‖ + a1‖y‖, ∆Φ(t, x, y, u) = ∆Φ3(t, x, y) + φ(u), ‖∆Φ3(t, x, y)‖ ≤
f(t, x, y), where y = x(t − h(t)), a0, a1 ∈ R+, ∆Φ3(·) and f(·) depend continuously
on their arguments, φ(u) = [φ1(u1), . . . , φm(um)]T with each φi(ui) ∈ D(ui, d1, d2)
representing the input deadzone nonlinearity, and D(ui, d1, d2) is defined in [13] with
d1 ≥ 0, d2 > 0. In this case, we have

uT∆Φ = uT[∆Φ3 + φ(u) − d2u + d2u] ≥ −‖u‖ · [‖∆Φ3‖ + ‖φ(u) − d2u‖] + d2‖u‖
2

≥ −‖u‖ · [f + md1d2] + d2‖u‖
2 ≥ −‖u‖ · [f + md̃1d2] + d2‖u‖

2,

where d̃1 > 0, d̃1 ≥ d1. By the preceding theorem, global exponential stability can also

be guaranteed by controller (33) with f̃1 = f + md̃1d2 and f̃2 = d2.
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6 Example

Consider the following uncertain system with a time-varying delay:

ẋ(t) =

[

−2x1 + 2x1x
2
2 + 2x1x2

√

|x1x2|

−2x2 − x2
1x2 − x2

1

√

|x1x2|

]

+

[

x2(t − h(t))

−x2
1

]

[a(t) + (b(t) + c(t)|x1(t − h(t))|)u + d(t)u3],

(34)

where u ∈ R, x = [x1, x2]
T ∈ R2, h(t) = 2 + cos(2t), −1 ≤ a(t) ≤ 1, 4 ≤ b(t) ≤ 4.5,

1 ≤ c(t) ≤ 2, −2 ≤ d(t) ≤ 2 for all t ≥ t0 ≥ 0. Comparing (34) with (5), one has

F (t, x(t)) =

[

−2x1 + 2x1x
2
2 + 2x1x2

√

|x1x2|

−2x2 − x2
1x2 − x2

1

√

|x1x2|

]

,

G(t, x(t), x(t − h(t))) =

[

x2(t − h(t))

−x2
1

]

,

∆Ψ(t, x(t), x(t − h(t)), u) = a(t) + (b(t) + c(t)|x1(t − h(t))|)u + d(t)u3.

Choose a simple quadratic functional

W (t, x) = xT

[

2 0
0 4

]

x.

Then (7) and (8) are evidently satisfied with λ1 = 2, λ2 = 4, p = 2, and λ3 = 8. In
view of (9), we have

uT∆Ψ(t, x, x(t − h(t)), u) = a(t)u + (b(t) + c(t)|x1(t − h(t))|)u2 + d(t)u4

≥ −|u| + (4 + |x1(t − h(t))|)|u|2 − 2|u|4.

This suggests that in (9) we choose f1 = 1, f2 = 4 + |x1(t − h(t))|, f3 = 0, and f4 = 2.
It is easy to show that (10) is satisfied with r = 4. According to (16) with β = 2.1 >

λ3/λ2 = 2, we have
ε∗(t) = 3 exp(−2.1t).

By (17) and (15), we obtain

K(t, x(t), x(t − h(t))) = 4x1(t)x2(t − h(t)) − 8x2
1(t)x2(t),

γ(t, x, x(t − h(t))) =
2

(4 + |x1(t − h(t))|)(|K(t, x(t), x(t − h(t)))| + ε∗(t))
.

Finally, owing to (14), it can be readily obtained that

u = −γ(t, x, x(t − h(t)))(4x1(t)x2(t − h(t)) − 8x2
1x2). (35)

By Theorem 3.1, we conclude that system (34) with control (35) is globally exponen-
tially stable with guaranteed convergence rate η = 1. With, e.g., a(t) = 1, b(t) = 4,
c(t) = 1, d(t) = 2, and x1(t) = 4, x2(t) = −2, ∀ t ∈ [−3, 0], state trajectories of the
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Figure 6.1. State trajectories of feedback-controlled system of (28).

Figure 6.2. Typical control signal for system (28).

feedback-controlled system and control signal are depicted in Figure 6.1 and Figure 6.2,
respectively.

7 Summary

In this paper, exponential stabilization for three classes of uncertain nonlinear systems
with time-varying delay has been considered. A continuous state feedback control has
been proposed in each case for exponential stability of feedback-controlled systems. Guar-
anteed convergence rate has also been provided. Our results have also been shown to
be generalizations of several results reported in recent literature. Finally, a numerical
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example has been provided to illustrate the use of our main results. It is interesting
to consider the problem of exponential stabilization for more general uncertain systems
with time-varying delay.
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Appendix A

Proof of Lemma 2.1 Let

Q(t, x) = V (t, x) exp(λ3t/λ2). (B1)

From (3), (4) and (B1), we have

dQ(t, x)

dt
=

d V (t, x)

dt
exp(λ3t/λ2) + λ3Q/λ2

≤ [(−λ3/λ2)V + ε exp(−βt)] exp(λ3t/λ2) + λ3Q/λ2

= ε exp[−(β − λ3/λ2)t].

(B2)

Set δ = β − λ3/λ2 > 0. Integrating both sides of (B2), we have, for all t ≥ t0 ≥ 0,

Q(t, x(t)) − Q(t0, x(t0)) ≤ −εδ−1[exp(−δt) − exp(−δt0)]

= εδ−1[exp(−δt0) − exp(−δt)] ≤ εδ−1 exp(−δt0) ≤ εδ−1 = ε(β − λ3/λ2)
−1.

This implies that, for all t ≥ t0 ≥ 0,

Q(t, x(t)) ≤ Q(t0, x(t0)) + ε(β − λ3/λ2)
−1

= V (t0, x(t0)) exp(λ3t0/λ2) + ε(β − λ3/λ2)
−1

≤ λ2‖θ‖
p
s exp(λ3t0/λ2) + ε(β − λ3/λ2)

−1 = a(t0, ‖θ‖s).

(B3)

From (3), (B1), and (B3), we have, for all t ≥ t0 ≥ 0,

‖x(t0, θ)(t)‖ ≤ [(1/λ1)V (t, x(t))]1/p = [(1/λ1) exp(−λ3t/λ2) · Q(t, x(t))]1/p

≤ [(a/λ1) exp(−λ3t/λ2)]
1/p = c(t0, ‖θ‖s) exp(−ηt)

≤ c(t0, ‖θ‖s) exp[−η(t − t0)],

where c(t0, ‖θ‖s) = [a(t0, ‖θ‖s)/λ1]
1/p and η = λ3/(λ2p) > 0.

This completes our proof.

Appendix B

Proof of Lemma 2.2 For any integers i, j, and r such that 3 ≤ i ≤ j < r, one has

[(r − 3) × (r − 4) × . . . × (j − 3 + 1)] ≥ [(r − i) × (r − i − 1) × . . . × (j − i + 1)].
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This implies

Cr−3

j−3
=

(r − 3)!

(j − 3)!(r − j)!
≥

(r − i)!

(j − i)!(r − j)!
= Cr−i

j−i , ∀ 3 ≤ i ≤ j < r,

and
Cr−3

j−3
= 1 = Cr−i

j−i , ∀ 3 ≤ i ≤ j = r.

Hence statement (a) is true. Now for any integers j, r such that r ≥ 5 and 3 ≤ j ≤ r−2,
one has

3 Cr−2

j−2
− 2 Cr−2

j−1
+ Cr−2

j − 3 Cr−3

j−3

=
(r − 2)!

j!(r − j)!

[

3j(j − 1) − 2j(r − j) + (r − j)(r − j − 1) − 3
j(j − 1)(j − 2)

(r − 2)

]

=
(r − 2)!

j!(r − j)!(r − 2)
[r3 + r2(−4j − 3) + r(6j2 + 6j + 2) − (3j3 + 3j2 + 2j)]

=
(r − 2)!

j!(r − j)!(r − 2)
[−3j3 + (6r − 3)j2 − (4r2 − 6r + 2)j + (r3 − 3r2 + 2r)].

For any given r ≥ 5, consider the following continuous function

g(y) = −3y3 + (6r − 3)y2 − (4r2 − 6r + 2)y + (r3 − 3r2 + 2r), y ∈ [3, r − 2].

The derivative of g(·) is given by

d

dy
g(y) = −9y2 + (12r − 6)y − (4r2 − 6r + 2).

Furthermore, the roots of the equation ġ(y) = 0 is given by

a =
2r − 1 −

√
2r − 1

3
, b =

2r − 1 +
√

2r − 1

3
.

With given r ≥ 5, define

g1(r) = g(a) =
1

9

(

r3 − 3r2 + 4 − 2(2r − 1)
√

2r + 1
)

,

g2(r) = g(b) =
1

9

(

r3 − 3r2 + 4 + 2(2r − 1)
√

2r + 1
)

,

g3(r) = g(3) = r3 − 15r2 + 74r − 114,

g4(r) = g(r − 2) = 2r2 − 12r + 16 = 2(r − 2)(r − 4).

Clearly we have

g1(5) = 0,

d

dr
g1(r) =

1

9

[

3r2 − 6r − 6
√

2r − 1
]

>
1

9

[

3r(r − 5) + (9 − 6
√

2)r
]

> 0, ∀ r ≥ 5,

g2(r) ≥ g1(r) ≥ g1(5) = 0, ∀ r ≥ 5,

g4(r) > 0, ∀ r ≥ 5.

Moreover, by Sturm’s theorem [5], it is easy to show that g3(r) > 0, ∀ r ≥ 5. Conse-
quently, g(y) ≥ 0 for all y ∈ [3, r − 2] and for each r ≥ 5. This completes the proof of
statement (b).
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perturbed equilibrium state. The obtained results are compared with those
obtained via the application of vector Lyapunov function in this problem. It
is shown that the application of hierarchical Lyapunov function allows us to
extend the boundaries of the parameter values of the neural network for which
the exponential stability of its solutions takes place. The examples illustrating
the efficiency of the proposed approach are given.
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1 Introduction

Discrete-time uncertain systems are satisfactory models for investigation of real pheno-
mena in populational dynamics, macroeconomics, for simulation of chemical reactions,
and also for analysis of discrete Markov processes, finite and probabilistic automata and
others.

One of the most actively developed areas in recent years is the dynamics of neural
systems [1 – 3] which are described by discrete-time equations (see [4, 5] and the references
therein). Along with the investigation of such systems under different assumptions there
has been a considerable interest in the development of general approaches in stability
analysis of discrete-time uncertain systems, which will be admissible in the stability
analysis of neural networks.

c© 2004 Informath Publishing Group. All rights reserved. 31
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The aim of this paper is to develop a method of analysis of exponential stability of
neural systems with nonperturbed and perturbed equilibrium states based on hierarchical
Lyapunov function.

The paper is arranged as follows.
In Section 2 the uncertain quasilinear system is considered. To decrease the order

of subsystems this system is decomposed. For each component and subsystem auxiliary
norm-like functions are constructed and robust bounds are given.

In Section 3 the uncertain neural system with nonperturbed equilibrium state is lin-
earized and the results of Section 2 are applied.

In Section 4 similar problem is solved for the uncertain neural system with perturbed
equilibrium state.

In final Section 5 two numerical examples are given.

2 Uncertain Quasilinear System

We consider the discrete-time system with uncertainties and perturbations of the form

S : x(τ + 1) = (A + ∆A)x(τ) + g(x(τ)), (2.1)

where τ ∈ Tτ = {t0 + k, k = 0, 1, 2, . . .}, t0 ∈ R, x ∈ Rn, xe ≡ 0 is an equilibrium
of (2.1), g : U → Rn is a continuous vector function, U ⊆ Rn is an open subset containing
xe. A ∈ Rn×n is a constant matrix, ∆A ∈ Rn×n is an uncertain matrix. The only
knowledge we have regarding the matrix ∆A is that it lies in the known compact set
S ⊂ Rn×n. In paper [5] robust stability results were established for the system (2.1)
via scalar quadratic Lyapunov function. Unlike this paper we shall apply vector and
hierarchical Lyapunov functions composed of norm-like components.

2.1 Vector approach

Assume that the system (2.1) is decomposed into two interconnected subsystems

Ŝi : xi(τ + 1) = (Ai + ∆Ai)xi(τ) + (Bi + ∆Bi)xj(τ) + gi(x(τ)),

i, j = 1, 2, i 6= j.
(2.2)

Here xi ∈ Rni , Ai, Bi and ∆Ai, ∆Bi are submatrices of the known and uncertain
matrices

A =

(

A1 B1

B2 A2

)

and ∆A =

(

∆A1 ∆B1

∆B2 ∆A2

)

,

respectively, with Ai, ∆Ai ∈ Rni×ni , Bi, ∆Bi ∈ Rni×nj , i, j = 1, 2, i 6= j, g = (gT
1 , gT

2)T,
gi : U → Rni are continuous vector functions.

From (2.2) we extract the independent subsystems

Si : xi(τ + 1) = (Ai + ∆Ai)xi(τ), i = 1, 2, (2.3)

with the same designations of variables as in system (2.2).
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Assumption 2.1 We assume that:

(1) there exist unique symmetric and positive definite matrices Pi ∈ Rni×ni , which
satisfy Lyapunov matrix equations

AT
i PiAi − Pi = −Gi, i = 1, 2, (2.4)

where Gi ∈ Rni×ni are arbitrary symmetric and positive definite matrices;
(2) there exists a constant γ ∈ (0; 1) such that

‖B1‖ ‖B2‖ < γ2µ1µ2,

where µi =
(

σ
1

2

M (Pi − Ini
)σ

1

2

M (Pi) + σM (Pi)
)

−1
, Pi are solutions of the Lya-

punov matrix equations (2.4) for the matrices Gi = Ini
, Ini

are ni × ni identity
matrices, i = 1, 2;

(3) lim ‖x‖→0 ‖g(x)‖/‖x‖ = 0.

Here ‖Bi‖ = sup
‖xi‖≤1 ‖Bixi‖, ‖xi‖ = (xT

i xi)
1

2 are the Euclidean norms of vectors

xi, and σM (Pi) are the maximum eigenvalues of Pi.
Let Pi be determined as solutions of the Lyapunov matrix equations (2.4) for Gi = Ini

.
We define the constants

αi = σ
1

2

M (Pi)µi =
(

σ
1

2

M (Pi − Ini
) + σ

1

2

M (Pi)
)

−1
, i = 1, 2,

a = σ
1

2

M (P1)σ
1

2

M (P2), b = σ
1

2

M (P1)σ
1

2

M (P2)(‖B1‖ + ‖B2‖),

c = γ2α1α2 − σ
1

2

M (P1)σ
1

2

M (P2)‖B1‖ ‖B2‖, ǫ = ((b2 + 4ac)
1

2 − b)/2a.

(2.5)

Theorem 2.1 We assume that for the uncertain system (2.1) the decomposition
(2.2), (2.3) takes place and all conditions of Assumption 2.1 are satisfied. If the inequali-
ties

‖∆Ai‖ ≤ (1 − γ)µi and ‖Bi‖ < ǫ, i = 1, 2,

are true, then the equilibrium xe = 0 of (2.1) is global exponentially stable.

Proof For nominal subsystems

xi(τ + 1) = Aixi(τ), i = 1, 2,

we construct the norm-like functions

vi(xi) = (xT
i Pixi)

1

2 , i = 1, 2, (2.6)

and the function
v(x) = d1v1(x1) + d2v2(x2),

where d1, d2 are some positive constants.
Similarly to the proof of Theorem 3.1 from paper [6] for the first differences ∆v i(xi)

of the functions (2.6) along the solutions of the system (2.1) we obtain the estimates

∆vi(xi)
∣

∣

Ŝi
≤ −(αi − σ

1

2

M (Pi)‖∆Ai‖)‖xi‖+ σ
1

2

M (Pi)(‖Bi‖+ ‖∆Bi‖)‖xj‖+ σ
1

2

M (Pi)‖gi(x)‖,
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i, j = 1, 2, i 6= j, and the estimate

∆v(x)
∣

∣

S
= d̃TWz + g̃(x),

where d̃ = (d1, d2)
T, z = (‖x1‖, ‖x2‖)T, W ∈ R2×2 is a matrix with the elements

wij =

{

αi − σ
1

2

M (Pi)‖∆Ai‖, if i = j,

−σ
1

2

M (Pi)(‖Bi‖ + ‖∆Bi‖), if i 6= j,

the function g̃ : Rn → R+ is such that lim‖x‖→0 ‖g̃(x)‖/‖x‖ = 0.

It was shown [6] that condition (2) of Assumption 2.1 implies that the matrix W is an

M-matrix [7]. Then there exist positive constants d1 and d2 such that the vector d̃TW
has positive elements [8].

Using the trivial inequalities ‖xi‖ ≥ vi(xi)/σ
1

2

M (Pi), i = 1, 2, for the first difference of
the function v(x) along the solutions of the system (2.1) we get

∆v(x)
∣

∣

S
≤ −

[

µ1 − ‖∆A1‖ −
d2σ

1

2

M (P2)

d1σ
1

2

M (P1)
(‖B2‖ + ‖∆B2‖)

]

d1v1(x1)

−
[

µ2 − ‖∆A2‖ −
d1σ

1

2

M (P1)

d2σ
1

2

M (P2)
(‖B1‖ + ‖∆B1‖)

]

d2v2(x2) + g̃(x)

≤ −ω(d1v1(x1) + d2v2(x2)) + g̃(x) = −ωv(x) + g̃(x),

(2.7)

where

ω = min
i,j=1,2, i6=j

{

µi − ‖∆Ai‖ −
djσ

1

2

M (Pj)

diσ
1

2

M (Pi)
(‖Bj‖ + ‖∆Bj‖)

}

.

The choice of the constants d1 and d2 implies ω > 0. Let us assume that ω ≥ 1, then

µi − ‖∆Ai‖ −
djσ

1

2

M (Pj)

diσ
1

2

M (Pi)
(‖Bj‖ + ‖∆Bj‖) ≥ 1, i, j = 1, 2, i 6= j. (2.8)

If ‖∆A1‖ = ‖∆A2‖ = ‖∆B1‖ = ‖∆B2‖ = ‖B1‖ = ‖B2‖ = 0, the system (2.1) is
written in the form

xi(τ + 1) = Aixi(τ) + gi(x(τ)), i = 1, 2.

It is known [9] that the equilibrium x = 0 of this system is exponentially stable.
Let at least one of the numbers ‖∆Ai‖, ‖∆Bi‖, or ‖Bi‖ be not equal to zero, for

example, ‖∆A1‖. Then the inequalities (2.8) give

µ1 ≥ 1 + ‖∆A1‖ +
d2σ

1

2

M (P2)

d1σ
1

2

M (P1)
(‖B2‖ + ‖∆B2‖) > 1,

but

µ1 =
1

σ
1

2

M (P1 − In1
)σ

1

2

M (P1) + σM (P1)
≤ 1,
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since σM (P1) ≥ 1. We get the contradiction, from which it follows that 0 < ω < 1.
Using the condition (3) of Assumption 2.1 for the function g̃(x) we get the estimate

g̃(x) = d1σ
1

2

M (P1)‖g1(x1)‖ + d2σ
1

2

M (P2)‖g2(x2)‖ ≤ (d1σ
1

2

M (P1) + d2σ
1

2

M (P2))‖g(x)‖

≤ α
(

d1σ
1

2

M (P1) + d2σ
1

2

M (P2)
)

‖x‖ ≤ α
(

d1σ
1

2

M (P1) + d2σ
1

2

M (P2)
)

(‖x1‖ + ‖x2‖)

≤ α
(

d1σ
1

2

M (P1) + d2σ
1

2

M (P2)
)

(

v1(x1)

σ
1

2

m(P1))
+

v2(x2)

σ
1

2

m(P2))

)

≤ α
(

d1σ
1

2

M (P1) + d2σ
1

2

M (P2)
)

max

{

1

d1σ
1

2

m(P1))
,

1

d2σ
1

2

m(P2)

}

v(x),

where σ
1

2

m(Pi) are minimum eigenvalues of the matrices Pi, α is a small positive number
such that for the constant

ω̃ = ω − α
(

d1σ
1

2

M (P1) + d2σ
1

2

M (P2)
)

max

{

1

d1σ
1

2

m(P1))
,

1

d2σ
1

2

m(P2)

}

the inequality 0 < ω̃ < 1 holds.
Using (2.7) we get the estimate

∆v(x)
∣

∣

S
≤ −ω̃v(x)

for all x belonging to sufficiently small neighborhood of the origin ˜U ⊆ U , which implies
global exponential stability of the equilibrium xe = 0 of (2.1) (see [10]).

The proof of Theorem 2.1 is complete.

2.2 Hierarchical approach

Now in the framework of hierarchical approach we decompose each subsystem (2.3) into
two interconnected components

˜Cij : xij(τ + 1) = (Aij + ∆Aij)xij(τ) + (Bij + ∆Bij)xik(τ), (2.9)

where xij ∈ Rnij , Rni = Rni1 × Rni2 , Aij , ∆Aij ∈ Rnij×nij , Bi1, ∆Bi1 ∈ Rni1×ni2 ,
Bi2, ∆Bi2 ∈ Rni2×ni1 , i, j, k = 1, 2, j 6= k,

Ai =

(

Ai1 Bi1

Bi2 Ai2

)

, ∆Ai =

(

∆Ai1 ∆Bi1

∆Bi2 ∆Ai2

)

.

We assume that the matrices Bi and ∆Bi have a block structure:

Bi =

(

M
(i)
11 M

(i)
12

M
(i)
12 M

(i)
22

)

, ∆Bi =

(

∆M
(i)
11 ∆M

(i)
12

∆M
(i)
12 ∆M

(i)
22

)

,

where M
(i)

jk , ∆M
(i)

jk ∈ Rnij×nlk , i, j, k, l = 1, 2, i 6= l.

We take from (2.9) the independent components

Cij : xij(τ + 1) = (Aij + ∆Aij)xij(τ), i, j = 1, 2. (2.10)

with the same designations of variables as in system (2.9).
We denote gi = (gT

i1, g
T
i2, . . . , g

T
ini

)T and introduce the following assumptions.
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Assumption 2.2 We assume that:

(1) there exist unique symmetric and positive definite matrices Pij, which satisfy the
Lyapunov matrix equations

AT
ijPijAij − Pij = −Gij , i = 1, 2, (2.11)

where Gij are arbitrary symmetric and positive definite matrices;
(2) there exist constants γi ∈ (0, 1) such that

‖Bi1‖ ‖Bi2‖ < γ2
i µi1µi2, i = 1, 2,

where µij =
(

σ
1

2

M (Pij − Enij
)σ

1

2

M (Pij) + σM (Pij)
)

−1
. Here and over Pij are

solutions of the Lyapunov matrix equations (2.11) for the matrices Gij = Inij
,

Inij
are nij × nij identity matrices.

We construct the auxiliary functions vi on the base of the functions vij(xij) =

(xT
ijPijxij)

1

2 by formulae vi(xi) = di1vi1(xi1) + di2vi2(xi2), i = 1, 2.

We consider 2 × 2 matrices Wi = (w
(i)

jk ) with the elements

w
(i)

jk =

{

γiαij , for j = k,

−σ
1

2

M (Pij)(‖Bij‖ + ǫi), for j 6= k.

Here 0 < ǫi < ǫi,

αij = σ
1

2

M (Pij)µij =
(

σ
1

2

M (Pij − Eij) + σ
1

2

M (Pij)
)

−1
,

µij =
(

σ
1

2

M (Pij − Eij)σ
1

2

M (Pij) + σM (Pij)
)

−1
,

ǫi = ((b2
i + 4aici)

1

2 − bi)/2ai, ai = σ
1

2

M (Pi1)σ
1

2

M (Pi2),

ci = γ2
i αi1αi2 − σ

1

2

M (Pi1)σ
1

2

M (Pi2)‖Bi1‖ ‖Bi2‖, i, j = 1, 2,

bi = σ
1

2

M (Pi1)σ
1

2

M (Pi2)(‖Bi1‖ + ‖Bi2‖).

(2.12)

Let us denote

πi = min{di1w
(i)

11
+ di2w

(i)

21
; di1w

(i)

12
+ di2w

(i)

22
}, i = 1, 2,

m =
1

2





π1π2

(

d11σ
1

2

M (P11) + d12σ
1

2

M (P12)
) (

d21σ
1

2

M (P21) + d22σ
1

2

M (P22)
)





1

2 (2.13)

A method of optimal choice of the constant dij , i, j = 1, 2, is given in [6].

Assumption 2.3 Let lim
‖x‖→0

‖g(x)‖/‖x‖ = 0 and for the submatrices M
(i)

jk of the

matrices Bi the inequalities m = max ‖M
(i)

jk ‖ < m be realized for all i, j, k = 1, 2.
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Theorem 2.2 We assume that for the uncertain system (2.1) the two-level decompo-
sition (2.2), (2.3), (2.9), (2.10) is realized and all conditions of Assumptions 2.2 and 2.3
are satisfied. If the inequalities

‖∆Aij‖ ≤ (1 − γi)µij , ‖∆Bij‖ ≤ ǫi, ‖∆M
(i)

jk ‖ < m − m

are fulfilled for all i, j, k = 1, 2, then the equilibrium xe = 0 of the system (2.1) is global
exponentially stable.

Proof Under the hypotheses of Theorem 2.2 analogous to the proof of Theorem 4.1
from [6] for the function v(x) = d1v1(x1) + d2v2(x2) we get the estimates:

∆v(x)
∣

∣

S
= d1∆v1(x1)

∣

∣

̂S1

+d2∆v2(x2)
∣

∣

̂S2

≤ −d̂TW z + g̃(x), (2.14)

where d̂ = (d1, d2)
T, z = (‖x1‖, ‖x2‖)T, gi = (gT

i1, g
T
i2)

T and W is 2× 2 matrix with the
elements

wjk =















πj , for j = k,

−dj1σ
1

2

M (Pj1)(2m + ‖∆M
(j)
11 ‖) + ‖∆M

(j)
12 ‖)

−dj2σ
1

2

M (Pj2)(2m + ‖∆M
(j)
21 ‖) + ‖∆M

(j)
22 ‖), for j 6= k,

g̃(x) = d1

(

d11σ
1

2

M (P11)‖g11(x)‖ + d12σ
1

2

M (P12)‖g12(x)‖
)

+d2

(

d21σ
1

2

M (P21)‖g11(x)‖ + d22σ
1

2

M (P22)‖g22(x)‖
)

.

Under the hypotheses of Theorem 2.2 the matrix W is the M-matrix and, according

to [7] there exist positive constants d1 and d2 such that the vector d̂TW has positive
components. That is

d̂TW z = (π1d1 − ω21d2)‖x1‖ + (π2d2 − ω12d1)‖x2‖

≥
∑

i,j=1,2, i6=j

(πidi − ωjidj)(‖xi1‖ + ‖xi2‖)/
√

2

≥
∑

i,j=1,2, i6=j

πidi − ωjidj√
2

(

vi1(xi1)

σ
1

2

M (Pi1)
+

vi2(xi2)

σ
1

2

M (Pi2)

)

≥
∑

i,j=1,2, i6=j

πidi − ωjidj√
2 di

(

1

di1σ
1

2

M (Pi1)
didi1vi1 +

1

di2σ
1

2

M (Pi2)
didi2vi2

)

≥ ωv(x),

where

ω = min
i,j=1,2, i6=j

{

πidi − ωjidj
√

2 didi1σ
1

2

M (Pi1)
,

πidi − ωjidj
√

2 didi2σ
1

2

M (Pi2)

}

.

As the matrix W is the M-matrix, γ1 ∈ (0, 1) and µ11 ≤ 1,

π1d1 − ω21d2

√
2 d1d11σ

1

2

M (P11)
≤

π1

√
2 d11σ

1

2

M (P11)

≤
d11ω

(1)

11 + d12ω
(1)

21
√

2 d11σ
1

2

M (P11)
≤

ω
(1)

11
√

2σ
1

2

M (P11)
=

γ1α11

√
2σ

1

2

M (P11)
=

γ1µ11√
2

< 1
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and 0 < ω < 1.

It follows from (2.14) that

∆v(x)
∣

∣

S
≤ −ωv(x) + g̃(x).

As for sufficiently small α > 0 the estimate

g̃(x) ≤ α
2
∑

i=1

di

(

di1σ
1

2

M (Pi1) + di2σ
1

2

M (Pi2)
)

‖x‖

≤ αβ−1

2
∑

i=1

di

(

di1σ
1

2

M (Pi1) + di2σ
1

2

M (Pi2)
)

v(x)

is realized in some neighborhood of zero ˜U ,

∆v(x)
∣

∣

S
≤ −ω̃v(x),

where ω̃ = ω − αβ−1
2
∑

i=1

di

(

di1σ
1

2

M (Pi1) + di2σ
1

2

M (Pi2)
)

, 0 < ω̃ < 1.

These conditions are sufficient [10] for the global exponential stability of the equilibri-
um x = 0 of (2.1). The proof of Theorem 2.2 is complete.

3 Neural System with Nonperturbed Equilibrium

We consider discrete-time neural networks described by

x(τ + 1) = Gx(τ) + Cs(Tx(τ) + I), (3.1)

where τ ∈ Tτ = {t0 +k, k = 0, 1, 2, . . .}, t0 ∈ R, x ∈ Rn, x = (x1, x2, . . . , xn)T, xi is the
state of ith neuron, xi ∈ R, s : Rn → Rn, s(x) = (s1(x1), s2(x2), . . . , sn(xn))T, si : R →
(−1, 1), T ∈ Rn×n, G = diag {g1, g2, . . . gn}, gi ∈ [−1, 1], C = diag {c1, c2, . . . cn},
ci 6= 0 for all i = 1, 2, . . . , n. The functions si are twice continuously differentiable
functions, they are monotonically increasing and odd.

Together with the system (3.1) we consider an uncertain system

x(τ + 1) = (G + ∆G)x(τ) + (C + ∆C)s
(

(T + ∆T )x(τ) + (I + ∆I)
)

, (3.2)

where ∆G, ∆C, ∆T ∈ Rn×n, ∆I ∈ Rn are uncertain matrices and a vector.
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3.1 Vector approach

In the framework of vector approach we decompose the neural system (3.1) into two
interconnected subsystems

xi(τ + 1) = Gixi(τ) + Cisi(Ti1x1(τ) + Ti2x2(τ) + Ii), i = 1, 2, (3.3)

where xi ∈ Rni , xi = (xi1, xi2, . . . xini
)T, xij represents the state of the ijth neuron,

xij ∈ R, si : Rni → Rni , si(xi) = (si1(xi1), si2(xi2), . . . , sini
(xini

))T, sij : R → (−1; 1),
Tij ∈ Rni×nj , Gi = diag {gi1, gi2, . . . gini

}, gij ∈ [−1; 1], Ci = diag {ci1, ci2, . . . cini
},

cij 6= 0 for all i = 1, 2, j = 1, 2, . . . , ni. The functions sij are twice continuously
differentiable functions, they are monotonically increasing and odd.

Together with the system (3.1) we decompose the uncertain system (3.2)

xi(τ + 1) = (Gi + ∆Gi)xi(τ) + (Ci + ∆Ci)si

(

(Ti1 + ∆Ti1)x1(τ)

+ (Ti2 + ∆Ti2)x2(τ) + (Ii + ∆Ii)
)

.
(3.4)

Here ∆Gi, ∆Ci ∈ Rni×ni , ∆Tij ∈ Rni×nj , ∆Ii ∈ Rni are uncertain matrices and vector.

Let xe = (xT
1e, x

T
2e)

T denote the equilibrium state of (3.1), s′i(xi) = diag {s′i1(xi1),
s′i2(xi2),. . . , s′ini

(xini
)}, s′′i (xi) = diag {s′′i1(xi1), s

′′

i2(xi2), . . . , s
′′

ini
(xini

)}, Li1 = supxi∈Rni

‖s′i(xi)‖, Li2 = supxi∈Rni ‖s
′′

i (xi)‖.

All above assumptions concerning the matrices Gi, Ci, Tij , the vectors Ii and the
functions si are similar to the assumptions under which a scalar Lyapunov function is
applied to the neural systems of (3.1) type in paper [5]. Further we need assumptions
connected just with the decomposition of neural system.

Let us introduce the matrices

Ai = Gi + Cis
′

i(Ti1x1e + Ti2x2e + Ii)Tii,

Bi = Cis
′

i(Ti1x1e + Ti2x2e + Ii)Tij , i, j = 1, 2, i 6= j,
(3.5)

and the following assumptions.

Assumption 3.1 Assume that:

(1) for the matrices (3.5) the conditions (1) and (2) of Assumption 2.1 are satisfied;
(2) xe is an equilibrium state of both (3.3) and (3.4).

We set

βi = 1 +
(

‖Ci‖ + ‖Tii‖
)

Li1 +
(

1 + ‖x1e‖ + ‖x2e‖
)

‖Ci‖‖Tii‖Li2,

δi =
(

‖Ci‖ + ‖Tij‖
)

Li1 +
(

1 + ‖x1e‖ + ‖x2e‖
)

‖Ci‖‖Tij‖Li2,

Ki = min

{

1

2Li1

(

(β2 + 4(1 − γ)µiLi1)
1

2 − βi

)

,
1

2Li1

(

(δ2 + 4ǫLi1)
1

2 − δi

)

}

(3.6)

where i, j = 1, 2, i 6= j, the constants µi, ǫ are computed by (2.5) for the matrices (3.5).



40 T.A. LUKYANOVA AND A.A. MARTYNYUK

Theorem 3.1 Let for the system (3.2) the decomposition (3.4) take place and all
conditions of Assumption 3.1 be satisfied. If the inequalities

max { ‖∆Gi‖, ‖∆Ci‖, ‖∆Ti1‖, ‖∆Ti2‖, ‖∆Ii‖ } < Ki, i = 1, 2, (3.7)

are true, then the equilibrium xe of (3.2) is global exponentially stable.

Proof We denote

fi(x) = Gixi + Cisi

(

Ti1x1 + Ti2x2 + Ii

)

,

hi(x) = ∆Gixi + (Ci + ∆Ci)si

(

(Ti1 + ∆Ti1)x1 + (Ti2 + ∆Ti2)x2 + (Ii + ∆Ii)
)

− Cisi

(

Ti1x1 + Ti2x2 + Ii

)

.

As the functions fi and hi are twice continuously differentiable functions in the neigh-
borhood of the equilibrium xe, the equations (3.4) can be written in the equivalent form

xi(τ + 1) − xe = fi(x(τ)) + hi(x(τ)) − fi(xe) − hi(xe)

=
∂fi(xe)

∂xi

(xi(τ) − xie) +
∂fi(xe)

∂xj

(xj(τ) − xje)

+
∂hi(xe)

∂xi

(xi(τ) − xie) +
∂hi(xe)

∂xj

(xj(τ) − xje) + gi(x(τ) − xe),

(3.8)

where gi(x(τ) − xe) are the higher-order terms with respect to (x(τ) − xe),

∂fi

∂xi

=











∂fi1

∂xi1

∂fi1

∂xi2
. . . ∂fi1

∂xini

∂fi2

∂xi1

∂fi2

∂xi2
. . . ∂fi2

∂xini

. . . . . . . . . . . . . . . . . . . . . . .
∂fini

∂xi1

∂fini

∂xi2
. . .

∂fini

∂xini











,
∂fi

∂xj

=











∂fi1

∂xj1

∂fi1

∂xj2
. . . ∂fi1

∂xjnj

∂fi2

∂xi1

∂fi2

∂xj2
. . . ∂fi2

∂xjnj

. . . . . . . . . . . . . . . . . . . . . . . .
∂fini

∂xj1

∂fini

∂xj2
. . .

∂fini

∂xjnj











,

and ∂hi

∂xi
, ∂hi

∂xj
have an analogous form. We get

∂fi(xe)

∂xi

= Gi + Cis
′

i

(

Ti1x1e + Ti2x2e + Ii

)

Tii = Ai,

∂fi(xe)

∂xj

= Cis
′

i

(

Ti1x1e + Ti2x2e + Ii

)

Tij = Bi, i, j = 1, 2, i 6= j,

If we denote

∆Ai =
∂hi(xe)

∂xi

, ∆Bi =
∂hi(xe)

∂xj

, y(τ) = x(τ) − xe,

then the equations (3.8) are written in the form

yi(τ + 1) = (Ai + ∆Ai) yi(τ) + (Bi + ∆Bi) yj(τ) + gi(y(τ)) (3.9)

and the state y = 0 will be the equilibrium of the system (3.9). Letting

zi = (Ti1 + ∆Ti1)x1e + (Ti2 + ∆Ti2)x2e + (Ii + ∆Ii),

ti = Ti1x1e + Ti2x2e + Ii, i = 1, 2.
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we find

∆Ai = ∆Gi + (Ci + ∆Ci)s
′

i(zi)(Tii + ∆Tii) − Cis
′

i(ti)Tii

= ∆Gi + Cis
′

i(zi)∆Tii + ∆Cis
′

i(zi)(Tii + ∆Tii) + Ci(s
′

i(zi) − s′i(ti))Tii

= ∆Gi + Cis
′

i(zi)∆Tii + ∆Cis
′

i(zi)(Tii + ∆Tii) + CiQi(zi, ti)Λi(zi − ti)Tii.

Similarly to [5] here we have used the formula

f(a) − f(b) = (a − b)

1
∫

0

f ′(a + ξ(b − a))dξ

for the functions f = sij ,

Qi(zi, ti) = diag

{ 1
∫

0

s′′i1(zi + ξ(ti − zi)) dξ,

1
∫

0

s′′i2(zi + ξ(ti − zi)) dξ, . . . ,

1
∫

0

s′′ini
(zi + ξ(ti − zi)) dξ

}

,

Λi(zi − ti) = diag
{

zi1 − ti1, zi2 − ti2, . . . , zini
− tini

}

, i = 1, 2.

It is easy to see that

‖Qi(zi, ti)‖ = sup
j=1,2,...,ni

∣

∣

∣

∣

∣

1
∫

0

s′′ij(zi + ξ(ti − zi)) dξ

∣

∣

∣

∣

∣

≤ Li2,

‖Λi(zi − ti)‖ ≤ ‖zi − ti‖ ≤ (1 + ‖x1e‖ + ‖x2e‖)Ki.

(3.10)

Using (3.6), (3.7) and (3.10), we get

‖∆Ai‖ < Ki + ‖Ci‖Li1Ki + Li1(‖Tii‖ + Ki)Ki + ‖Ci‖Li2‖zi − ti‖ ‖Tii‖

≤ Li1K
2
i + (1 + (‖Ci‖ + ‖Tii‖)Li1 + ‖Ci‖‖Tii‖Li2(1 + ‖x1e‖ + ‖x2e‖))Ki

= Li1K
2
i + βiKi ≤ (1 − γ)µi. (3.11)

Similarly for i 6= j

∆Bi = (Ci + ∆Ci)s
′

i(zi)(Tij + ∆Tij) − Cis
′

i(ti)Tij

= Cis
′

i(zi)∆Tij + ∆Cis
′

i(zi)(Tij + ∆Tij) + Ci(s
′

i(zi)s
′

i(ti))Tij

= Cis
′

i(zi)∆Tij + ∆Cis
′

i(zi)(Tij + ∆Tij) + CiQi(zi, ti)Λi(zi − ti)Tij

and

‖∆Bi‖ < Li1K
2
i + ((‖Ci‖ + ‖Tij‖)Li1 + ‖Ci‖TijLi2(1 + ‖x1e‖ + ‖x2e‖))Ki

= Li1K
2
i + δiKi ≤ ǫ. (3.12)
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It follows from (3.11), (3.12) and Assumption 3.1 that, for the system (3.9) all conditions
of Theorem 2.1 are satisfied. Hence the equilibrium y = 0 of the system (3.9) is global
exponentially stable, and it is equivalent to global exponential stability of equilibrium xe

of the system (3.2). Theorem 3.1 is proved.

3.2 Hierarchical approach

In the framework of hierarchical approach we decompose each subsystem (3.3) into two
interconnected components

xij(τ + 1) = Gijxij(τ) + Cijsij

(

T i1
j1x11(τ) + T i1

j2x12(τ)

+ T i2
j1x21(τ) + T i2

j2x22(τ) + Iij

)

, i, j = 1, 2.
(3.13)

Here xi = (xT
i1, x

T
i2)

T, xij ∈ Rnij , Rni = Rni1 ×Rni2 , xij = (xij1, xij2, . . . , xijnij
)T, xijl

represents the state of the ijlth neuron, xijl ∈ R,

Tij =

(

T ij
11 T ij

12

T ij
21 T ij

22

)

, Gi =

(

Gi1 0

0 Gi2

)

, Ci =

(

Ci1 0

0 Ci2

)

, Ii =
(

IT
i1, I

T
i2

)T
,

T ip
jk ∈ Rnij×npk , Iij ∈ Rnij , Gij = diag {gij1, gij2, . . . gijnij

}, gijl ∈ [−1, 1], Cij =

diag {cij1, cij2, . . . cijnij
}, cijl 6= 0, si(x) = (si1(xi1)

T, si2(xi2)
T)T, sij : Rnij → Rnij ,

sij(xij) = (sij1(xij1), sij2(xij2), . . . , sijnij
(xijnij

))T, the functions sijl : R → (−1, 1), sijl

are twice continuously differentiable, increasing and odd, i, j, k, p = 1, 2, l = 1, 2, . . . , n ij .
Together with the system (3.3) we decompose the system (3.4) into interconnected

components

xij(τ + 1) = (Gij + ∆Gij)xij(τ) + (Cij + ∆Cij)sij

(

(T i1
j1 + ∆T i1

j1)x11(τ)

+ (T i1
j2 + ∆T i1

j2)x12(τ) + (T i2
j1 + ∆T i2

j1)x21(τ)

+ (T i2
j2 + ∆T i2

j2)x22(τ) + (Iij + ∆Iij)
)

, i, j = 1, 2. (3.14)

Here ∆Gij , ∆Cij , ∆T ik
jp , ∆Iij are unknown matrices and a vector of corresponding

dimensions. The only knowledge about it is that it lies in some known compact sets.
Let us denote by xe = (xe

11
T, xe

12
T, xe

21
T, xe

22
T)T the equilibrium of system (3.13), and

s′ij(xij) = diag {s′ij1(xij1), s
′

ij2(xij2), . . . , s
′

ijnij
(xijnij

)},

s′′ij(xij) = diag {s′′ij1(xij1), s
′′

ij2(xij2), . . . , s
′′

ijnij
(xijnij

)},

L1
ij = sup

xij∈R
nij

‖s′′ij(xij)‖, L2
ij = sup

xij∈R
nij

‖s′′ij(xij)‖,

tij = T i1
j1x11 + T i1

j2x12 + T i2
j1x21 + T i2

j2x22 + Iij ,

zij = (T i1
j1 + ∆T i1

j1)x11 + (T i1
j2 + ∆T i1

j2)x12

+ (T i2
j1 + ∆T i2

j1)x21 + (T i2
j2 + ∆T i2

j2)x22 + (Iij + ∆Iij)

teij = T i1
j1xe

11 + T i1
j2xe

12 + T i2
j1xe

21 + T i2
j2xe

22 + Iij ,

ze
ij = (T i1

j1 + ∆T i1
j1)xe

11 + (T i1
j2 + ∆T i1

j2)xe
12

+ (T i2
j1 + ∆T i2

j1)xe
21 + (T i2

j2 + ∆T i2
j2)xe

22 + (Iij + ∆Iij).
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and the matrices
Aij = Gij + Cijs

′

ij(t
e
ij)T

ii
jj ,

Bij = Cijs
′

ij(t
e
ij)T

ii
jk, j 6= k,

M
(i)

jl = Cijs
′

ij(t
e
ij)T

ip
jl , i 6= p.

(3.15)

We need the following assumptions.

Assumption 3.2 We assume that:

(1) all conditions of Assumption 2.2 are satisfied for the matrices (3.15);
(2) the state xe is an equilibrium of both (3.13) and (3.14);

(3) m = max ‖M
(i)

jl ‖ < m, where the constant m is computed by formula (2.13).

Let us denote

βij = 1 +
(

‖Cij‖ + ‖T ii
jj‖
)

L1
ij + ‖Cij‖‖T

ii
jj‖L

2
ijRe,

δpk
ij =

(

‖Cij‖ + ‖T ip
jk‖
)

L1
ij + ‖Cij‖‖T

ip
jk‖L

2
ijRe, i 6= p  Γff j 6= k,

Re = 1 + ‖xe
11‖ + ‖xe

12‖ + ‖xe
21‖ + ‖xe

22‖,

α1
ij =

(

(β2
ij + 4(1 − γi)µijL

1
ij)

1

2 − βij

)

/2L1
ij,

α2
ij =

(

((δik
ij )2 + 4ǫiL

1
ij)

1

2 − δik
ij

)

/2L1
ij, j 6= k,

α3
ijl =

(

((δpl
ij )2 + 4m̃L1

ij)
1

2 − δpl
ij

)

/2L1
ij, i 6= p,

Kij = min
{

α1
ij , α

2
ij , α

3
ij1, α

3
ij2

}

i, j, k, p, l = 1, 2.

Here 0 < m̃ < m − m and 0 < ǫi < ǫi the constants µij , ǫi are computed for the
matrices (3.15) by formula (2.12).

Theorem 3.2 For the system (3.2) let the decomposition (3.4), (3.14) take place and
all conditions of Assumption 3.2 be satisfied. If the inequalities

max
p,k=1,2

{

‖∆Gij‖, ‖∆Cij‖, ‖∆T ip
jk‖, ‖∆Iij‖

}

≤ Kij , i, j = 1, 2,

are true, then the equilibrium xe of (3.2) is global exponentially stable.

Proof We denote

fij(x) = Gijxij + Cijsij

(

tij
)

,

hij(x) = ∆Gijxij + (Cij + ∆Cij)sij

(

zij

)

−Cijsij

(

tij
)

.

For the functions fij we get

∂fij(xe)

∂xpk

=











Gij + Cijs
′

ij

(

teij)T
ii
jj = Aij , i = p, j = k,

Cijs
′

ij

(

teij)T
ii
jk = Bij , i = p, j 6= k,

Cijs
′

ij

(

teij)T
ip
jk = M

(i)

jk , i 6= p.
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Since the functions fij and hij are twice continuously differentiable in the neighborhood
of the equilibrium xe, the equations (3.14) can be written in the equivalent form

xij(τ + 1) − xe
ij = fij(x(τ)) + hij(x(τ)) − fij(xe) − hij(xe) =

∂fij(xe)

∂xij

(xij(τ) − xe
ij)

+
∂fij(xe)

∂xik

(xik(τ) − xe
ik) +

∂fij(xe)

∂xp1

(xp1(τ) − xe
p1) +

∂fij(xe)

∂xp2

(xp2(τ) − xe
p2)

+
∂hij(xe)

∂xij

(xij(τ) − xe
ij) +

∂hij(xe)

∂xik

(xik(τ) − xe
ik) +

∂hij(xe)

∂xp1

(xp1(τ) − xe
p1)

+
∂hij(xe)

∂xp2

(xp2(τ) − xe
p2) + gij(x(τ) − xe), i, j, k, p = 1, 2, i 6= p, j 6= k,

(3.16)
where gij(x(τ) − xe) are the higher-order terms with respect to x(τ) − xe. If we denote

∆Aij =
∂hij(xe)

∂xij

, ∆Bij =
∂hij(xe)

∂xik

, y(τ) = x(τ) − xe,

∆M
(i)

jl =
∂hij(xe)

∂xpl

, i, j, k, p, l = 1, 2, i 6= p, j 6= k,

the equations (3.16) are written in the form

yij(τ + 1) = (Aij + ∆Aij) yij(τ) + (Bij + ∆Bij) yik(τ)

+(M
(i)

j1 + ∆M
(i)

j1 ) yp1(τ) + (M
(i)

j2 + ∆M
(i)

j2 ) yp2(τ) + gij(y(τ)),
(3.17)

i 6= p, j 6= k, and the state y = 0 is an equilibrium of (3.17).
Then, as in proof of Theorem 3.1, we have

‖∆Aij‖ ≤ L1
ijK

2
ij +

(

1 + (‖Cij‖ + ‖T ii
jj‖)L

1
ij

+‖Cij‖‖T
ii
jj‖L

2
ijRe

)

Kij = L1
ijK

2
ij + βijKij ≤ (1 − γi)µij ,

(3.18)

‖∆Bij‖ < L1
ijK

2
ij +

(

(‖Cij‖ + ‖T ii
jk‖)L

1
ij + ‖Cij‖T

ii
jkL2

ijRe)
)

Kij

= L1
ijK

2
ij + δik

ij Kij ≤ ǫi, j 6= k,
(3.19)

‖∆M
(i)

jl ‖ < L1
ijK

2
ij +

(

(‖Cij‖ + ‖T ip
jl ‖)L

1
ij + ‖Cij‖‖T

ip
jl ‖L

2
ijRe)

)

Kij

= L1
ijK

2
ij + δpl

ijKij ≤ m̃ < m − m, i 6= p.
(3.20)

It follows from (3.18) – (3.20) and conditions of Assumption 3.2, that for the system (3.17)
all conditions of Theorem 2.2 are fulfilled. Hence, the equilibrium y = 0 of (3.17) is global
exponentially stable, and it is equivalent to global exponential stability of the equilibrium
xe of (3.14). Theorem 3.2 is proved.

4 Neural System with Perturbed Equilibrium

The approach considered below may be used for the investigation of uncertain neural
systems with perturbed equilibrium.
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Assumption 4.1 We assume that:

(1) for the matrices (3.5) the conditions (1) and (2) of Assumption 2.1 are satisfied;
(2) xe is an equilibrium of (3.1), xe is an equilibrium of (3.2), xe 6= xe.

We denote

Ki = min

{

1

2Li1

(

(β2
i + 2(1 − γ)µiLi1)

1

2 − βi

)

,
1

2Li1

(

(δ2
i + 2ǫLi1)

1

2 − δi

)

}

,

rij = Li2

(

‖Ci‖ + Ki

)(

‖Tij‖ + Ki

)(

‖Ti1‖ + ‖Ti2‖ + 2Ki

)

, i, j = 1, 2,

∆ < min

{

(1 − γ)µ1

2r11

,
(1 − γ)µ2

2r22

,
ǫ

2r12

,
ǫ

2r21

}

,

(4.1)

where the constants µ1, µ2 and ǫ are computed by (2.5) for the matrices (3.5).

Theorem 4.1 For the system (3.2) let the decomposition (3.4), (3.14) take place and
all conditions of Assumption 4.1 be satisfied. If the inequalities

max { ‖∆Gi‖, ‖∆Ci‖, ‖∆Ti1‖, ‖∆Ti2‖, ‖∆Ii‖ } < Ki, ‖xie − xie‖ < ∆, i = 1, 2,

are true, then the equilibrium xe of (3.2) is global exponentially stable.

Proof In the neighborhood xe the equations (3.4) can be written in the equivalent
form

xi(τ + 1) − xe = fi(x(τ)) + hi(x(τ)) − fi(xe) − hi(xe)

+

(

∂fi(xe)

∂xj

+
∂hi(xe)

∂xj

)

(xj(τ) − xje) + gi(x(τ) − xe)

=

(

∂fi(xe)

∂xi

+
∂fi(xe)

∂xi

+
∂hi(xe)

∂xi

−
∂fi(xe)

∂xi

)

(xi(τ) − xie)

+

(

∂fi(xe)

∂xj

+
∂fi(xe)

∂xj

+
∂hi(xe)

∂xj

−
∂fi(xe)

∂xj

)

(xj(τ) − xje)

+ gi(x(τ) − xe), i, j = 1, 2, i 6= j,

where gij(x(τ) − xe) are higher-order terms. If we denote

∆Ai =
∂fi(xe)

∂xi

+
∂hi(xe)

∂xi

−
∂fi(xe)

∂xi

, ∆Bi =
∂fi(xe)

∂xj

+
∂hi(xe)

∂xj

−
∂fi(xe)

∂xj

,

y(τ) = x(τ) − xe, i, j = 1, 2, i 6= j,

then the equations (3.4) are written in the form (3.9) and further the proof of Theorem 4.1
is analogous to the proof of Theorem 3.1.

Assumption 4.2 We assume that:

(1) for matrices (3.15) the conditions (1) and (2) of Assumption 2.2 are satisfied;
(2) xe is an equilibrium state of (3.1), xe is an equilibrium state of (3.2), xe 6= xe;

(3) m = max ‖M
(i)

jk ‖ < m, the constant m is computed by formula (2.13).
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Let us denote

α1
ij =

(

(β2
ij + 2(1 − γi)µijL

1
ij)

1

2 − βij

)

/2L1
ij,

α2
ij =

(

((δik
ij )2 + 2ǫiL

1
ij)

1

2 − δik
ij

)

/2L1
ij, j 6= k,

α3
ijl =

(

((δpl
ij )2 + 2m̃L1

ij)
1

2 − δpl
ij

)

/2L1
ij, i 6= p,

Kij = min
{

α1
ij , α

2
ij , α

3
ij1, α

3
ij2

}

, i, j, k, p, l = 1, 2. (4.2)

rip
jl = Li2

(

‖Cij‖ + Kij

)(

‖T ip
jl ‖ + Kij

)

(

2
∑

ν,ξ=1

‖T iν
jξ ‖ + 4Ki

)

,

Φ = min

{

(1 − γi)µij

2rii
jj

,
ǫi

2rii
jk

,
m̃

2rip
jl

}

, i 6= p, j 6= k,

where 0 < m̃ < m−m, 0 < ǫi < ǫi, the constants µij and ǫi are computed by (2.12) for
the matrices (3.15).

Theorem 4.2 For the system (3.2) let the decomposition (3.4), (3.14) take place and
all conditions of Assumption 4.2 be satisfied. If the inequalities

max
p,k=1,2

{

‖∆Gij‖, ‖∆Cij‖, ‖∆T ip
jk‖, ‖∆Iij‖

}

≤ Kij , ‖xe
ij − x e

ij‖ ≤ Φ, i, j = 1, 2,

are true, then the equilibrium xe of (3.2) is global exponentially stable.

Proof As in the proof of Theorem 4.5, the equations (3.14) are written in the equiva-
lent form

xij(τ + 1) − x e
ij = fij(x(τ)) + hij(x(τ)) − fij(xe) − hij(xe)

=

(

∂fij(xe)

∂xij

+
∂fij(xe)

∂xij

+
∂hij(xe)

∂xij

−
∂fij(xe)

∂xij

)

(xij(τ) − x e
ij)

=

(

∂fij(xe)

∂xik

+
∂fij(xe)

∂xik

+
∂hij(xe)

∂xik

−
∂fij(xe)

∂xik

)

(xik(τ) − x e
ik)

=

(

∂fij(xe)

∂xp1

+
∂fij(xe)

∂xp1

+
∂hij(xe)

∂xij

−
∂fij(xe)

∂xp1

)

(xp1(τ) − x e
p1)

=

(

∂fij(xe)

∂xp2

+
∂fij(xe)

∂xp2

+
∂hij(xe)

∂xp2

−
∂fij(xe)

∂xp2

)

(xp2(τ) − x e
p2)

+ gij(x(τ) − xe), i, j, k, p = 1, 2, i 6= p, j 6= k.

If we denote

∆Aij =
∂fij(xe)

∂xij

+
∂hij(xe)

∂xij

−
∂fij(xe)

∂xij

, ∆Bij =
∂fij(xe)

∂xik

+
∂hij(xe)

∂xik

−
∂fij(xe)

∂xik

,

∆M
(i)

jl =
∂fij(xe)

∂xpl

+
∂hij(xe)

∂xpl

−
∂fij(xe)

∂xpl

, y(τ) = x(τ) − xe,

i, j, k, p, l = 1, 2, i 6= p, j 6= k.
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then the equations (3.14) take the form (3.17) and further the proof is carried out anal-
ogously to the proof of Theorem 3.2.

5 Numerical Results

Example 5.1 Let us consider the system














x1(τ + 1) =
4

π
arctan (x1(τ) + 0.005 x2(τ) − 0.005) ,

x2(τ + 1) = −0.75 x2(τ) +
7

π
arctan

(

1

350
x1(τ) + x2(τ) −

1

350

)

,

with the equilibrium xe = (1; 1)T and the perturbed system














x1(τ + 1) =
4.04

π
arctan (1.02 x1(τ) − 0.0052 x2(τ) − 0.025) ,

x2(τ + 1) = −0.75 x2(τ) +
7

π
arctan

(

1

350
x1(τ) + 1.02 x2(τ) −

801

35000

) (5.1)

with the equilibrium xe = (1.01; 1)T.
In the framework of scalar approach (see [5]), we have

K1 = 0.0167, ǫ1 = 0.0942, ∆G = diag
{

0; 0
}

, ∆C = diag
{

0.02; 0
}

,

∆I =

(

− 0.02;−
701

35000

)T

, ∆T =

(

0.02 −0.0102
0 0.02

)

.

As |∆T |∞ = 0.0302 > K1, we can not make the conclusion about exponential stability
of equilibrium state xe = (1.01; 1)T of the system (5.1).

In the framework of vector approach the constants computed by (4.1) are

K1 = 0.0215, K2 = 0.0205, Φ = 0.1054.

Then

max { ‖∆G1‖, ‖∆C1‖, ‖∆T11‖, ‖∆T12‖, ‖∆I1‖ } = 0.02 < K1,

max { ‖∆G2‖, ‖∆C2‖, ‖∆T21‖, ‖∆T22‖, ‖∆I2‖ } = 0.02002 < K2,

‖x1e − x1e‖ = 0.01 < Φ, ‖x2e − x2e‖ = 0 < Φ,

and, by Theorem 4.1, we can conclude that the equilibrium xe = (1.01; 1)T of the
system (5.1) is global exponentially stable.

In the framework of vector approach the constants computed by (4.1) are

K1 = 0.0215, K2 = 0.0205, Φ = 0.1054.

Then

max{‖∆G1‖, ‖∆C1‖, ‖∆T11‖, ‖∆T12‖, ‖∆I1‖} = 0.02 < K1,

max{‖∆G2‖, ‖∆C2‖, ‖∆T21‖, ‖∆T22‖, ‖∆I2‖} = 0.02002 < K2,

‖x1e − x1e‖ = 0.01 < Φ, ‖x2e − x2e‖ = 0 < Φ,

and, by Theorem 4.1, we can conclude that the equilibrium xe = (1.01; 1)T of the system
(5.1) is global exponentially stable.
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Example 5.2 Let the system have the form











































x11(τ + 1) =
4

π
arctan (x11(τ) − 0.01 x21(τ) − 0.01) ,

x12(τ + 1) = −0.2 x12(τ) +
1.2

π
arctan(x12(τ) + 0.01x21(τ) + 0.01),

x21(τ + 1) = 0.6 −
1.6

π
arctan (0.01x11(τ) + x21(τ) − 1.99) ,

x22(τ + 1) = x22(τ) −
3

π
arctan(0.01x12(τ) + x22(τ)),

x = (x11, x12, x21, x22)
T∈ R4. xe = (1; 0;−1; 0)T,

s(x) =
2

π
(arctanx11, arctanx12, arctanx21, arctanx22)

T,

G = diag {0; −0.2; 0.6; 1}, C = diag {2; 0.6; −0.8; −1.5}, I = (−0.01; 0.01; 1.99; 0)
T
,

T =











1 0 −0.01 0

0 1 0.01 0

0.01 0 1 0

0 0.01 0 1











, A =























2

π
0 −

0.02

π
0

0
6 − π

5π

0.012

π
0

−
0.008

π
0

3π − 4

5π
0

0 −
0.03

π
0

π − 3

π























.

As a result of hierarchical decomposition we get

A11 =
2

π
, A12 =

6 − π

5π
, A21 =

3π − 4

5π
, A22 =

π − 3

π
,

B11 = B12 = B21 = B22 = 0,

M
(1)

11 = −
0.02

π
, M

(1)

21 =
0.012

π
, M

(2)

11 = −
0.008

π
, M

(2)

22 = −
0.03

π
,

M
(1)

12
= M

(1)

22
= M

(2)

12
= M

(2)

21
= 0,

Re = 3, Li
jk =

2

π
, m = 0.0095.

We get γ1 = γ2 = 0.5, ǫ1 = ǫ2 = 0.1 and do relevant computations

P11 = 1.6814, P12 = 1.0342, P21 = 1.1354, P22 = 1.0020,

µ11 = 0.3633, µ12 = 0.8180, µ21 = 0.6546, µ22 = 0.9549,

a1 = 1.3187, c1 = 0.0980, a2 = 1.0666, c2 = 0.1667,

ǫ1 = 0.2726, ǫ2 = 0.3953, m = 0.0504.

If ǫ1 = ǫ2 = 0.1, m̃ = m − m = 0.0409 then we get the robust bounds

K11 = 0.0269, K12 = 0.0407, K21 = 0.0304, K22 = 0.0393.
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1 A Result of Global Existence

Let us consider the first order functional differential equation

ẋ(t) + (Lx)(t) = (Mx)(t), (1)

on the positive half-axis R+ = [0,∞). In equation (1), L and M stand for causal operators
acting on convenient function spaces (to be specified below), with L assumed to be linear
and continuous, while M is in general nonlinear. As we know (see [3], Chapter 3), a local
solution does exist for (1), under suitable conditions, satisfying the initial condition

x(0) = x0, (2)

and being defined on some interval [0, T ), T ≤ ∞. For instance, if we also assume the
linearity and continuity of M on the underlying space, then necessarily T = ∞ (see [3]).

c© 2004 Informath Publishing Group. All rights reserved. 51
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We shall now obtain an upper estimate for the solution of (1), (2). This estimate will
allow us to conclude that all solutions of (1), (2) are defined on the whole half-axis R+.

In view of obtaining the estimate, we shall formulate and utilize certain assumptions
on the data. Also, we need to choose the space on which the causal operators L and M
are acting.

The assumptions are:

(H1) The operators L and M in (1) are causal operators on the space C(R+, Rn), with
L linear and continuous, while M is continuous and nonlinear.

(H2) The operator L satisfies the condition

t
∫

0

〈(Lx)(s), x(s)〉 ds ≥ λ(t)

t
∫

0

|x(s)|2 ds, (3)

for each t ∈ R+, with λ(t) a non-increasing function on R+.
(H3) There exists a function m ∈ L2(R+, R), such that

|(Mx)(t)| ≤ m(t), a.e. on R+, (4)

for every x ∈ C(R+, Rn).

Remark 1 Condition (H3) is certainly very restrictive, and we shall use it in obtaining
an estimate for the solution of (1), (2). It is particularly useful with regard to the
boundedness of solutions. As we know, there are nonlinear maps/operators, such as

(M1x)(t) = exp {−|x(t)|}, x ∈ C(R+, R),

or

(M2x)(t) = tan−1 x(t), x ∈ C(R+, R),

which can be easily used to get operators satisfying (4). For instance, in the case n = 1,
one can take (Mx)(t) = m(t)(M1x)(t), with m ∈ L2(R+, R), i.e.,

∞
∫

0

m2(t) dt < ∞. (5)

Let us now consider equation (1), under hypotheses (H1) – (H3) and let x(t) be a local
solution of (1), (2). The existence of such a solution is guaranteed by our hypotheses
(see [3], Chapter 3). On the existence interval, we multiply scalarly (in Rn) both sides
of (1) by x(t):

〈x(t), ẋ(t)〉 + 〈(Lx)(t), x(t)〉 = 〈(Mx)(t), x(t)〉 . (6)

Integrating (6) from 0 to t, we obtain

t
∫

0

〈x(s), ẋ(s)〉 ds +

t
∫

0

〈(Lx)(s), x(s)〉 ds =

t
∫

0

〈(Mx)(s), x(s)〉 ds. (7)
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Taking into account (3) and (4), and noticing that for each ǫ > 0,

∣

∣

∣

∣

∣

t
∫

0

〈(Mx)(s), x(s)〉 ds

∣

∣

∣

∣

∣

≤
1

2ǫ

t
∫

0

m2(s) ds +
ǫ

2

t
∫

0

|x(s)|2 ds. (8)

We derive from (7) the inequality:

1

2
(|x(t)|2 − |x0|

2) + λ(t)

t
∫

0

|x(s)|2 ds ≤
1

2ǫ

t
∫

0

m2(s) ds +
ǫ

2

t
∫

0

|x(s)|2 ds. (9)

From (9) we easily derive the Gronwall’s type inequality

|x(t)|2 + [2λ(t) − ǫ]

t
∫

0

|x(s)|2 ds ≤ |x0|
2 +

1

ǫ

t
∫

0

m2(s) ds. (10)

The inequality (10) provides, in the usual way, an estimate for x(t) on the interval
of existence. In particular, under our assumptions, we have the fact that each solution
of (1), (2) remains bounded on the interval of (local) existence, which implies that all
solutions of (1), (2) are defined on the whole positive half-axis R+.

The conclusion of the above carried discussion can be formulated as follows:

Theorem 1 Consider the initial value problem (1), (2), under hypotheses (H1) –
(H3), and for arbitrary x0 ∈ Rn. Then, there exists a solution x(t) of this problem,
defined on the whole positive half-axis R+.

Remark 2 If one looks at the inequality (10), it is easily seen that the conclusion of
Theorem 1 remains valid if (H3) is substituted by the weaker condition

m ∈ L2
loc(R+, R). (11)

Indeed, in this case
t
∫

0

m2(s) ds is bounded for any t ∈ R+, which means the right hand

side in (10) remains bounded on any finite interval of R+.

2 Dissipativity Conditions for System (1)

We shall now try to exploit further the inequality (10), under our hypotheses. Let us
assume that a strengthened version of the inequality (3), in the hypothesis (H2), is valid.
Namely,

(H4) There exists λ0 > 0, such that

t
∫

0

〈(Lx)(s), x(s)〉 ds ≥ λ0

t
∫

0

|x(s)|2ds, (12)

for any t ∈ R+, and x ∈ C(R+, Rn).
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Returning now to the inequality (10), we notice it becomes

|x(t)|2 + (2λ0 − ǫ)

t
∫

0

|x(s)|2 ds ≤ |x0|
2 +

1

ǫ

∞
∫

0

m2(s) ds, (13)

taking into account (H3). This is true as far as x(t) is defined.
Let us now consider the problem (1), (2), under hypotheses (H1), (H3), and (H4).

Since ǫ > 0 is arbitrary in (13), we will choose it small enough, such that

2λ0 − ǫ > 0. (14)

The right hand side in (13) is a constant, which means that the left hand side of (13)
must be bounded on R+. This means

|x(t)| ≤ C1, t ∈ R+, (15)

and
t
∫

0

|x(s)|2 ds ≤ C2, t ∈ R+,

which actually means x ∈ L∞(R+, Rn)
⋂

L2(R+, Rn), or

∞
∫

0

|x(s)|2ds ≤ C2. (16)

From (15) and (16) we shall derive

lim |x(t)| = 0, as t → ∞, (17)

which proves the dissipativity of the system (1), under our hypotheses.
We need, yet, one more condition in order to derive (17). We shall formulate this

condition as hypothesis:

(H5) The space L∞(R+, Rn) is invariant for the operator L in (1).

Under hypotheses (H1), (H3), (H4), and (H5), the equation (1) shows that ẋ(t) can
be represented as a sum of two terms, one in L∞(R+, Rn) and the second in L2(R+, Rn).
Say, ẋ(t) = u(t) + v(t), with u ∈ L∞ and v ∈ L2. Since for any t, s ∈ R+ we have

|x(t) − x(s)| =

∣

∣

∣

∣

∣

t
∫

s

ẋ(τ) dτ

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

t
∫

s

u(τ) dτ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

t
∫

s

v(τ) dτ

∣

∣

∣

∣

∣

, (18)

we can write
∣

∣

∣

∣

∣

t
∫

s

u(τ) dτ

∣

∣

∣

∣

∣

≤ k |t − s|, (19)
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for k = ess − sup |u(t)|, t ∈ R+, and

∣

∣

∣

∣

∣

t
∫

s

v(τ)dτ

∣

∣

∣

∣

∣

≤ |t − s|
1

2

( ∞
∫

0

|v(τ)|2dτ

)
1

2

. (20)

The inequalities (18) – (20) lead to

|x(t) − x(s)| ≤ k |t − s| +

( ∞
∫

0

|v(τ)|2dτ

)
1

2

|t − s|
1

2 , (21)

which proves the uniform continuity of x(t) on R+. Moreover, since x(t) ∈ L∞(R+, Rn),
we see that |x(t)|2 is also uniformly continuous on R+.

Now using a fact which is known as Barbalat’s lemma (see, for instance, [4]), the
property (17) is proven.

Summing up the above discussion, we can formulate

Theorem 2 If hypotheses (H1), (H3), (H4), and (H5) are satisfied, then any solution
of the problem (1), (2) tends to zero at infinity.

Remark 3 We cannot term the result in Theorem 2 as a stability result of the zero
solution, because (1) may not admit the zero solution. It is rather a result of dissipativity
of the system (1).

With further assumptions, we can estimate |x(t) − y(t)| in terms of |x0 − y0|, and
other data of the system (1). We shall not pursue this problem here.

3 A Second Order Functional Equation

Results similar to those given in Theorems 1 and 2, but for second order functional
differential equations, can be found in the references [1] and [6]. We shall now consider
a second order equation, namely

ẍ(t) + (Lẋ)(t) = (V x)(t), (22)

where L stands for a linear causal operator, continuous on the space C(R+, Rn), and V
is also causal on C(R+, Rn), generally nonlinear.

The initial conditions for (22) will be the classical Cauchy conditions, namely

x(0) = x0, ẋ(0) = v0, (23)

with x0, v0 ∈ Rn.
Unlike the procedure in [4], at this time, we shall transform the problem (22), (23)

into an integral functional equation.
First, we notice that (22), under the second initial condition (23), is equivalent to the

first order equation

ẋ(t) = X(t, 0) v0 +

t
∫

0

X(t, s) (V x)(s) ds, (24)
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where X(t, s) is the Cauchy matrix associated with the linear operator L. This is obtained
by using the variation of parameters formula for equations of the form ẏ(t) = (Ly)(t) +
f(t), see [2], or [3].

Integrating both sides of (24) from 0 to t, t ∈ R+, and considering the first condition
(23), we obtain the functional integral equation

x(t) = x0 +

t
∫

0

X(s, 0) v0 ds +

t
∫

0

s
∫

0

X(s, u) (V x)(u) du ds. (25)

The equation (25) can be processed in a similar manner to that used in [5]. In order to
obtain local or global existence, it suffices to impose a growth condition on the operator
V . In [5], the following condition has been used:

t
∫

0

( s
∫

0

|(V x)(u)| du

)2

ds ≤ λ(t)

t
∫

0

|x(s)|2 ds + µ(t), (26)

with λ and µ non-decreasing on R+. Condition (26) is also sufficient for assuring the local
existence of solutions to (22), under conditions (23). We shall not pursue this direction
here. Instead, we will consider the problem of obtaining an upper estimate for the norms
of the solution to (22), (23).

In order to obtain this upper estimate, we need the following assumptions on the
data:

(i) There exists M > 0, such that

t
∫

0

|X(s, 0)|ds ≤ M,

t
∫

0

|X(t, s)|ds ≤ M, (27)

for 0 ≤ s ≤ t < ∞.
(ii)

|(V x)(t)| ≤ λ(t) sup
0≤s≤t

|x(s)|, t ∈ R+, (28)

where λ(t) is a non-negative non-decreasing function on R+.

Now from (25) we derive

|x(t)| ≤ |x0| +

t
∫

0

|X(s, 0)| |v0|ds +

t
∫

0

s
∫

0

|X(s, u)| |(V x)(u)| du ds, (29)

on the interval of existence for x(t).
The inequality (29) leads to

|x(t)| ≤ (|x0| + M |v0|) + M

t
∫

0

sup
0≤u≤s

|(V x)(u)| ds, (30)
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and taking into account (28), we obtain

|x(t)| ≤ (|x0| + M |v0|) + M

t
∫

0

λ(s) sup
0≤u≤s

|x(u)| ds. (31)

Let us denote,
X(t) = sup |x(s)|, 0 ≤ s ≤ t. (32)

Since the right hand side of (31) is non-decreasing in t, (31) and (32) imply

X(t) ≤ (|x0| + M |v0|) + M

t
∫

0

λ(s)X(s) ds, (33)

for all t > 0 for which x(t) is defined.
The inequality (33) is a Gronwall type integral inequality, and implies

X(t) ≤ (|x0| + M |v0|) exp

(

M

t
∫

0

λ(s) ds

)

, (34)

which means, on behalf of (32),

|x(t)| ≤ (|x0| + M |v0|) exp

(

M

t
∫

0

λ(s)ds

)

.

The estimate (35) is actually valid on R+, because it also implies the possibility of
continuing a local solution to (25) on the semi-axis R+.

Let us point out the fact that the inequality (29) for |x(t)| could be also exploited in
obtaining other estimates for |x(t)|.
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metric uncertainty entering all matrices of the system and output equations.
First, the problem of robust stabilization of the underlying system is investi-
gated. Next, we address the problem of robust H∞ state feedback control in
which both robust stability and a prescribed H∞ performance are required to
be achieved irrespective of the uncertainty and time-delay. It is shown that
the above control problem can be solved in terms of solutions of some linear
matrix inequalities.
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1 Introduction

Time delay is commonly encountered in various engineering systems, which often occurs
in the transmission of information or material between different parts of a system and is
frequently a source of instability and poor performance (Malek-Zavarei and Jamshidi [15].
Transportation systems, communications systems, chemical process, power systems are
typical examples of time-delay systems. During the past years, the study of time-delay
systems has received considerable interest, see, e.g., Suh and Bien [30]. In the work
of Gutman and Palmor [8], nonlinear state feedback controllers have been considered
whereas Basher, et al. [9] has focused on memoryless linear state feedback. Recently,

c© 2004 Informath Publishing Group. All rights reserved. 59
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memoryless stabilization and H∞ control of uncertain continuous-time delay systems
have been extensively investigated. For some representative prior work on this gen-
eral topic, we refer the reader to Shen, et al. [21], Lee, et al. [12], Mahmoud and
Al-Muthairi [14], Nguang [18], Benjelloun, et al. [1], Kim, et al. [10], Moheimani and
Petersen [16], Li and de Souza [13] and the very recent book by Boukas and Liu [2].
The problem of robust stabilization for a class of time varying delay systems with both
Lipschitz and non-Lipschitz bounded uncertainties has been studied by Nguang [18] via
Riccati equation approach, and a memoryless state feedback controller is designed. In
the research conducted by Mahmoud and Al-Muthairi [14], quadratic stabilization of
continuous time systems with state-delay and norm-bounded time-varying uncertainties
has been considered. More recently, optimal quadratic guaranteed cost control for a class
of uncertain linear time-delay systems with norm-bounded uncertainty has been designed
by Moheimani and Petersen [16]. The issue of delay-dependent robust stability and sta-
bilization of uncertain linear delay systems has been tackled by Li and de Souza [13] via
a linear matrix inequality approach. However, to the best of authors’ knowledge, the
problems of robust stability and H∞ control of singular continuous-time delay uncertain
systems has not been fully investigated yet. In this paper, the problems of robust sta-
bility and control of a class of singular uncertain systems with unknown time delays in
both system state and output equations are addressed. We consider uncertain systems
with norm-bounded time-varying parameter uncertainty in all system matrices. We deal
with the problems of robust stabilization and robust H∞ control, where in the latter the
controller is required to guarantee both the robust stability and a prescribed robust H∞

performance, irrespective of the uncertainty and unknown time delay.

Notation. The notation in this paper is quite standard. Rn and Rn×m denote, respec-
tively, the n-dimensional Euclidean space and the set of all n × m real matrices. The
superscript “T ” denotes the transpose and the notation X ≥ Y (respectively, X > Y )
where X and Y are symmetric matrices, means that X −Y is positive semi-definite (re-
spectively, positive definite). I is the identity matrix of appropriate dimension. L2[0,∞)
is the space of square integrable functions over [0,∞). ‖ · ‖ will refer to the Euclidean
vector norm.

2 Problem Formulation and Preliminaries

The system considered in this paper is assumed to be a state-space model as follows:

Eẋ(t) = [A + ∆A(t)]x(t) + [Ad + ∆Ad(t)]x(t − d1(t))

+ [B + ∆B(t)]u(t) + [Bw + ∆Bw(t)]w(t),

z(t) = [C + ∆C(t)]x(t) + [Cd + ∆Cd(t)]x(t − d1(t))

+ [D + ∆D(t)]u(t) + [Dw + ∆Dw(t)]w(t),

x(t) = φ1(t), ∀t ∈ [−d1(t), 0],

(2.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control, w(t) ∈ Rp is the disturbance
from L2[0,∞), i.e., square-integrable, z(t) ∈ Rq is the controlled output, A, Ad, B,
Bw, C, Cd, D and Dw are real-valued constant matrices of appropriate dimensions that
describe the nominal system, ∆A(t), ∆Ad(t), ∆B(t), ∆Bw(t), ∆C(t), ∆Cd(t), ∆D(t),
and ∆Dw(t) are real time-varying matrix functions representing parameter uncertainties,
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and the matrix E is a singular matrix with rank (E) = r ≤ n. d1(t) ≥ 0 is an unknown
time-varying time delay in state, φ1(t), t ∈ [−d1(t), 0], is continuous vector valued initial
function. d1(t) satisfies the following condition:

0 ≤ d1(t) < ∞, ḋ1(t) ≤ β1 < 1. (2.2)

The admissible parameter uncertainties in this paper is assumed to be modeled as

[

∆A(t) ∆Ad(t) ∆B(t) ∆Bw(t)
∆C(t) ∆Cd(t) ∆D(t) ∆Dw(t)

]

=

[

H1

H2

]

F (t)[E1 E2 E3 E4], (2.3)

where H1, H2, E1, E2, E3, E4 and E5 are known real constant matrices, and F (t) is an
unknown time-varying matrix function satisfying

‖F (t)‖ ≤ 1, ∀ t ∈ [0,∞). (2.4)

Remark 2.1 It should be noted that (2.1) encompasses many state space models of
delay systems and can be used to represent many important physical systems; for exam-
ple, power systems [29], singular space perturbation theory [31], circuits theory [17], and
also cold rolling mills, wind tunnel and water resources systems (see, e.g., [15] and the
references therein).

Remark 2.2 The parameter uncertainty structure as in (2.3) and (2.4) is an extension
of the so-called “matching condition” which has been widely used in the problems of ro-
bust control and robust filtering of uncertain systems (see, e.g., [3, 19, 22 – 27, 33] and the
references therein), and many practical systems possess parameter uncertainties which
can be either exactly modeled, or overbounded by (2.4). The matrices H1, H2, E1, E2,
E3 and E4 specify how the uncertain parameters in F (t) affect the nominal matrices of
system (2.1). Observe that the unknown matrix F (t) in (2.3) can even be allowed to be
state-dependent, i.e., F (t) = F (t, x(t)), as long as (2.4) is satisfied. It also should be
noted that the unit overbound for F (t) does not cause any loss of generality. Indeed, F (t)
can be always normalized, in the sense of (2.4), by appropriately choosing the matrices
H1, H2, E1, E2, E3 and E4. Furthermore, we may consider the more general structure
of the uncertainties in system (2.1), that is,

Eẋ(t) = Ax(t) + Bu(t) + Adx(t − d1(t)) + Bww(t) + ∆1(t, x, u),

z(t) = Cx(t) + Du(t) + Cdx(t − d1(t)) + Dww(t) + ∆2(t, x, u),

where
‖∆i(t, x, u)‖ ≤ ai‖x‖ + bi‖u‖,

i = 1, 2, ∀ t ∈ [0,∞), x ∈ Rn, u ∈ Rm,
(2.5)

where ai ≥ 0 and bi ≥ 0, i = 1, 2, are known constant numbers. In the work of Shi and
Shue [28], it has been shown that the set of the uncertainties satisfying (2.3) and (2.4)
is equivalent to the set of the uncertainties satisfying (2.5) after appropriately choosing
the constants ai, bi and the matrices H1, H2, E1, E2, E3 and E4.

Definition 2.1 For any given two matrices E ∈ Rn×n and A ∈ Rn×n, the pencil
(E, A) is said regular if there exists a constant number α such that |αE + A| 6= 0 or the
polynomial |sE − A| 6= 0.
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In this paper, we assume that the nominal system (2.1) is regular, i.e., the pair (E, A+
Ade

−sd1) is regular, where d1 = max
t

d1(t). This condition will guarantee the existence

and uniqueness of the solution for the nominal system (2.1). In addition, we assume
that the nominal system (2.1) is impulse free, which ensures the delay system has no
infinite poles. Throughout this paper, it is also assumed that the state is measurable
for feedback. In this paper, we are concerned with the problem of robust state feedback
control for the singular uncertain time-delay system (2.1) for all admissible uncertainties.
Our attention is to design a state feedback controller G:

u(t) = Kx(t), (2.6)

such that for a given scalar γ > 0, for all non-zero w(t) ∈ L2[0,∞) and for all parameter
uncertainties satisfying (2.3) and (2.4)

sup
06=w∈L2[0,∞)

(

‖z‖2

‖w‖2

)

< γ. (2.7)

In this situation, the system of (2.1) with the controller (2.6) is said to have a robust
H∞ performance (2.7). More specifically, our objective is to design a state feedback
controller G such that: the system of (2.1) with G is robustly stable and has a robust
H∞ performance (2.7). Here, robustly stable means that the uncertain system (2.1) is
asymptotically stable about the origin for all admissible uncertainties. In the remainder
of this section, we will establish stability and H∞ control results associated with the
nominal system of (2.1), i.e., the case when F (t) = 0.











Eẋ(t) = Ax(t) + Adx(t − d1(t)) + Bu(t) + Bww(t),

z(t) = Cx(t) + Du(t) + Cdx(t − d1(t)) + Dww(t),

x(t) = φ(t), ∀ t ∈ [−d1(t), 0].

(2.8)

First we recall the following lemma.

Lemma 2.1 (Schur Complements) Given constant matrices M , L and Q of appro-
priate dimensions with M and Q are symmetric and Q > 0, then M + LT QL < 0 if
and only if

[

M LT

L −Q−1

]

< 0 or

[

−Q−1 L
LT M

]

< 0.

Lemma 2.2 Let T0, · · · , Tp ∈ Rn×n be symmetric matrices. If there exists 0 ≤ τi,
1 ≤ τ ≤ p such that

T0 −

p
∑

i=1

τiTi > 0,

then we have
ξ⊤T0ξ > 0 (2.9)

holds for all ξ 6= 0 satisfying T0 −
p
∑

i=1

τiTi > 0.
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Lemma 2.3 Let H be a symmetric matrix and D, E be matrices with appropriate
dimensions. Then, H +DF (t)E +ET FT (t)DT < 0 holds for any FT (t)F (t) ≤ I if and
only if there exists a constant scalar ε > 0 satisfying H + εDDT + 1

ε
ET E < 0.

Lemma 2.4 Let G, U , V be given matrices with G being symmetric. Then there
exists matrix X such that

G + UXV ⊤ + V X⊤U⊤ > 0 (2.10)

if and only if
U⊤

⊥
GU⊥ > 0, V ⊤

⊥
GV⊥ > 0 (2.11)

hold, where U⊥, V⊥ are orthogonal complements of U and V respectively. U⊤

⊥
GU⊥ > 0

holds if and only if there exists a scalar σ such that

G − σUU⊤ > 0.

Throughout this paper we will make the following assumption.

Assumption 2.1 There exist a positive scalar ρ such that

‖x(t)‖2 ≤ ρ‖x(t − d1(t))‖
2. (2.12)

Theorem 2.1 Consider the singular time-delay system (2.8) with all uncertainties
disturbance input w(t) = 0. Under Assumption 2.1, system (2.1) is asymptotically stable
for all d1(t) ≥ 0 satisfying (2.2), if there exist matrices P > 0 and R1 > 0 such that
the following inequality holds

[

ET PA + AT PE + R1 − ρτI ET PAd

AT
d PE −R̃1 + τI

]

< 0, (2.13)

where R̃1 = (1 − β1)R1 > 0.

Remark 2.3 Before proving Theorem 2.1, we have the following observations:

1) If system (2.8) is stable, then (2.12) is satisfied with ρ = 1. If system (2.8) is
instable, assumption (2.12) means that increase rate of the system trajectory can
not be greater than ρ.

2) With no loss of generality, we can assume E is of form E =

(

I 0
0 N

)

, where

I is the identity and N is a nilpotent. In this case, ET PA + A⊤PE + R1 is
always infeasible. The purpose of introducing Assumption 2.1 is to overcome this
infeasibility.

Proof of Theorem 2.1 Let xt ∈ C[−d1, 0] be defined by xt(s) = x(t+s), s ∈ [−d1, 0].
Let us consider a Lyapunov functional candidate as

V (xt)
∆
= xT (t)ET PEx(t) +

t
∫

t−d1(t)

xT (τ)R1x(τ) dτ. (2.14)
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The derivative of the Lyapunov functional (2.14) along the trajectory of (2.1) is

V̇ (xt) = ẋT (t)ET PEx(t) + xT (t)ET PEẋ(t)

+ xT (t)R1x(t) − (1 − ḋ1(t))x
T (t − d1(t))R1x(t − d1(t))

= [Ax(t) + Adx(t − d1(t))]
T PEx(t) + xT (t)ET P [Ax(t) + Adx(t − d1(t))]

+ xT (t)R1x(t) − (1 − ḋ1(t))x
T (t − d1(t))R1x(t − d1(t))

≤

[

x(t)
x(t − d1(t))

]T [

ET PA + AT PE + R1 ET PAd

AT
d PE −R̃1

] [

x(t)
x(t − d1(t))

]

.

Using Lemma 2.2, together with (2.13), implies that

[

x(t)
x(t − d1(t))

]T [

ET PA + AT PE + R1 ET PAd

AT
d PE −R̃1

] [

x(t)
x(t − d1(t))

]

< 0,

holds for any x(t) 6= 0 satisfying (2.12), which concludes the stability of system (2.8).

Remark 2.4 Theorem 2.1 provides a delay independent stability criteria since in-
equality (2.13) does not include the unknown delay d1(t). However, we have used the
information β1 on d1(t), which seems the best we can do. It should be noted that when
E = I, Theorem 2.1 will reduce to the result in [4]. Furthermore, when Ad = 0 and
E = I, the inequality (2.13) becomes the standard necessary and sufficient condition of
stability for the non-singular systems without time-delay.

Next, we conduct the H∞ analysis for the nominal system (2.1) (setting F (t) = 0).

Theorem 2.2 Consider the singular time-delay system (2.1) with all uncertainties
being zero. Under Assumption 2.1, for a given constant γ > 0, system (2.1) is asymp-
totically stable and has an H∞ performance γ for all d1(t) ≥ 0 satisfying (2.2), if there
exist matrices P > 0, R1 > 0 and a scalar τ > 0 such that the following inequality
holds







ET PA + AT PE + R1 − ρτI ET PAd ET PBw CT

AT
d PE −R̃1 + τI 0 CT

d

BT
wPE 0 −γ2I DT

w

C Cd Dw −I






< 0, (2.15)

where R̃1 = (1 − β1)R1 > 0.

Proof We first show that the stability of the closed-loop system (2.1) under the
condition of (2.15). Again, let us define a Lyapunov functional candidate as

V (xt)
∆
= xT (t)ET PEx(t) +

t
∫

t−d1(t)

xT (τ)R1x(τ) dτ. (2.16)

Note that the negativeness of (2.15) implies

[

ET PA + AT PE + R1 − ρτI ET PAd

AT
d PE −R̃1 + τI

]

< 0, (2.17)
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which combined with Theorem 2.1 implies that the system is internally asymptotically
stable, i.e., system (2.8) is asymptotically stable with w(t) ≡ 0. Next, we analyze the
H∞ performance of the closed-loop system (2.1). Without loss of generality, we assume
the system has a zero initial condition. Taking the derivative of the Lyapunov functional
(2.16) along the trajectory of (2.1), we have

V̇ (xt) = ẋT (t)ET PEx(t) + xT (t)ET PEẋ(t) + xT (t)R1x(t)

− (1 − ḋ1(t))x
T (t − d1(t))R1x(t − d1(t))

= [Ax(t) + Adx(t − d1(t)) + Bww(t)]T PEx(t)

+ xT (t)ET P [Ax(t) + Adx(t − d1(t)) + Bww(t)]

+ xT (t)R1x(t) − (1 − ḋ1(t))x
T (t − d1(t))R1x(t − d1(t))

≤ [Ax(t) + Adx(t − d1(t)) + Bww(t)]T PEx(t)

+ xT (t)ET P [Ax(t) + Adx(t − d1(t)) + Bww(t)]

+ xT (t)R1x(t) − xT (t − d1(t))R̃1x(t − d1(t))
∆
= V̇ (xt).

Let us define performance function

J =

∞
∫

0

[zT (t)z(t) − γ2wT (t)w(t)] dt. (2.18)

Then for any 0 6≡ w(t) ∈ L2[0,∞), one has

J ≤

∞
∫

0

[zT (t)z(t) − γ2wT (t)w(t) + V̇ (xt)] dt

≤

∞
∫

0

[zT (t)z(t) − γ2wT (t)w(t) + V̇ (x(t))] dt.

(2.19)

Substituting V̇ (x(t)) into (2.19), we obtain

J ≤

∞
∫

0

ξT (t)Zξ(t) dt,

where

ξ(t) = [xT (t) xT (t − d1(t)) wT (t)]T

Z =





H ET PAd + CT Cd ET PBw + CT Dw

AT
d PE + CT

d C CT
d Cd − (1 − β1)R1 CT

d Dw

BT
wPE + DT

wC DT
wCd −γ2I + DT

wDw



 ,

where
H = ET PA + AT PE + CT C + R1.
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Therefore, using Lemma 2.1, (2.15) implies J < 0, that is, ‖z(t)‖2 < γ‖w(t)‖2. There-
fore, system (2.8) is internally asymptotically stable and has an H∞ disturbance atten-
uation γ. The proof ends.

3 Robust Controller Design

Substituting (2.6) into (2.1) yields the dynamics of the closed-loop system as follows:
{

Eẋ(t) = Ac(t)x(t) + Ad(t)x(t − d1(t)) + [Bw + ∆Bw(t)]w(t),

z(t) = Cc(t)x(t) + [Cd + ∆Cd(t)]x(t − d1(t)) + [Dw + ∆Dw(t)]w(t),
(3.1)

where Ac(t) = Ac + H1F (t)Ec, Cc(t) = Cc + H2F (t)Ec with Ac = A + BK, Cc =
C + DK, Ec = E1 + E3K. By the same arguments as in the proof of Theorem 2.2, we
have the following result.

Proposition 3.1 Consider the singular time-delay system (3.1) with all uncertain-
ties being zero. Under Assumption 2.1, for a given constant γ > 0, system (3.1) is
asymptotically stable and has an H∞ performance γ for all d1(t) ≥ 0 satisfying (2.2), if
there exist matrices P > 0, R1 > 0 and a scalar τ > 0 such that the following inequality
holds









ET PAc(t) + AT
c (t)PE + R1 − ρτI ET PAd(t) ET PBw(t) CT

c (t)

AT
d (t)PE −R̃1 + τI 0 CT

d (t)
BT

w(t)PE 0 −γ2I DT
w(t)

Cc(t) Cd(t) Dw(t) −I









< 0. (3.2)

Noting that the left hand side of (3.2) can be rewritten as








ET PAc + AT
c PE + R1 − ρτI ET PAd ET PBw CT

c

AT
d PE −R̃1 + τI 0 CT

d

BT
wPE 0 −γ2I DT

w

Cc Cd Dw −I









+







ET PH1

0
0

H2






F (t)

(

Ec E2 E4 0
)

+













ET PH1

0
0

H2






F (t)

(

Ec E2 E4 0
)







T

.

Using Lemma 2.3, we conclude that (3.2) holds if and only if there exists a positive scalar
ε > 0 such that









ET PAc + AT
c PE + R1 − ρτI ET PAd ET PBw CT

c

AT
d PE −R̃1 + τI 0 CT

d

BT
wPE 0 −γ2I DT

w

Cc Cd Dw −I









+ ε







ET PH1

0
0

H2







(

HT
1 PE 0 0 HT

2

)

+
1

ε







ET
c

ET
2

ET
4

0







(

Ec E2 E4 0
)

< 0.

(3.3)
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We therefore get the following proposition.

Proposition 3.2 For a given matrix K, if µ0 is the solution of the following opti-
mization problem

min
K, P>0

µ, (3.4)

s.t. (3.3) with γ2 replaced by µ, (3.5)

then controller (2.6) robustly stabilizes system (2.1) and the closed-loop system has noise
attenuation level

√
µ0.

Since (3.2) in nonlinear with respect to design parameters K, P , it can not be used
to design a controller directly. To solve (3.3) using LMI toolbox, we will use an iterative
algorithm. For this purpose, let’s give the following equivalent forms of (3.3). Using
Schur complement, (3.3) hold if and only if

Φ1

∆
=











J1 ET PAd + εET
c E2 ET PBw + εET

c E4 CT
c ET PH1

AT
d PE + εET

2 Ec −R̃1 + τI + εET
2 E2 εET

2 E4 CT
d 0

BT
wPE + εET

4 Ec εET
4 E2 −µI + εET

4 E4 DT
w 0

Cc Cd Dw −I H2

HT
1 PE 0 0 HT

2 −εI











< 0,

(3.6)

where J1 = ET PAc + AT
c PE + R1 − ρτI + εET

c Ec, ε and τ are positive scalars or

Φ2 =











J2 ET PAd ET PBw CT
c + ηET PH1H

T
2 ET

c

AT
d PE −R̃1 + τI 0 CT

d ET
2

BT
wPE 0 −µI DT

w ET
4

Cc + ηH2H
T
1 PE Cd Dw −I + ηH2H

T
2 0

Ec E2 E4 0 −ηI











< 0,

(3.7)

where J2 = ET PAc + AT
c PE + R1 − ρτI + ηET PH1H

T
1 PE, and η is a positive scalar.

Since Φ2 can be rewritten as

Φ2 =













J̃2 ET PAd ET PBw CT
c + ηET PH1H

T
2 ET

AT
d PE −R̃1 + τI 0 CT

d ET
2

BT
wPE 0 −µI DT

w ET
4

C + ηH2H
T
1 PE Cd Dw −I + ηH2H

T
2 0

E1 E2 E4 0 −ηI













+











ET PB
0
0
B
E3











K
(

I 0 0 0 0
)

+











I
0
0
0
0











KT
(

BT PE 0 0 BT ET
3

)

,

where J̃2 = ET PA + AT PE + R1 − ρτI + ηET PH1H
T
1 PE, it follows from Lemma 2.4

that (3.2) is equivalent to










J3 ET PAd ET PBw CT
c + ηET PH1H

T
2 ET − ε1E

T PBET
3

AT
d PE −R̃1 + τI 0 CT

d ET
2

BT
wPE 0 −µI DT

w ET
4

C + ηH2H
T
1 PE Cd Dw −I + ηH2H

T
2 0

E1 − ε1E3B
T PE E2 E4 0 −ηI − ε1E3E

T
3











<0,

(3.8)
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where J3 = ET PA + AT PE + R1 − ρτI + ηET PH1H
T
1 PE − ε1E

T PBBT PE, and ε1 is
a positive scalar. Using Proposition 3.1 and noting that (3.2) is equivalent to (3.7), we
obtain the following theorem.

Theorem 3.1 If there exist matrix P > 0 positive scalars η, ε1, τ , µ satisfying (3.8),
then there exists gain matrix K such that controller (2.6) internally stabilizes system (2.1)
and guarantees that the closed-loop system verifies noise attenuation level

√
µ.

This theorem shows that (3.8) provides a LMI for the existence of linear memoryless
state feedback controller (2.6) that internally stabilizes system (2.1) and guarantees the
closed-loop system verifies noise attenuation level

√
µ. However, since the present of

E the conventional method to solve LMI can not be directly used here. The following
algorithm establishes an iterative algorithm to handle the controller design problem.

Algorithm 3.1 (Robust Controller Design Algorithm)

Step 1 Set an error bound ̺0 > 0 and give an initial P0 > 0.
Step 2 With P given, solve the following optimization problem K and denote the optimal

v by v1,

min
µ>0, η>0, τ>0, K

v,

s.t. Φ2 < vI;

Step 3 With K obtained in Step 2, solve the following optimization problem to get P
and denote the optimal performance by v2

min
ε>0, τ>0, P>0

v,

s.t. Φ1 < vI.

If ‖v1 − v2‖ < ̺0 and v1 < 0, v2 < 0, stop, else go to Step 2.

4 Illustrative Example

To illustrate the validness of the algorithm developed in previous section, this section
gives a numerical example. Let us consider a system described by (2.1) with the following
system parameters:

R1 = I, ρ = 2, E =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0






,

A =







2 −0.1 0.1 0
0 0.1 1 0.1

0.1 0 −1 0.1
0.2 0.1 −0.1 −1






, Ad =







0.1 0 0.1 0
0 0.1 −0.1 0

−0.1 0 0 0.1
0 0 −0.1 −0.1






,
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B =







−0.3 0
0 −0.3

−0.5 0
0 −0.5






, Bw =







−0.3 0
0 −0.3
1 0
0 1






,

Dw =







0.2 0
0 0.2
1 0
0 1






, H1 =

(

0 − 0.1 0 0.1
)T

, H2 = −0.1,

E1 =
(

0.1 0.1 0 0
)

, E2 =
(

0.1 0 0 0.1
)

,

E3 =
(

0.1 − 0.1
)

, E4 =
(

0.1 0
)

,

C =
(

1 0 1 0
)

, Cd =
(

0.4 0 − 0.1 0
)

,

D = ( 0 −0.1 ) , Dw = ( 0.4 −0.1 ) ,

β = 0.2, η = 1, τ = 0.1, µ = 2.

With this set of data and choosing initial P = 0.4 ∗ I, ε0 = 0.01, using Algorithm 3.1

yields K =

(

15.9056 3.1213 9.7273 4.2990
12.0251 2.5436 9.5698 −0.0953

)

, then the corresponding controller

(2.6) stabilizes system (2.1) with a guaranteed disturbance attanuation
√

µ.

5 Conclusion

This paper dealt with the class of singular continuous-time systems with delay. Under
the norm bounded uncertainties, the problems of asymptotic stability, stabilizability,
H∞ control and their robustness have been studied. Delay independent sufficient condi-
tions provided to solve all the problems. These conditions are in some sense restrictive.
Presently we are working on the more general delay-dependent conditions for the above
problems.
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Boston, 2001.

[3] Boukas, E.K. and Shi, P. H∞ control for discrete-time linear systems with Frobenius
norm-bounded uncertainties. Automatica 35(9) (1999) 1625–1631.

[4] Choi, H.H. and Chung, M.J. Memoryless H∞ controller design for linear systems with
delayed state and control. Automatica 31(6) (1995) 917–919.

[5] de Souza, C.E. and Li, X. Delay dependent robust H∞ control of uncertain linear state-
delayed systems. Automatica 35(8) (1999) 1313–1321.

[6] Doyle, J.C., Glover, K., Khargonekar, P. and Francis, B.A. State space solutions to the

standard H2 and H∞ control problems. IEEE Trans. Automat. Control 34(8) (1989)
831–847.



70 PENG SHI AND E.K. BOUKAS

[7] Gu, K. H∞ control of systems under norm bounded uncertainties in all system matrices.
IEEE Trans. Automat. Control 39(6) (1994) 1320–1322.

[8] Gutman, S. and Palmor, Z. Properties of min-max controllers in uncertain dynamical
systems. SIAM J. Contr. & Optimiz. 20 (1982) 850–861.

[9] Hasanul Basher, A.M., Mukundan, R. and O’Connor, D.A. Memoryless feedback control
in uncertain dynamic delay system. Int. J. Syst. Sci. 17 (1986) 409–415.

[10] Kim, J.H., Jeung, E.A. and Park, H.B. Robust control for parameter uncertain delay
systems in state and control input. Automatica 32(9) (1996) 1337–1339.

[11] Kreindler, E. and Jameson, A. Conditions for nonegative of partitioned matrices. IEEE
Trans. Automat. Control 17(2) (1972) 147–148.

[12] Lee, J.H., Kim, S.W. and Kwon, W.H. Memoryless H∞ controllers for state delayed
systems. IEEE Trans. Automat. Control 39(1) (1994) 159–162.

[13] Li, X. and de Souza, C.E. Delay-dependent robust stability and stabilization of uncertain
linear delay systems: a linear matrix inequality approach. IEEE Trans.Automat. Control
42(8) (1997) 1144–1148.

[14] Mahmoud, M.S. and Al-Muthairi, N.F. Quadratic stabilization of continuous time systems
with state-delay and norm-bounded time-varying uncertainties. IEEE Trans. Automat.
Control 39(10) (1994) 2135–2139.

[15] Malek-Zavarei, M. and Jamshidi, M. Time-Delay Systems: Analysis, Optimization and
Applications. North-Holland Systems and Control Series, North-Holland, Amsterdam,
1987.

[16] Moheimani, S.O.R. and Petersen, I.R. Optimal quadratic guaranteed cost control of a
class of uncertain time-delay systems. IEE Proceedings-D 144(2) (1997) 183–188.

[17] Newcomb, R. and Dziurla, B. Some circuits and systems applications of semistate theory.
J. Circuits Systems Signal Process 8(3) (1989) 253–259.

[18] Nguang, S.K. Robust stabilization for a class of time-delay nonlinear systems. IEE
Proceedings-D 141(5) (1994) 285–288.

[19] Petersen, I.R. A stabilization algorithm for a class of uncertain linear systems. System &
Control Letters 8(4) (1987) 351–357.

[20] Safonov, M.G., Limebeer, D.J.N. and Chiang, R.Y. Simplifying the H∞ theory via loop-
shifting, matrix-pencil and descriptor concepts. Int. J. Control 50(6) (1989) 2467–2488.

[21] Shen, J., Chen, B. and Kung, F. Memoryless stabilization of uncertain dynamic delay
systems: Riccati equation approach. IEEE Trans. Automat. Control 36 (1991) 638–640.

[22] Shi, P. Filtering on sampled-data systems with parametric uncertainty. IEEE Trans.
Automat. Control 43(7) (1998) 1022–1027.

[23] Shi, P. and Boukas, E.K. H∞ control for Markovian jumping linear systems with para-
metric uncertainty. J. Optimization Theory and Applications 95(1) (1997) 75–99.

[24] Shi, P., Boukas, E.K. and Agarwal, R.K. Control of Markovian jump discrete-time systems
with norm bounded uncertainty and unknown delays. IEEE Trans. Automat. Control
44(11) (1999) 2139–2144.

[25] Shi, P., Boukas, E.K. and Agarwal, R.K. Kalman filtering for continuous-time uncertain
systems with Markovian jumping parameters. IEEE Trans. Automat. Control 44(8)
(1999) 1592–1597.

[26] Shi, P., de Souza, C.E. and Xie, L. Robust H∞ filtering for uncertain systems with
sampled-data measurements. In: Proc. 32nd IEEE Conf. Decision & Control, San Anto-
nio, Texas, USA, 1993, P.793–798.

[27] Shi, P. and Dragan, V. Asymptotic H∞ control of singularly perturbed systems with
parametric uncertainties. IEEE Trans. Automat. Control 44(9) (1999) 1738–1742.

[28] Shi, P. and Shue, S.P. Robust H∞ control for linear discrete-time systems with norm-
bounded nonlinear uncertainties. IEEE Trans. Automat. Control 44(1) (1999) 108–111.

[29] Stott, B. Power system response dynamic. Proc. IEEE 67 (1979) 139–141.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(1) (2004) 59–71 71

[30] Suh, I.H. and Bien, Z. On stabilization by local state feedback for discrete-time large-scale
systems with delays in interconnections. IEEE Trans. Automat. Control 27(7) (1982)
744–746.

[31] Wang, Y., Shi, S. and Zhang, I. A descriptor-system approach to singular perturbation of
linear regulators. IEEE Trans. Automat. Control 33(4) (1988) 370–373.

[32] Xie, L. Output feedback H∞ control of systems with parameter uncertainty. Int. J.
Control 63(4) (1996) 741–750.

[33] Xie, L., Shi, P. and de Souza, C.E. On designing controllers for a class of uncertain
sampled-data nonlinear systems. IEE Proc.-Control Theory Appl. 140(2) (1993) 119–
126.



Nonlinear Dynamics and Systems Theory, 4(1) (2004) 73–88

Effects of Substantial Mass Loss
on the Attitude Motions of a Rocket-Type

Variable Mass System

J. Sookgaew and F.O. Eke

Department of Mechanical and Aeronautical Engineering, University of California at Davis,

One Shields Avenue Davis, CA 95616 USA

Received: September 10, 2003; Revised: March 12, 2004

Abstract: This study uses a relatively complex model to analyze the influence
of various system parameters on the attitude behavior of a rocket-type variable
mass system moving in a torque-free environment. Some of the parameters
studied include the system’s size, the nozzle expansion ratio, and the location
of the propellant within the system’s casing. Results obtained indicate that
the spin rate as well as the transverse rate can increase, decrease, or stay
constant depending on the choice of system parameters. Dramatic changes in
the character of these variables can result from relatively minor changes in a
rocket’s nozzle expansion ratio.

Keywords: Variable mass processes; rockets.

Mathematics Subject Classification (2000): 70P05, 70M20, 34C60.

1 Introduction

The behavior of mechanical systems with varying mass is of interest to scientists and
engineers because of the vast array of physical systems (both natural and engineered)
that exhibit variable mass characteristics. Aerospace systems have high visibility as
variable mass systems, and are the main focus of this study.

One of the earliest studies of the dynamics of variable mass systems was performed
by Buquoy [1]. He developed his “motion formula” for these systems, and presented so-
lutions to a large number of examples in this area. Another early and major contributor
to the field is Meshcherskii [8, 9], who essentially laid the foundation for the theoretical
study of variable mass systems in mechanics. The focus of practically all the early work
in this area was on the translational motion of such systems. This paper investigates the
rotational dynamics of rocket-type variable mass systems in a torque-free environment.

c© 2004 Informath Publishing Group. All rights reserved. 73
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Attitude dynamics studies of rotating bodies usually involve the derivation of the equa-
tions of motion of the system of interest, followed by some attempt at extracting useful
motion information from these equations. Strategies for the development of equations of
motion of mechanical systems, especially those with a solid base, have been presented
by a number of authors (see, for example, Kovalev [5], Eke and Wang [3]). For variable
mass systems in general, and rocket systems in particular, equation derivation can pro-
ceed along one of at least two different paths — the discrete model approach, and the
control volume method. When used in the study of rocket-type systems, the discrete
model approach introduces simplifying assumptions very early in the equation derivation
process. For example, it is common in this approach to consider that all the particles
leaving the system during a propellant burn, do so at the same velocity relative to the
main rocket body, and that this relative velocity is always parallel to the rocket axis.
This method was popularized by Thomson in the 1960’s [11 – 13], and was effectively
used by him and others in the analysis of rocket motion.

The control volume approach starts by viewing the system, in a general way, as con-
sisting of solid and fluid phases contained in a region that is delimited by a closed surface
of constant or variable internal volume. Equations of motion for such a general variable
mass system are then derived using well-known methods of fluid and classical dynamics.
At this stage, the resulting equations are generally very complex, containing several sur-
face and volume integrals. They are then reduced to tractable forms by specializing them
to the specific system under study. Thus, unlike the discrete model approach, the control
volume method introduces most of its simplifying assumptions at the end of the equation
derivation process. Equations of motion derived in this way are now readily available in
the literature (see, for example, references [2, 3, 7]).

There are three basic types of physical model that have been used in the study of the
dynamics of rocket systems: the variable mass cylinder, the general axisymmetric model,
and the two-body axisymmetric system. The variable mass cylinder models a typical
rocket system as a simple right circular cylinder. Wang, Eke, and Mao [4, 6] exploited
such a simple-minded model to great advantage. Its main merit is its simplicity; yet,
surprisingly, it does capture a great deal of the important features of a real rocket. The
disadvantage is that it does not permit certain refinements in the study. For example,
the model does not include a nozzle, and so, nozzle effects cannot be explored. Nor is
it possible to study the effect of the geometric location of the propellant grain within a
rocket system, since the model normally views the whole of the cylinder as combustible.

The general axisymmetric model represents a rocket as an axisymmetric body (not
just a cylinder) of diminishing mass and inertia [7]. In this case, the manner in which the
system’s inertia properties vary with mass depletion is not known and cannot be precisely
determined. Because of this shortcoming, it is difficult to push analytical studies of the
system’s motion to their limit; one is thus limited to qualitative inferences in this case.
Some authors have tried to circumvent this difficulty by assigning simple, decreasing
functions of time to the mass, as well as to the axial and the transverse inertia. The
difficulty with such a strategy is that the transverse and axial inertia scalars vary in a
dependent manner as the system’s mass decreases. It is thus next to impossible to make
correct guesses for all the inertia functions as well as the system mass. This problem is
discussed in some detail in reference [6].

The two-body axisymmetric model is the most versatile of the three models mentioned
above. It separates the system into two parts — a constant mass part, and a variable
mass portion. In a rocket system for example, the fuel or propellant would represent
the variable mass part, and the other parts of the system outside the fuel would be the
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Figure 2.1. Two-body axisymmetric model.

constant mass section. Mass loss comes from the burning and expulsion of particles of the
propellant. The model can provide for the existence of a nozzle; there is some flexibility
in the geometric location of the fuel within the system; and various propellant depletion
geometries can be explored with this model. The goal of this study is to use this two
body axisymmetric model to examine how the attitude motion of a rocket system is
influenced by substantial mass loss and by changes in various system parameters, and to
compare the outcome with results obtained in previous studies that used much simpler
models. In particular, we wish to explore the effect of the nozzle on attitude motion —
a study that has not as yet been done, and that could not really be done with a less
sophisticated model than the one employed here.

2 Equations of Attitude Motion

As stated earlier, the model used for this study is the two-body axisymmetric system as
shown in Figure 2.1. B represents the entire system with the exception of the propellant,
and it is assumed to constitute a constant mass, axisymmetric rigid body. For the
purposes of this study, the fuel F is also assumed to be a rigid body, whose shape at
ignition is that of a uniform, right, circular cylinder, with its axis aligned with that of
the main body B. F is shown in a partially burned state in the figure; it is assumed to
burn in such a way that its unburned part is always axisymmetric with respect to the
longitudinal axis z of the original, unburned, cylindrical fuel. The overall system, that
is, the combination of B and F is designated S and has its mass center at S∗. B∗ and
F ∗ are the mass centers of B and F respectively.

One version of the vector equation of attitude motion for the type of variable mass
system under study here is given as equation (1) below. This equation comes from Eke
and Wang [3], and is, in its simplified form, equivalent to versions of rotational equations
derived by other authors [2, 7, 12]

M = I · α+ ω × I · ω +

(

dI

dt

)

· ω +

∫

C

ρ[p × (ω × p)](v · n) dS

+

∫

C

ρω × (p× v) dV +
d

dt

∫

C

ρ(p× v) dV +

∫

C

ρ(p× v)(v · n) dS.

(1)



76 J. SOOKGAEW AND F.O. EKE

In this equation, M is the sum of the moments of external forces on the system S about
the system mass center, S∗; I is the system’s instantaneous central inertia dyadic; p is
the position vector from S∗ to a generic particle of the system; ρ is the mass density;
v is the velocity of a generic particle relative to B; C is a fictitious outer shell that
encloses the whole system; n is a unit vector that is normal to, and pointing outwards
of the surface C; and ω and α are, respectively, the inertial angular velocity and angular
acceleration of the main body B of the system. All the vector and dyadic time derivatives
are taken in the reference frame of the rigid body B.

There are at least two arguments that can be used to bring equation (1) down to
a manageable form. First, one can exploit the symmetry of the system and assume
that at steady state, the motion of gas particles inside the system’s combustion chamber
is symmetric relative to the z-axis, and that whirling motion (helical motion) of these
particles relative to B is negligible. Because of these assumptions, the last three terms
on the right hand side of equation (1) vanish (see details in [3]), and the equation reduces
to

M = I · α+ ω × I · ω +

(

dI

dt
· ω

)

+

∫

C

ρ [p × (ω × p)](v · n) dS. (2)

A second argument that can be used to obtain the same result is based on the fact that
there are situations where the velocity v of the gas particles can be considered negligible
within the system’s boundary but not at an exit from the boundary, such as the nozzle.
An example is an inflated balloon with a small hole. Velocities of gas particles within the
balloon are negligible in magnitude compared to those of gas particles leaving through
the hole. Whenever v can be considered negligible within a system’s boundary, but is
finite and forms a symmetric field at each exit from the system, equation (1) reduces
once more to equation (2). It is reasonable to assume that such is approximately the
situation for the system under study.

Equation (2) can be broken down into three scalar components by expressing each
of the terms on the right hand side of the equation in terms of the unit vectors bi

(i = 1, 2, 3) shown in Figure 2.1. Assuming that the velocity distribution of the gas
particles as they leave the nozzle exit plane is uniform as shown in Figure 2.1, we have
that

v · n = u = const (3)

over the nozzle exit. If we then restrict the study to the case of zero external moment
(M = 0), equation (2) takes the scalar forms

Iω̇1 +

[

İ − ṁ

(

z2
e +

R2
1

4

)]

ω1 + [(J − I)ω3]ω2 = 0, (4)

Iω̇2 +

[

İ − ṁ

(

z2
e +

R2
1

4

)]

ω2 − [(J − I)ω3]ω1 = 0, (5)

Jω̇3 +

(

J̇ −
ṁR2

1

2

)

ω3 = 0, (6)

where m represents the instantaneous mass of the system, I and J are, respectively, the
central transverse and spin moment of inertia for the system, ze is the distance from S∗ to
the nozzle exit plane, R1 is the radius of the circular nozzle exit area, and ωi (i = 1, 2, 3)
are the scalar components of the inertial angular velocity of B in the bi (i = 1, 2, 3) unit
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vector basis. We note here that the unit vectors bi are assumed fixed to the body B.
Details of the transition from equation (2) to (4), (5), and (6) can be found in several
places, including Morris [10].

Equations (4) through (6) can be non-dimensionalized as follows. First, we note that
the rate, mr, of mass depletion from the system can be written as a surface integral

Mr = −ṁ =

∫

(v · n)ρ dS = πρuR2
1 = const, (7)

where ρ is the mass density of the fluid products of combustion — considered constant
over the nozzle exit plane. The time, tb, taken for the mass mF of the propellant to go
from its initial value, mF0, to the final value of zero (that is, burnout) can be expressed
as

tb = mF0/mr. (8)

We choose as dimensionless time variable, the quantity τ given by

τ = t/tb = (mr/mF0)t, (9)

where t is time measured from the beginning of the propellant burn (ignition). We then
note that τ = 0 at propellant ignition, and τ = 1 at burnout. Furthermore,

dτ

dt
=

1

tb
, (10)

so that the time derivative of any quantity can be written as

˙( · ) =
d( · )

dt
=
d( · )

dτ
·
dτ

dt
=

1

tb
·
d( · )

dτ
=

1

tb
( · )′, (11)

where a prime ( ′ ) indicates derivative with respect to τ . We define other dimensionless
quantities as

m = m/mF0, Ī = I/mF0R
2, J̄ = J/mF0R

2, and ωi = ωitb (i = 1, 2, 3) (12)

and use these to convert equations (4) – (6) to

Īω′

1 +

{

Ī ′ −m′

[

(ze

R

)2

+
β2

4

]}

ω1 + [(J̄ − Ī)ω3]ω2 = 0, (13)

Īω′

2 +

{

Ī ′ −m′

[

(ze

R

)2

+
β2

4

]}

ω2 + [(J̄ − Ī)ω3]ω1 = 0, (14)

and

J̄ω′

3 +

(

J̄ ′ −m′
β2

2

)

ω3 = 0. (15)

In these equations, R is the external radius of the cylindrical propellant, and β is the
ratio R1/R.

From equation (15),

ω3(τ)

ω3(0)
= exp

[

−

τ
∫

0

ψ(τ)

J̄
dτ

]

, (16)
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where

ψ(τ) = J̄ ′ −m′
β2

2
. (17)

By defining a dimensionless, complex angular velocity

ωT = ω1 + iω2, (18)

where i =
√
−1, equations (13) and (14) are combined to give

ωT (τ)

ωT (0)
=

{

exp

[

−

τ
∫

0

ϕ(τ)

Ī
dτ

]}

·

[

exp

(

i

τ
∫

o

Θ dτ

)]

, (19)

where

ϕ(τ) = Ī ′ −m′

[(

ze

R

)2

+
β2

4

]

(20)

and

Θ = [(J̄/Ī) − 1]ω3. (21)

The function ϕ(τ) determines the magnitude of the transverse angular velocity vector,
Θ(τ) governs the frequency, and ψ(τ) [see equation (17)] tells us whether the spin rate
will increase or decrease with τ . We will limit this study to an examination of how the
spin rate and transverse angular velocity magnitude vary with propellant burn.

3 Spin Motion

We now take an in depth look at the spin rate, to see how it is affected by mass loss or
propellant burn. It is clear from equations (16) and (17) that expressions for the system’s
mass and inertia as functions of the dimensionless time variable τ are needed in order to
make progress with the study of the spin rate. On the other hand, these functions can
only be determined if a propellant depletion geometry is stipulated. For this study, we
choose to examine the case of a burn that is an idealization of a common burn pattern in
solid rocket motors. In this burn, which is often referred to as radial burn, it is imagined
that the propellant has the shape of a hollow cylinder at ignition. The interior surface
is ignited, and the fuel then burns radially outwards in a uniform manner, so that the
interior surface always remains cylindrical. Figure 3.1 shows an intermediate shape for
the propellant during such a burn. We now proceed to determine the elements that are
needed to express the function ψ in equation (17) in terms of the variable τ .

From Figure 3.1, the mass of the fuel just before ignition is

mF0 = ρFπL(R2 − r20) (22)

and the mass mF at a general instant during the burn is

mF = ρFπL(R2 − r2). (23)
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Figure 3.1. Rocket with radially burning propellant.

Here, L is the length of the cylindrical fuel, ρF is the mass density of F , r0 is the initial
internal radius of F , and r is the internal radius at some general instant after ignition.
From equations (8), (22), and (23),

tb =
mF0

mr

=
mF0

−ṁF

=
R2 − r20
d

dt
(r2)

. (24)

Equation (24) is integrated to give

r2(t) = r20 +
R2 − r20
tb

t (25)

so that
(

r

R

)2

=

(

r0
R

)2

=

[

1 −

(

r0
R

)2]

τ = γ2 + (1 − γ2)τ, (26)

where γ is the ratio r0/R. We thus have from equations (22), (23), and (26), that the
non-dimensional mass mF for the propellant is

mF =
mF

mF0

=
ρFπL(R2 − r2)

ρFπL(R2 − r20)
=

1 − (r/R)2

1 − (r0/R)2
= 1 − τ, (27)

which yields
m′ = m′

F = −1. (28)

In a similar way, we use equations (26) and (27) to show that the dimensionless axial
inertia of the propellant F is given by

J̄F =
JF

mF0
R2

=
mF

2

[

1 +

(

r

R

)2]

=

[

1 − τ

2

]

[1 + γ2 + (1 − γ2)τ ]. (29)

The overall system axial moment of inertia is thus given, in dimensionless form, as

J̄ = J̄B + J̄F = J̄B +
1 + γ2

2
− γ2τ −

1 − γ2

2
τ2. (30)
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Figure 3.2. Possible shapes for ψ(τ).

Equations (28), (30), and (17) lead to

ψ(τ) =

[

β2

2
− γ2

]

+ (γ2 − 1)τ. (31)

3.1 Qualitative discussion

The function ψ(τ) is linear in τ with slope (γ2−1), which is negative for the burn we have
selected. Hence ψ(τ) decays linearly with τ , and ψ(0) = β2/2−γ2, with ψ(1) = β2/2−1.
ψ(0) is almost certain to be positive for real rocket systems, since, for these systems one
would expect γ ≪ 1 and β ≥ 1. For example, picking such conservative numbers as
γ = 0.5, and β = 1 still results in ψ(0) > 0. On the other hand, ψ(1) can, conceivably,
take on a value that is either positive or negative depending on whether or not the
quantity β, which we shall refer to in the remainder of this paper as the nozzle expansion
ratio, is greater than or less than

√
2. Figure 3.2 summarizes the behavior of the function

ψ(τ) for three values of β. We conclude from this figure that the spin rate will always
decrease initially. This trend will continue all the way to burnout if the nozzle expansion
ratio is greater than some threshold value, βL (

√
2 for radial burn). If β happens to be

less than βL, then, the decreasing trend in the spin rate will be reversed at some point
during the burn, and the spin rate will increase for the remainder of the burn. The point
at which this change in trend occurs is (ψ = 0)

τ = (β2/2 − γ2)/(1 − γ2). (32)

For a variable mass cylinder with no nozzle, β = 1, and only one scenario (β < βL)
is possible. As explained above for this case, the spin rate will decrease initially until τ
attains a value given by equation (32). After this, the spin rate increases till burnout.
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Figure 3.3. Spin rate for radial burn.

By substituting β = 1 into equation (32), and putting the resulting value for τ into
equation (26), we find that the minimum value of the spin rate will occur when the

ratio r/R = 1/
√

2. This is the same result obtained in [6] for the simple variable mass
cylinder.

3.2 Closed form solution

If equations (30) and (31) are substituted into equation (16), a closed form solution can
be obtained for equation (16) as follows:

ω3(τ)

ω3(0)
=

[

Π2 − γ4

Π2 − [γ2 + (1 − γ2)τ ]2

]

× exp

{

−β2

Π

[

tanh−1 [γ2 + (1 − γ2)τ ]

Π
− tanh−1 γ

2

Π

]}

,

(33)

where

Π =
√

2J̄B(1 − γ2 + 1). (34)

The curves shown in Figure 3.3 come from equation (33), and they confirm the initial
negative slope of the spin rate, and the fact that the spin rate can change from a decreas-
ing to an increasing function of τ during a propellant burn, for small values of the nozzle
expansion ratio. It would appear, from equation (33) that besides the parameters γ and
β, the axial inertia J̄B can also play a role in the behavior of the spin rate. Figure 3.4
is obtained from equation (33), and shows how a change in axial inertia J̄B for the main
body B affects the spin rate. The smaller the value of J̄B the more the spin rate curve
deviates from that which is expected from a constant mass rigid body; that is, a constant.
This is certainly in agreement with engineering intuition. However, the basic character
of the spin rate curve is not affected by a change in J̄B . It turns out that a change in
the ratio γ of the initial internal radius to external radius of the fuel without a change
in J̄B has minimal effect on the spin rate.
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Figure 3.4. Influence of spin interia on the spin rate.

3.3 Stable spin

It is not desirable to have the spin rate grow substantially, nor is it acceptable for the spin
rate to decrease excessively during a propellant burn. In one case, the system’s structural
integrity can become impaired, and in the other case, there is loss of spin rigidity. It is
therefore useful to find ways to limit variations in spin rate during a burn. One way to
accomplish this is to force the spin rate at the end of the burn to be the same as that at
ignition; that is, ω3(1) = ω3(0). From equation (33), we have

ω3(1)

ω3(0)
=

[

Π2 − γ4

Π2 − 1

]

· exp

{

−β2

Π

[

tanh−1 1

Π
− tanh−1 γ

2

Π

]}

= 1, (35)

which leads eventually to

βb =

√

Π · ln[(Π2 − γ4)/(Π2 − 1)]

tanh−1(1/Π) − tanh−1(γ2/Π)
. (36)

Equation (36) gives the value of the nozzle expansion ratio that will bring the spin
rate at burnout back to its value at ignition, and in so doing, limit the overall variation
in the spin rate. Figure 3.5 shows that the necessary nozzle expansion ratio is sensitive
to the axial inertia J̄B of the main rocket body, especially at low values of J̄B . Figure 3.6
gives an indication of the level of sensitivity of the spin rate to deviations in the choice
of β. This figure also shows that when β is taken to be βb, the difference between the
extreme values of the spin rate is not as large as when β 6= βb.
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Figure 3.5. Relationship between J̄B and βb.

Figure 3.6. Spin rate deviations for β 6= βb.
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4 Transverse Angular Speed

The system’s central transverse moment of inertia can be written, in non-dimensional
form as

Ī = ĪB + ĪF + (mBb
2 = mFa

2)/mF0R
2, (37)

where the subscripts B and F refer to the main body and the fuel respectively, and the
distances a and b as well as other distances such as L, Li (i = 1, 2, 3) are as shown in
Figure 3.1. The transverse inertia of B is ĪB = IB/mF0R

2. Keeping in mind that we
are assuming a radial burn for the fuel,

ĪF =
IF

mF0R2
= mF

[

1

4
+

1

4

(

r

R

)2

+
1

12

(

L

R

)2 ]

= (1−τ)

[

1 + γ2 + (1 − γ2)τ

4
+
δ2

12

]

. (38)

The distances a and b can be expressed as

a =
mBL3

mB +mF

(39)

and

b =
mFL3

mB +mF

. (40)

Substituting equations (38), (39), and (40) into (37), we obtain, after some algebra,

Ī = ĪB + (1 − τ)

[

1 + γ2 + (1 − γ2)τ

4
+
δ2

12

]

+
mB(1 − τ)δ23
mB + 1 − τ

(41)

so that

Ī ′ = −

{

γ2 + (1 − γ2)τ

2
+
δ2

12
+

(

mBδ3
mB + 1 − τ

)2}

. (42)

The distance

ze = L1 +
L

2
+ a. (43)

Hence, equations (43), (39), and (27) give

ze

R
=

(mB +mF )(δ1 + δ/2) +mBδ3
mB +mF

=
(mB + 1 − τ)(δ1 + δ/2) +mBδ3

mB + 1 − τ
, (44)

where δ = L/R, and δi = Li/R (i = 1, 2, 3). From equations (20), (28), (42), and (44),

ϕ(τ) = −

[

γ2 + (1 − γ2)τ

2

]

+
δ2

6
+ δδ1 + δ21 +

β2

4
+

2mBδ3
mB + 1 − τ

(

δ

2
+ δ1

)

. (45)

4.1 Qualitative discussion of transverse motion

The transverse angular speed is given by [see equation (19)]

∣

∣

∣

∣

ωT (τ)

ωT (0)

∣

∣

∣

∣

= exp

[

−

τ
∫

0

ϕ(τ)

Ī
dτ

]

. (46)
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The function Ī decreases with τ but is always positive. Hence, the sign of ϕ(τ) determines
whether the transverse rate increases or decreases with the burn. We can rewrite equation
(45) as

ϕ(τ) = ϕ1(τ) + ϕ2(τ) (47)

where

ϕ1(τ) = −

[

γ2 + (1 − γ2)τ

2

]

(48)

and

ϕ2(τ) =
δ2

6
+ δδ1 + δ21 +

β2

4
+

2mBδ3
mB + 1 − τ

(

δ

2
+ δ1

)

. (49)

The function ϕ1 is clearly negative, since γ < 1. On the other hand, ϕ2 is positive because
δ, δ1, δ3, β and mB are all positive quantities for real rocket systems, and 0 ≤ τ ≤ 1. At
τ = 0, ϕ1 = −γ2/2; and, since γ = r0/R would be expected to be less than 1/2 for a
real system, |ϕ1| ≤ 1/8. Similarly, ϕ2 > β2/4 > 1/4 in practice. Hence, ϕ(0) is likely to
be positive. As τ varies between 0 and 1, ϕ1 decreases linearly with τ while ϕ2 increases
with τ . It appears unlikely that ϕ2 will ever become less than ϕ1 in absolute value, or
that ϕ will change sign from positive to negative during the propellant burn. Thus, the
transverse angular speed is likely to decrease between ignition and burnout.

There are several factors that can change this state of affair for the transverse angular
speed. They include small values of what may be referred to as the propellant aspect
ratio δ = L/R, low values of the nozzle expansion ratio β, proximity of the propellant
grain to the nozzle (δ1), and closeness of the propellant center of mass to that of the
rocket’s main body. These can lower the value of ϕ2 to the point where |ϕ2| < |ϕ1| and
ϕ < 0. Of these, the parameters that a rocket designer has most control over are δ and β.

We note here that relatively recent studies [4, 6] that used the cylinder model came
to the conclusion that a “fat and short” propellant grain (i.e. low δ) can cause the
transverse angular speed to grow without bounds for a radial burn. This paper arrives
at the same result, but adds another component that the nozzle expansion ratio can
also have an important damping influence on the transverse angular speed. In fact, a
large enough expansion ratio can, single-handedly, reverse the potential for a runaway
growth in transverse rate. For instance, the maximum value that ϕ1 can have during a
radial burn is [see equation (48)] −1/2, and this occurs at τ = 1. Hence, it suffices that

β ≥
√

2 [see equation (49)] to guarantee that ϕ > 0 and that ωT will decrease with the
burn.

Figure 4.1 is obtained by numerical integration of equation (46), and shows the trans-
verse angular speed as a function of the time variable τ . This figure confirms that a
low value of δ, coupled with a small β can indeed cause the transverse rate to reverse
its initial decreasing trend sometime during the burn, and increase continuously through
burnout.

5 Modified Radial Burn

So far, what has been presented is a general study of the radial burn. We now move
briefly to the case where the system mass center, S∗, does not shift relative to the rocket’s
main body B. In other words, we assume that, prior to ignition, the mass centers B∗

of the rocket body and F ∗ of the solid fuel are coincident, so that S∗ is also located at
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Figure 4.1. Transverse angular speed.

the same point. During a radial burn, F ∗ does not shift relative to B. Hence, all three
points F ∗, B∗ and S∗ remain coincident throughout the burn. This can be accomplished
in a real system by balancing the system in such a way that S∗ and F ∗ (or F ∗ and B∗)
coincide prior to propellant ignition. Our interest here is to see whether there is anything
to be gained, from the point of view of attitude dynamics, in balancing the system in
this way.

As before, the focus here is again on the functions ϕ(τ) and ψ(τ) given in equations
(45) and (31) respectively. In this case, the parameter δ3 becomes zero. The function
ϕ1 is unaffected, but the last term of ϕ2 (a positive term) drops. Thus, ϕ(0) is reduced
somewhat but remains positive. It is now slightly easier for ϕ(1) to become negative,
leading to a possibility of transverse rate increase during a propellant burn. The ex-
pression for ψ(τ) remains as given in equation (31), so the spin rate is unaffected by
the proposed change. Overall, we can state that there is no advantage whatsoever in
balancing the system in such a way as to avoid system mass center shift. In fact, such
an action renders the system more sensitive to divergence in transverse angular speed.

6 Conclusion

This study deals with the dynamic behavior of spinning bodies of the rocket type, that
lose mass while moving in a torque-free environment. The attitude behavior of systems
of this type is known to be influenced by the manner in which mass loss affects the
geometry of the system. One specific mass loss scenario — the radial burn — was studied.
This scenario assumes that the propellant of the rocket system is a hollow cylindrical
solid whose internal radius grows uniformly as the propellant burns. This appears to
restrict the study to rockets with solid propellants. However, the results of this study
can in fact be applied to some systems with liquid propellant. When liquid propellant
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is used in rocket systems that spin, it is generally distributed in several tanks positioned
symmetrically with respect to the spin axis. As the solid portion of the system spins,
centrifugal effects cause the liquid propellant to move outward and the overall behavior
of the fuel system becomes very similar to that of a solid propellant undergoing radial
burn.

Results obtained indicate that the spin rate always begins by decreasing with propel-
lant burn. If the ratio, β, of the nozzle exit radius to the external radius of the propellant

grain is greater than
√

2, then the spin rate will continue to decrease until propellant
burnout. If, however, the value of β is less than

√
2, the spin rate attains a minimum

value during the burn, begins to increase as the burn proceeds, and continues this trend
through burnout. The value of the nozzle expansion ratio thus plays a pivotal role in
determining the character of the spin rate curve.

The transverse angular speed will normally decrease with propellant burn. However,
there are circumstances under which growth in transverse angular speed becomes pos-
sible. Such a situation can arise if the ratio of the length of the propellant grain to
its radius is very small at the same time that the nozzle expansion ratio is also small.
In this case, the curve of the transverse rate as a function of propellant burn decreases
initially, but flattens out sometime during the burn, and then rises for the remainder of
the burn. This study brings out the important role that the nozzle expansion ratio can
play in determining how both the spin rate and the transverse angular speed evolve with
propellant burn.

Balancing a rocket system so that its mass center does not shift during propellant
burn actually renders the system more prone to growth in transverse rate if the nozzle
expansion ratio is low. Another way of viewing this is that studies that assume no shift
in system mass center will in general produce conservative results.
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Abstract: In this study, an industrial sliding-mode servo control system is
developed for the motion control of a direct-drive-type elevator-door ser-
vomechanism. The mechanical structure and dynamic analyses of an elevator-
door mechanism with an indirect field-oriented induction servomotor drive is
described initially. Moreover, a newly designed total sliding-mode control
(TSMC) system, which is insensitive to uncertainties in the whole control
process, is introduced. In addition, numerical simulation and experimental
results due to specific position and velocity profiles are provided to verify
the effectiveness of the proposed control scheme with regard to parameter
variations and external disturbance. Furthermore, the merits of the TSMC
system are exhibited in comparison with computed torque control (CTC) and
conventional sliding-mode control (CSMC). The salient features of this study
are 1) the controlled system has a total sliding motion without a reaching
phase and no chattering torque, and 2) this simple control strategy is easily
implemented by hardware/software to an industrial servo controller.

Keywords: Sliding-mode control; computed torque control; indirect field-oriented;

induction servomotor drive; elevator door.

Mathematics Subject Classification (2000): 70B15, 68T40, 93C85.

1 Introduction

Most nonlinear mechanism systems comprise driven motors, coupling gears and the non-
linear mechanism. Therefore, complex modeling procedures are usually required to design
a suitable control scheme. Besides, there are many uncertainties such as system parame-
ter variations, external disturbance, friction force and unmodelled dynamics to influence
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the prior-designed control characteristics in industrial applications. Though many mod-
ern control techniques have been designed to control the nonlinear mechanism systems
by using complex control laws with high control efforts, degraded control performances
are often resulted due to the existence of uncertainty [1]. Thus it is natural to explore
other nonlinear controls that can circumvent the problem of uncertainties and achieve
better compensation and global stability [2] – [4].

Sliding-mode control (SMC) has been demonstrated to be an effective nonlinear robust
control approach for controlling electric drive systems since it provides system dynamics
with an invariance property to uncertainties once the system dynamics are controlled
in the sliding mode [2] – [3]. It offers a fast dynamic response, a stable control system
and an easy hardware/software implementation. However, this control strategy produces
some drawbacks associated with the large torque chattering that may excite mechanical
resonance and unstable dynamics. Besides, the insensitivity of the controlled system to
uncertainties only exists in the sliding mode, but not during the reaching phase. Thus
the system dynamic in the reaching phase is still influenced by uncertainties. To keep
robustness in the whole sliding- mode control system, several researchers have focused on
eliminating the effect of the reaching phase [5] – [8]. A newly-designed sliding curve, that
is chosen as close as possible to time-optimal trajectory, was proposed in Harashima, et
al. [5] and Hashimoto, et al. [6] to keep robustness from the initial point to final point.
Gao and Hung [7] partially shaped the reaching law to specify the system dynamics in
the reaching phase. However, the system dynamics are still subjected to uncertainties.
Therefore, this study adopts the idea of total sliding-mode control [8] to get a sliding
motion through the entire state trajectory. In other words, no reaching phase exists
in the control process. Thus the controlled system during the whole control process is
insensitive to the occurrence of uncertainties.

In the past several decades, dc motors have been widely used in factory automation
as high-performance drives. However, the mechanical commutators and brush assembly
make dc motors much more expensive than ac motors. Besides, the use of mechanical
commutators may produce undesired sparks that are not allowed in some applications. As
compared with dc motor, an induction motor (IM) is robust, cheap and easily maintained.
These characteristics make it desirable to employ them in variable-speed or servo system.
However, its control characteristics are more complicated than the dc motors. In the
scalar control techniques, the transient dipping of flux reduces the torque sensitivity with
slip and lengthens the response time. In order to overcome the foregoing limitation, the
field-oriented control technique has been widely used in industry for high-performance IM
drive [9] – [10]. With the field-oriented control approach, the dynamic behavior of an IM
is rather similar to that of a separately excited dc motor. Thus, the IM has been adopted
widely as a driver in the elevator system recently [11]. However, a traditional open-loop
scalar (constant V/f ratio) controller with a gear transmission is always utilized in the
control of elevator car or automatic door. The motivation of this study is to develop a
total sliding-mode servo controller for a gearless elevator-door mechanism actuated with
direct-drive-type IM [12] – [13].

2 Mechanical Structure and Dynamic Analyses

The mechanical structure and drive system of an elevator-door servomechanism is de-
picted in Figure 2.1, which is composed of a direct-drive-type induction servomotor,
single-side-opened elevator door, belting and weighting mechanisms. In Figure 2.1, the
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Figure 2.1. Mechanical structure and drive system of elevator-door servomecha-

nism.

symbols m1 and m2 represent the masses of door and counterweight, respectively; r1

and r2 denote the radiuses of belting and weighting wheels, respectively; θr is the rotor
position of the induction servomotor; x is the moving position of the door, l is the total
length of the moving path, and g is the gravity acceleration.

A Direct-Drive-Type Induction Servomotor

The vocabulary “direct-drive” means that the transmittal mechanism is passed through
belts directly without a gearbox. The configuration of an indirect field-oriented in-
duction servomotor drive system is depicted in Figure 2.2(a) [8]. It consists of an in-
duction servomotor coupled with a mechanism, a ramp comparison current-controlled
pulse-width-modulation (PWM) voltage source inverter (VSI), a unit vector generator
(where θe is the position of rotor flux), a coordinate translator, a speed control loop and
a position control loop. The induction servomotor used in this drive system is a three-
phase Y-connected eight-pole 150W 60Hz 220V/3.3A type. The current-controlled VSI
is implemented by insulated gate bipolar transistor (IGBT) switching components with
a switching frequency of 15kHz. The mechanical equation of an induction servomotor
drive can be represented as

Jθ̈r(t) + Bθ̇r(t) + TL = Te, (1)

where J is the moment of inertia; B is the damping coefficient; TL represents the load
torque and external disturbance; Te denotes the electric torque. With the implementation
of field-oriented control [9] – [10], the induction servomotor drive system can be simplified
to a control system block diagram as shown in Figure 2.2(b), in which the electric torque
can be represented as

Te = Kti
∗

qs (2)
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Figure 2.2. (a) Indirect field-oriented induction servomotor drive. (b) Simplified

control system.

with

Kt =
3np

2

L2
m

Lr

i∗ds, (3)

where Kt is the torque constant; i∗qs is the torque current command; i∗ds is the flux current
command; np is the number of pole pairs; Lm is the magnetizing inductance per phase;
Lr is the rotor inductance per phase; ωr is the rotor speed; θ∗r and ω∗

r are the rotor
position and speed commands.

B Dynamic Model of Elevator-Door Servomechanism

The Newtonian motion law is utilized to derive the dynamic equation of the elevator-
door servomechanism in this subsection. Since the belt makes the electric torque convert
into the linear driving force and the control object is the door position, the conversion
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relationship between the rotor position and door position is

θr(t) = x(t)/r1. (4)

Substituting (4) into (1) and using (2), one can obtain

Jẍ(t) + Bẋ(t) = r1Kti
∗

qs − r1TL. (5)

Consider (5), the in the elevator-door servomechanism is

TL = Ti + Tw + Tf + Td, (6)

where Ti = (m1+m2)r1ẍ represents the load inertia torque; Tw = m2gr1sgn (ẋ) denotes
the weighting torque, in which sgn (·) is a sign function; Tf = µm1g exhibits the friction
torque between the hang roller and guide rail, in which µ is the friction coefficient; Td is
the external disturbance torque. Combined (5) with (6), the complete dynamic equation
of the elevator-door servomechanism can be obtained as

ẍ(t) ≡ Apẋ(t) + BpU(t) + Cp + Dp, (7)

where U(t) = i∗qs(t) is the control input, and

Ap = −B[J + r2
1(m1 + m2)]

−1,

Bp = r1Kt[J + r2
1(m1 + m2)]

−1 > 0,

Cp = −[J + r2
1(m1 + m2)]

−1[r1m2sgn (ẋ) + µm1]r1g,

Dp = −r1[J + r2
1(m1 + m2)]

−1Td,

Note that, the unmodelled dynamics, e.g. the friction existing in the belting mechanism,
can be considered as the external disturbance torque. The most important parameters
that affect the control performance of the elevator-door servomechanism are the external
disturbance torque Td and the variations of motor parameters.

3 Total Sliding-Mode Control

Consider the system parameters in nominal conditions without external disturbance
torque, rewriting (7) as follows can represent the nominal model of the elevator-door
servomechanism:

ẍ(t) = Apnẋ(t) + BpnU(t) + Cpn, (8)

where Apn, Bpn and Cpn are the nominal values of Ap, Bp and Cp, respectively. Consider
(8) parametric variation, external disturbance and unpredictable uncertainties for the
actual elevator-door servomechanism

ẍ(t) = (Apn + ∆A)ẋ(t) + (Bpn + ∆B)U(t) + (Cpn + ∆C) + Dp + β

≡ Apnẋ(t) + BpnU(t) + Cpn + W (t),
(9)

where ∆A, ∆B and ∆C denote the uncertainties introduced by the variations of motor
parameters; β represents the unstructured uncertainty due to nonideal field orientation in
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Figure 3.1. Block diagram of TSMC system.

transient state, and the unpredictable dynamics in practical applications; W (t) is called
the lumped uncertainty and is defined as

W (t) = ∆Aẋ(t) + ∆BU(t) + ∆C + Dp + β. (10)

Here the bound of the lumped uncertainty is assumed to be given; that is,

|W (t)| < ρ, (11)

where ρ is a given positive constant. The control problem is to find a control law so
that the state χ can track specific desired trajectories in the presence of uncertainties.
To achieve this control objective, define the tracking error e = x − xm, in which xm

represents a desired position specified by a reference model. The presentation of TSMC
for the elevator-door servomechanism is divided into two main parts and is depicted in
Figure 3.1. The first part addresses performance design. The object is to specify the
desired performance in terms of the nominal model, and it is referred to as baseline model
design. Following the baseline model design, the second part is the curbing controller
design to totally eliminate the unpredictable perturbation effect from the parameter
variations and external disturbance so that the baseline model design performance can
be exactly assured. Define a sliding function S(t) as follows [8]:

S(t) = C(E) − C(E0) −

t
∫

0

∂C

∂ET
AE dτ, (12)

where C(E) is a scalar variable designed as
∂C

∂ET
= [0 B−1

pn ]; E0 is the initial state of

E(t), and

E = [e ė]T A =

(

0 1
−Kp −Kν

)

(13)

in which Kp and Kν are positive constants. Note that, since the function S(t) = 0 when
t = 0, there is no reaching phase as in the traditional sliding-mode control [2] – [3]. Then,
the TSMC law is assumed to take the following form:

U(t) = Uc(t) + Us(t) + Ub(t) (14)
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with

Uc(t) = −B−1
pn [Apnẋ(t) + Cpn], (15)

Us(t) = B−1
pn [χ̈(t) − Kpe(t) − Kν ė(t)], (16)

Ub(t) = −KS(t) − ρB−1
pn sgn (S(t)), (17)

where K is a positive constant. The first controller, Uc, is used to compensate for the
nonlinear effects and attempts to cancel the nonlinear terms in the model. After the
nonlinear model is linearized, the second controller, Us, is used to specify the desired
system performance. The objective of the third controller Ub is to keep the controlled
system dynamics on the surface S(t) = 0. That is, curb the system dynamics onto
S(t) = 0 for all time. Thus Ub is called a curbing controller, which is a constant plus
proportional rate control scheme providing a measure for the reduction of chattering [14].

Substitute (14), (15) and (16) into (9), the state variable form can be obtained as
follows:

Ė = AE + Bm[Ub(t) + B−1
pn W (t)], (18)

where Bm = [0 Bpn]T . Now S(t) = 0 when t = 0. To maintain the state on the
surface S(t) = 0 for all time, one only needs to show that

S(t)Ṡ(t) < 0, if S(t) 6= 0. (19)

Differentiating S(t) shown in (12) with respect to time and using error dynamics shown
in (19) yields

Ṡ(t) =
∂C

∂ET
Ė −

∂C

∂ET
AE =

∂C

∂ET
{AE + Bm[Ub(t) + B−1

pn W (t)] − AE}

= Ub(t) + B−1
pn W (t).

(20)

Multiplying S(t) by (20) and inserting control Ub shown in (17) into (20) yields

S(t)Ṡ(t) = S(t)[Ub(t) + B−1
pn W (t)] ≤ S(t)Ub(t) + B−1

pn |S(t)| |W (t)|

= −KS2(t) − ρB−1
pn |S(t)| + B−1

pn |S(t)| |W (t)| < −KS2(t) < 0.
(21)

Thus the sliding mode can be assured throughout the whole control period. Wai [8]
presented an adaptive sliding-mode control system to control the position of an induction
servo motor drive, where a simple adaptive algorithm was utilized to estimate the bound
of uncertainties in the curbing controller of total sliding-mode control system for reducing
the chattering torque. However, the adaptation law for the bound of uncertainties is
always positive and tracking error introduced by any uncertainty will cause the estimated
bound growth. It implies that the curbing controller will result in large chattering with
time gradually. This results that the IM will eventually be saturated and the system
may be unstable. Wai [15] described the dynamic responses of a recurrent-fuzzy-neural-
network (RFNN) sliding- mode controlled permanent magnet synchronous servomotor,
where a RFNN bound observer was utilized to adjust the uncertainty bounds in the
curbing controller of total sliding-mode control system. Although it can solve the problem
of parameter divergence, this control scheme seems to be more complicate such that it is
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difficult to implement in practical applications. Compared the modified control strategy
used in this study with our previous works [8, 15], it can reduce effectively the chattering
phenomena without any auxiliary algorithms such that this simple control scheme can be
easily implemented in industrial applications. The effectiveness of the proposed TSMC
system is verified by the following numerical simulation and experimental results.

4 Numerical Simulation and Experimental Results

For numerical simulations, the parameters of the elevator-door mechanism are designed
as follows:

m1 = 20kg, m2 = 1.5kg, g = 9.8, µ = 0.1,

r1 = 1.417 × 10−2m, r2 = 4.2 × 10−2m, l = 1.2m.
(22)

Moreover, the parameters of the direct-drive-type induction servomotor system are

Kt = 0.4851Nm/A, J̄ = 4.78 × 10−3Nms2/rad, B̄ = 5.34 × 10−3Nms/rad, (23)

where the overbar symbol represents the system parameter in the nominal condition. In
addition, the gains of the proposed TSMC control system are given as

Kν = 14, Kp = 49, ρ = 0.1, K = 80. (24)

Properly choosing the values of Kν and Kp, the desired nominal system dynamics such
as rise time, overshoot, and settling time can be easily designed by a second-order sys-
tem, ë + Kν ė + Kpe = 0. Moreover, the fixed bound ρ and the constant gain K in
the curbing controller are determined roughly to achieve the superior transient control
performance in both simulation and experimentation considering the requirement of sta-
bility and the possible operating conditions. Note that, introducing the constant gain K
into the curbing controller can tune the convergent speed of the tracking performance
and ensure the stability as the selection of a small value ρ for reducing the chattering
phenomena induced by the sign function in the curbing controller. Two simulation cases
including motor parameter variations and external disturbance torque in the mechanism
are addressed as follows to verify the robust characteristic of the TSMC system: Case 1:
J = J̄ , B = B̄, TL = 1Nm occurring between 14s-16s; Case 2: J = 3 × J̄ , B = 3 × B̄,
TL = 1Nm occurring between 14s-16s. The control objective is to make the door position
and velocity follow the specific reference profiles under the occurrence of uncertainties.
The door position command is obtained based on the velocity profile of the elevator door.
The door is moving from the left/right side to right/left side with ±0.2m/s reference
velocity.

In the simulation, firstly, the computed torque control (CTC) system that is equal
to baseline model design (Uc + Us) is demonstrated for comparison. The simulated
results of CTC system at Case 1 and Case 2 are depicted in Figure 4.1. The position
tracking are depicted in Figures 4.1(a) and 4.1(c), and the associated velocity response
are depicted in Figures 4.1(b) and 4.1(d). From the simulated results, favorable tracking
responses shown in the beginning of Figures 4.1(a) and 4.1(c) only can be obtained at
the nominal condition, and poor tracking responses are resulted owing to the motor
parameter variations and external disturbance torque. Though large control gains (Kν

and Kp) may solve the problem of delay or degenerate tracking responses, it will result
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Figure 4.1. Simulated results of CTC system: (a) position tracking at Case 1;

(b) velocity response at Case 1; (c) position tracking at Case 2; (d) velocity response

at Case 2.

in impractical large control efforts. Therefore, the control gains are difficult to determine
due to the unknown uncertainties in practical applications, and are ordinarily chosen as
a compromise between the stability and control performance.

Secondly, the conventional sliding-model control (CSMC) designed by Slotine and
Li [2] as follows is introduced to compare the control performance of the TSMC system:

U = Ueq + Ur (25)

in which Ueq = Uc + Us is the equivalent control and Ur = αB−1
pn sgn (SL) is the hitting

control, where SL = ė+λe; λ is a positive constant; α is the hitting gain that is selected
to satisfy the sliding condition. The simulated results of CSMC system (λ = 5 and
α = 8) at Case 1 and Case 2 are depicted in Figure 4.2. The position tracking are
depicted in Figures 4.2(a) and 4.2(c), and the associated velocity response are depicted
in Figures 4.2(b) and 4.2(d). Compared Figure 4.2 with Figure 4.1, the CSMC system
got the better control performance than the CTC system, especially under the occurrence
of uncertainties. However, the chattering velocity responses show in Figures 4.2(b) and
4.2(d) are caused by the large selection of hitting-control gain, α. Although the chattering
phenomena can be reduced with small hitting-control gain, it will result in degenerate
control performance.



98 RONG-JONG WAI AND JENG-DAO LEE

Figure 4.2. Simulated results of CSMC system: (a) position tracking at Case 1;

(b) velocity response at Case 1; (c) position tracking at Case 2; (d) velocity response

at Case 2.

Now, the designed TSMC system is simulated under the same cases, and its results are
depicted in Figure 4.3. The chattering phenomenon does not exist in the velocity response
of the TSMC system as shown in Figures 4.3(b) and 4.3(d). Moreover, the robust control
performance of the TSMC system, both in the conditions of motor parameter variations
and external disturbance torque, are obvious as shown in Figures 4.3(a) and 4.3(c).
According to the above numerical simulation, the TSMC system yields the superior
control performance than the CTC and CSMC systems.

The experimentation of the CTC, CSMC and TSMC systems for an actual elevator-
door servomechanism are provided here to further demonstrate the advantage of the
proposed TSMC control system. The PIC16F877 single chip micro-controller produced
by Microchip company is used as a main CPU which has a 2ms control loop to implement
the TSMC algorithm and a 0.2ms interrupt loop to execute current control inner loop
with field-oriented mechanism. In the experimentation, a braking machine is driven by a
current source drive to provide a disturbance torque, and an iron disk is coupled to the
rotor shaft of an induction servomotor taking as an inertia varying mechanism.
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Figure 4.3. Simulated results of TSMC system: (a) position tracking at Case 1;

(b) velocity response at Case 1; (c) position tracking at Case 2; (d) velocity response

at Case 2.

Two experimental conditions are given to verify the robust control performance. One
is the disturbance condition that is the nominal motor inertia with 1Nm disturbance
torque occurring between 14s-16s. The other is the perturbed condition that is the in-
creasing of the motor inertia to approximately three times the nominal value with 1Nm
disturbance torque occurring between 14s-16s. The experimental results of CTC, CSMC
and TSMC systems at disturbance and perturbed conditions are depicted in Figures 4.4
and 4.5, respectively. Note that, there are slight difference between the numerical sim-
ulation and experimental results due to the existence of unpredictable uncertainties in
practical applications. It can be seen from the experimental results that the TSMC sys-
tem tracks well with the specific position and velocity profiles during the whole operation.
Consequently, the proposed TSMC system is more suitable to control the elevator-door
servomechanism considering the existence of uncertainties.
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Figure 4.4. Experimental results of CTC, CSMC, TSMC systems at disturbance

condition: (a) position tracking of CTC system; (b) velocity response of CTC sys-

tem; (c) position tracking of CSMC system; (d) velocity response of CSMC system;

(e) position tracking of TSMC system; (f) velocity response of TSMC system.

5 Conclusions

This study has successfully demonstrated the application of a total sliding-mode con-
trol system to control the motion of an elevator-door mechanism with an indirect field-
oriented induction servomotor drive directly. First, the mechanical structure and dy-
namic analyses of an elevator-door servomechanism was introduced. Moreover, the the-
oretical bases and stability analyses of the proposed TSMC systems were described in
detail. In addition, simulation and experimentation were carried out using a specific
reference profile to verify the effectiveness of the proposed control strategy. Compared
with the CTC and CSMC systems, the TSMC system results in reduced chattering with
robust control performance. The major contributions of this study are the successful de-
velopment of a TSMC system, which has a total sliding motion without a reaching phase,
and the successful application of the proposed TSMC system to control the motion of
the elevator-door servomechanism considering the existence of uncertainties.
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Figure 4.5. Experimental results of CTC, CSMC, TSMC systems at perturbed

condition: (a) position tracking of CTC system; (b) velocity response of CTC sys-

tem; (c) position tracking of CSMC system; (d) velocity response of CSMC system;

(e) position tracking of TSMC system; (f) velocity response of TSMC system.
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Abstract: In this paper, we study stability and L2 gain properties for a
class of switched systems which are composed of a finite number of linear
time-invariant symmetric subsystems. We focus our attention mainly on
discrete-time systems. When all subsystems are Schur stable, we show that
the switched system is exponentially stable under arbitrary switching. Fur-
thermore, when all subsystems are Schur stable and have L2 gains smaller
than a positive scalar γ, we show that the switched system is exponentially
stable and has an L2 gain smaller than the same γ under arbitrary switch-
ing. The key idea for both stability and L2 gain analysis in this paper is
to establish a general Lyapunov function for all subsystems in the switched
system.
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1 Introduction

By a switched system, we mean a hybrid dynamical system that is composed of a family
of continuous-time or discrete-time subsystems and as a rule orchestrating the switching
among the subsystems. In the last two decades, there has been increasing interest in the
stability analysis and controller design for such switched systems. The motivation for
studying switched systems is from the fact that many practical systems are inherently

c© 2004 Informath Publishing Group. All rights reserved. 103
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multimodal in the sense that several dynamical subsystems are required to describe their
behavior which may depend on various environmental factors [1], and that the methods of
intelligent control design are based on the idea of switching among different controllers
[2 – 5]. For recent progress and perspectives in the field of switched systems, see the
survey papers [3, 6] and the references cited therein.

As also pointed out in [3, 6], there are three basic problems in stability and design
of switched systems: (i) find conditions for stabilizability under arbitrary switching;
(ii) identify the limited but useful class of stabilizing switching signals; and (iii) construct
a stabilizing switching signal. There are many existing works concerning Problem (ii)
and (iii). For example, references [7 – 10] considered Problem (ii) using piecewise Lya-
punov functions, and references [11 – 13] considered Problem (ii) for switched systems
with pairwise commutation or Lie-algebraic properties. References [14 – 15] considered
Problem (iii) by dividing the state space associated with appropriate switching depend-
ing on state, and references [16, 17] considered quadratic stabilization, which belongs to
Problem (iii), for switched systems composed of a pair of unstable linear subsystems
by using a linear stable combination of unstable subsystems. However, we see very few
dealing with the first problem, though it is desirable to require arbitrary switching in
many real applications. Reference [18] showed that when all subsystems are stable and
commutative pairwise, the switched system is stable under arbitrary switching. There
are some other results concerning general Lyapunov functions for the subsystems in a
switched system, but we do not find any explicit answer to Problem (i) except [18]. In
this paper, rather than considering for a given switched system the condition for stabiliz-
ability under arbitrary switching, we are interested in the following question: What kind
of switched systems are stable under arbitrary switching? Specifically, is there a switched
system whose subsystems are not commutative pairwise, yet it is stable under arbitrary
switching?

For switched systems, there are a few results concerning L2 gain analysis. Hespanha
considered such a problem in his Ph.D. dissertation [19], by using a piecewise Lyapunov
function approach. In [20], a modified approach has been proposed for more general
switched systems and more exact results have been obtained. In that context, it has
been shown that when all continuous-time subsystems are Hurwitz stable and have L2

gains smaller than a positive scalar γ0, the switched system under an average dwell time
scheme [7] achieves a weighted L2 gain γ0, and the weighted L2 gain approaches normal
L2 gain if the average dwell time is chosen sufficiently large. However, the results obtained
in [19] and [20] are conservative, and it is supposed that the main reason is in the use
of piecewise Lyapunov functions. Recently, reference [21] considered the computation
of L2 gain for switched linear systems with large dwell time, and gave an algorithm by
considering the separation between the stabilizing and antistabilizing solutions to a set of
algebraic Riccati equations. Noticing that these papers deal with the class of switching
signals with (average) dwell time, we are motivated to ask the following question: Is
there a switched system that preserves its subsystems’ L2 gain properties under arbitrary
switching?

For the above questions concerning stability and L2 gain, we give a clear (though
not complete) answer in this paper. More exactly, we will show that a class of switched
systems, which are composed of a finite number of linear time-invariant symmetric sub-
systems and called shortly switched symmetric systems, will preserve their subsystems’
stability and L2 gain properties under arbitrary switching. We take such symmetric
systems into consideration since they appear quite often in many engineering disciplines
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(for example, RC or RL electrical networks, viscoelastic materials and chemical reactions)
[22], and thus belong to an important class in control engineering.

Though our discussion is applicable also to continuous-time switched systems with
some modifications, we focus our attention mainly on the following discrete-time switched
system

x[k + 1] = Aσ(k)x[k] + Bσ(k)w[k], x[k0] = x0,

z[k] = Cσ(k)x[k] + Dσ(k)w[k],
(1.1)

where x[k] ∈ Rn is the state, w[k] ∈ Rm is the input, z[k] ∈ Rp is the output, k0 ≥ 0 is
the initial point and x0 is the initial state. σ(k) : I+ → IN = {1, 2, . . . , N} is a piecewise
constant function, called a switching signal, which is assumed to be arbitrary. Here, I+

denotes the set of all nonnegative integers not less than k0, and Ai, Bi, Ci, Di (i ∈ IN )
are constant matrices of appropriate dimensions denoting the subsystems, N > 1 is the
number of subsystems. Throughout this paper, we assume that all subsystems in (1.1)
are symmetric in the sense of satisfying

Ai = AT
i , Bi = CT

i , Di = DT
i , ∀ i ∈ IN . (1.2)

It should be noted here that the assumption (1.2) does not cover all symmetric subsys-
tems, which are usually defined in the form of transfer functions, and a more general
definition is that TiAi = AT

i Ti, TiBi = CT
i , Di = DT

i holds for some nonsingular
symmetric matrix Ti [22 – 24]. However, (1.2) represents an interesting class of symmet-
ric systems [25], and for the benefit of this paper we are concentrated on such kind of
symmetric systems.

We will say the switched system (1.1) is exponentially stable if ‖x[k]‖ ≤ µk−k0‖x0‖
with 0 < µ < 1 holds for any k > k0 and any initial state x0, and will say the switched

system (1.1) has an L2 gain γ if
k
∑

j=k0

zT[j]z[j] ≤ γ2
k
∑

j=k0

wT[j]w[j] holds for any integer

k > k0 when x0 = 0. These definitions are also valid for all the subsystems in (1.1).
This paper is organized as follows. In Section 2, assuming that all subsystems are Schur

stable, we show that there exists a general Lyapunov function for all subsystems, and
that the switched system is exponentially stable under arbitrary switching. In Section 3,
assuming that all subsystems are Schur stable and have L2 gains smaller than a positive
scalar γ, we prove that there exists a general Lyapunov function for all subsystems in
the sense of L2 gain, and that the switched system has an L2 gain smaller than the same
γ under arbitrary switching. Finally we give some concluding remarks in Section 4.

2 Stability Analysis

In this section, we set w[k] ≡ 0 in the switched system (1.1) to consider stability of the
system under arbitrary switching. We first give a preliminary result.

Lemma 2.1 Consider the discrete-time symmetric system

x[k + 1] = Ax[k], (2.1)

where x[k] ∈ Rn is the state and A is a constant symmetric matrix. The system (2.1)
is Schur stable if and only if

A2 < I. (2.2)
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Proof Since A is a symmetric matrix, there exists a nonsingular matrix Q satisfying
QT = Q−1 such that

QTAQ = diag {λ1, λ2, . . . , λn}, (2.3)

where λi, i = 1, 2, . . . , n, are A’s real eigenvalues (noticing that the symmetric matrix
A has only real eigenvalues), and thus

QTA2Q = diag {λ2
1, λ2

2, . . . , λ2
n}. (2.4)

The discrete-time system (2.1) is Schur stable if and only if |λi| < 1, i = 1, 2, . . . , n,
which is equivalent to

QTA2Q < I (2.5)

according to (2.4). Since QQT = I, the inequality (2.5) is equivalent to (2.2). This
completes the proof.

Remark 2.1 Lemma 2.1 implies that if all Ai’s in (1.1) are Schur stable, there exists
a general Lyapunov matrix P = I for all Ai’s, satisfying the LMI

AT
i PAi − P < 0, ∀ i ∈ IN . (2.6)

Hence, V (x) = xTx serves as a general Lyapunov function for all subsystems in (1.1).
Now we state and prove the main result in this section.

Theorem 2.1 When all subsystems in (1.1) are Schur stable, the switched symmetric
system (1.1) is exponentially stable under arbitrary switching.

Proof Since all subsystems in (1.1) are Schur stable, according to Lemma 2.1, the
matrix inequality

A2
i < I (2.7)

holds for all i ∈ IN , and thus there exists a scalar ǫ ∈ (0, 1) such that

A2
i < (1 − ǫ)I, ∀i ∈ IN . (2.8)

Now, we consider the Lyapunov function candidate

V (x) = xTx. (2.9)

According to (2.8), we obtain for any integer k > k0 that

V (x[k]) = xT[k] x[k] ≤ (1 − ǫ)xT[k − 1]x[k − 1]

= (1 − ǫ)V (x[k − 1])
(2.10)

holds under arbitrary switching, and thus

V (x[k]) ≤ (1 − ǫ)k−k0V (x[k0]) (2.11)

which means
‖x[k]‖ ≤ (

√
1 − ǫ)k−k0‖x0‖. (2.12)

Since this inequality holds for any initial state x0, the switched system (1.1) is exponen-
tially stable.
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Remark 2.2 For the continuous-time switched symmetric system

ẋ(t) = Aσ(t)x(t), (2.13)

where Ai = AT
i , i ∈ IN , are constant Hurwitz stable matrices, we easily see that Ai < 0

holds for all i, which implies that the general Lyapunov matrix P = I satisfies the LMI

AT
i P + PAi < 0, ∀ i ∈ IN , (2.14)

and thus the switched system (2.13) is exponentially stable under arbitrary switching.

3 L2 Gain Analysis

In this section, we assume x0 = 0 in the switched symmetric system (1.1) to study the
L2 gain property of the system under arbitrary switching. First, we state and prove a
lemma which plays an important role in the discussion of this section. We note that the
idea of this lemma and its proof is motivated by Lemma 2 of [25], where continuous-time
symmetric systems are dealt with.

Lemma 3.1 Consider the discrete-time symmetric system

x[k + 1] = Ax[k] + Bw[k]

z[k] = Cx[k] + Dw[k],
(3.1)

where x[k] ∈ Rn is the state, w[k] ∈ Rm is the input, z[k] ∈ Rp is the output, and A,
B, C, D are constant matrices of appropriate dimensions, satisfying A = AT, B = CT,
D = DT. The system (3.1) is Schur stable and has an L2 gain smaller than γ if and
only if









−I A B 0

A −I 0 B

BT 0 −γI D

0 BT D −γI









< 0. (3.2)

Proof Sufficiency The condition (3.2) means that the matrix inequality









−P PA PB 0

ATP −P 0 CT

BTP 0 −γI DT

0 C D −γI









< 0 (3.3)

is satisfied with P = I. Hence, according to the Bounded Real Lemma [26] for discrete-
time LTI system, the system (3.1) is Schur stable and has an L2 gain smaller than γ.

Necessity Suppose that the system (3.1) is Schur stable and has an L2 gain smaller
than γ . Then, there exists a matrix P0 > 0 such that









−P0 P0A P0B 0

AP0 −P0 0 B

BTP0 0 −γI D

0 BT D −γI









< 0, (3.4)
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where C was replaced by BT.
Now, we prove that P = I is also a solution of the above matrix inequality (i.e., (3.4)

holds when replacing P0 with I). Since P0 > 0, there always exists a nonsingular matrix
U satisfying UT = U−1 such that

UTP0U = Σ0 = diag {σ1, σ2, . . . , σn},

σi > 0, i = 1, 2, . . . , n.
(3.5)

Pre- and post-multiplying (3.4) by diag {UT, UT, I, I} and diag {U, U, I, I}, respectively,
we obtain











−Σ0 Σ0Ā Σ0B 0

ĀΣ0 −Σ0 0 B

B
T
Σ0 0 −γI D

0 B
T

D −γI











< 0, (3.6)

where Ā = UTAU , B = UTB. Furthermore, pre- and post-multiplying the first and
second rows and columns in (3.6) by Σ−1

0 leads to











−Σ−1

0 ĀΣ−1

0 B 0

Σ−1

0 Ā −Σ−1

0 0 Σ−1

0 B

B
T

0 −γI D

0 B
T
Σ−1

0 D −γI











< 0. (3.7)

In (3.7), we exchange the first and second rows and columns, and then exchange the
third and fourth rows and columns, to obtain











−Σ−1

0 Σ−1

0 Ā Σ−1

0 B 0

ĀΣ−1

0 −Σ−1

0 0 B

B
T
Σ−1

0 0 −γI D

0 B
T

D −γI











< 0. (3.8)

Since σ1 > 0, there always exists a scalar λ1 such that

0 < λ1 < 1, λ1σ1 + (1 − λ1)σ
−1

1
= 1. (3.9)

Then, by computing λ1 × (3.6) + (1 − λ1) × (3.8), we obtain











−Σ1 Σ1Ā Σ1B 0

ĀΣ1 −Σ1 0 B

B
T
Σ1 0 −γI D

0 B
T

D −γI











< 0, (3.10)

where

Σ1 = diag {λ1σ1 + (1 − λ1)σ
−1

1 , λ1σ2 + (1 − λ1)σ
−1

2 , . . . , λ1σn + (1 − λ1)σ
−1
n }

, diag {1, σ̄2, . . . , σ̄n} > 0.
(3.11)
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In the similar way to obtain (3.8), we can obtain from (3.10) that











−Σ−1

1 Σ−1

1 Ā Σ−1

1 B 0

ĀΣ−1

1 −Σ−1

1 0 B

B
T
Σ−1

1
0 −γI D

0 B
T

D −γI











< 0. (3.12)

Since σ̄2 > 0, there exists a scalar λ2 such that

0 < λ2 < 1, λ2σ̄2 + (1 − λ2)σ̄
−1

2 = 1. (3.13)

Then, the linear combination λ2 × (3.10) + (1 − λ2) × (3.12) results in











−Σ2 Σ2Ā Σ2B 0

ĀΣ2 −Σ2 0 B

B
T
Σ2 0 −γI D

0 B
T

D −γI











< 0, (3.14)

where
Σ2 = diag {1, λ2σ̄2 + (1 − λ2)σ̄

−1

2 , . . . , λ2σ̄n + (1 − λ2)σ̄
−1
n }

, diag {1, 1, . . . , σ̃n} > 0.
(3.15)

By repeating this process, we see that Σn = I also satisfies (3.6), i.e.,











−I Ā B 0

Ā −I 0 B

B
T

0 −γI D

0 B
T

D −γI











< 0. (3.16)

Pre- and post-multiplying this matrix inequality by

diag {U, U, I, I} and diag {UT, UT, I, I},

respectively, we obtain (3.2). This completes the proof.

Now, we assume that all subsystems in (1.1) are Schur stable and have L2 gains smaller
than γ. Then, according to Lemma 3.1, we have









−I Ai Bi 0

Ai −I 0 CT
i

BT
i 0 −γI Di

0 Ci Di −γI









< 0 (3.17)

for all i ∈ IN , which is equivalent to







A2
i +

1

γ
CT

i Ci − I AiBi +
1

γ
CT

i Di

BT
i Ai +

1

γ
DiCi BT

i Bi +
1

γ
D2

i − γI






< 0. (3.18)
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We compute the difference of the Lyapunov function candidate V (x) = xTx along
the trajectory of any subsystem to obtain

V (x[k + 1]) − V (x[k]) = xT[k + 1]x[k + 1] − xT[k]x[k]

= (Aix[k] + Biw[k])T(Aix[k] + Biw[k]) − xT[k] x[k]

= [ xT[k] wT[k] ]

[

A2
i − I AT

i Bi

BT
i Ai BT

i Bi

] [

x[k]

w[k]

]

< −[ xT[k] wT[k] ]

[

1

γ
CT

i Ci
1

γ
CT

i Di

1

γ
DiCi

1

γ
D2

i − γI

]

[

x[k]

w[k]

]

= −
1

γ

(

zT[k]z[k] − γ2wT[k]w[k]
)

,

(3.19)

where (3.18) was used to obtain the inequality, and the trivial case of x[k] = 0, w[k] = 0
is excluded here.

For any piecewise constant switching signal and any given integer k > k0, we let
k1, . . . , kr (r ≥ 1) denote the switching points of σ(k) over the interval [k0, k). Then,
using the difference inequality (3.19), we obtain

V (x[k]) − V (x[kr ]) < −
1

γ

k−1
∑

j=kr

(zT[j]z[j]− γ2wT[j]w[j])

V (x[kr ]) − V (x[kr−1]) < −
1

γ

kr−1
∑

j=kr−1

(

zT[j]z[j] − γ2wT[j]w[j]
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V (x[k1]) − V (x[k0]) < −
1

γ

k1−1
∑

j=k0

(

zT[j]z[j] − γ2wT[j]w[j]
)

.

(3.20)

We add all the above inequalities to get to

V (x[k]) − V (x[k0]) < −
1

γ

k−1
∑

j=k0

(

zT[j]z[j] − γ2wT[j]w[j]
)

. (3.21)

Then, we use the assumption that x[k0] = x0 = 0 and the fact of V (x[k]) ≥ 0 to obtain

k−1
∑

j=k0

zT[j]z[j] < γ2

k−1
∑

j=k0

wT[j]w[j]. (3.22)

We note that the above inequality holds for any k > k0 including the case of k → ∞,
and that we did not add any limitation on the switching signal up to now.

We summarize the above discussion in the following theorem.

Theorem 3.2 When all subsystems in (1.1) are Schur stable and have L2 gains
smaller than γ, the switched symmetric system (1.1) is exponentially stable and has an
L2 gain smaller than the same γ under arbitrary switching.
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Remark 3.1 From Lemma 3.1 and the proof of Theorem 3.1, we see that if all sub-
systems in (1.1) are Schur stable and have L2 gains smaller than γ, then there exists a
general Lyapunov matrix P = I for all subsystems, satisfying the LMI









−P PAi PBi 0

AT
i P −P 0 CT

i

BT
i P 0 −γI DT

i

0 Ci Di −γI









< 0. (3.23)

Hence, V (x) = xTx serves as a general Lyapunov function for all subsystems in the
sense of L2 gain.

Remark 3.2 Consider the continuous-time switched symmetric system

ẋ(t) = Aσ(t)x(t) + Bσ(t)w(t)

z(t) = Cσ(t)x(t) + Dσ(t)w(t),
(3.24)

where all the notations have the same meanings as in (1.1) except that the vectors x(t),
w(t), z(t) and the switching signal σ(t) are with respect to the continuous time t . We
assume that all subsystems in (3.24) are Hurwitz stable and have L2 gains smaller than
γ. Then, the LMI





AT
i P + PAi PBi CT

i

BT
i P −γI DT

i

Ci Di −γI



 < 0 (3.25)

has a general solution P = I for all i ∈ IN . Using the same technique as in the proof of
Theorem 3.1, we can prove that the switched symmetric system (3.24) is exponentially
stable and has an L2 gain smaller than γ under arbitrary switching.

4 Concluding Remarks

In this paper, we have studied stability and L2 gain properties for a class of switched
systems which are composed of a finite number of linear time-invariant symmetric sub-
systems. Assuming that all subsystems are Schur stable and have L2 gains smaller than
a positive scalar γ, we have shown for both stability and L2 gain analysis that there ex-
ists a general Lyapunov function V (x) = xTx for all subsystems, and that the switched
system is exponentially stable and achieves an L2 gain smaller than the same γ under
arbitrary switching.

We note finally that the result of the present paper can be extended to the switched
symmetric systems in a more general sense. More precisely, if the equations TAi = AT

i T ,

TBi = CT
i , Di = DT

i are satisfied for a constant matrix T > 0, then we consider

the similarity transformation A⋆i = T 1/2AiT
−1/2, B⋆i = T 1/2Bi, C⋆i = CiT

−1/2,
D⋆i = Di. Since stability and L2 gain properties of the system in this transformation
do not change and we can easily confirm that A⋆i = AT

⋆i, B⋆i = CT
⋆i, we can apply

the result we have obtained up to now for the system represented by the quadruplet
(A⋆i, B⋆i, C⋆i, D⋆i) and thus derive corresponding result for the original switched system
under arbitrary switching.
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Abstract: In this paper, we present explicit solutions of a class of linear
partial difference equations with constant coefficients, and two kinds of linear
partial difference equations with constant coefficients are discussed and their
explicit solutions are obtained. As an application we give examples to show
the efficiency of the solutions.
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1 Introduction

Difference equations often appear in the study of numerical methods, combinatorial enu-
meration and system analysis [5, 6]. There are many methods for solving the linear differ-
ence equations of one argument with constant coefficients such as method of generating
functions, method of Z transformation and that similar to the methods for solving the
linear differential equations [1, 2]. But there are few papers on the difference equations
of two variables or partial difference equations. In this paper two kinds of linear partial
difference equations with constant coefficients are discussed and their explicit solutions
are obtained.

2 Definitions and a Lemma

Definition 1 The following difference equation is called first order linear partial dif-
ference equation with constant coefficients

αu(t, s) + βu(t, s − 1) + γu(t − 1, s) + δu(t − 1, s − 1) + λ = 0, (1)

c© 2004 Informath Publishing Group. All rights reserved. 115
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where α, β, γ and δ are all constants, t and s are positive integers, and λ = λ(t, s) is a
given function.

For convenience, we will classify equations (1) as follows:
If α 6= 0, γ 6= 0, then (1) can be written as

u(t, s) = −
α

β
u(t, s − 1) −

γ

α
u(t − 1, s) −

δ

α
u(t − 1, s− 1) −

λ

α
. (2)

If α 6= 0, γ = 0, then (1) can be written as

u(t, s) = −
β

α
u(t, s − 1) −

δ

α
u(t − 1, s − 1) −

λ

α
. (3)

If α = 0, β 6= 0, γ 6= 0, then (1) can be written as

u(t, s − 1) = −
γ

β
u(t − 1, s) −

δ

β
u(t − 1, s − 1) −

λ

β
. (4)

Equation (1) also can be expressed by

u(t, s) = −
γ

β
u(t − 1, s + 1) −

δ

β
u(t − 1, s) −

λ

β
. (5)

If the term u(t − 1, s) of (4) is placed on the left-hand side, the other terms are moved
to the right-hand side, and t − 1 is replaced by t, then (4) can be written as

u(t, s) = −
β

γ
u(t + 1, s− 1) −

δ

γ
u(t, s − 1) −

λ

γ
. (6)

If α = 0, β 6= 0, γ = 0 or if α = 0, β = 0, γ 6= 0, the equations (1) are both actually
difference equations of one variable, which is not discussed here. If α = β = γ = 0,
δ 6= 0, then the equation (1) is trivial one, which is also not considered here.

Without loss of generality the equations (2) – (6) can be classified in following four
types:

(A) u(s, t) = au(t, s − 1) + bu(t − 1, s) + cu(t − 1, s − 1) + d(t, s),
(7)

u(t, 0) = F (t), u(0, s) = E(s).

(B) u(s, t) = au(t, s − 1) + bu(t − 1, s − 1) + d(t, s),
(8)

u(t, 0) = F (t).

(C) u(s, t) = au(t − 1, s + 1) + bu(t − 1, s) + d(t, s),
(9)

u(0, s) = E(s).

(D) u(s, t) = au(t + 1, s − 1) + bu(t, s − 1) + d(t, s),
(10)

u(t, 0) = F (t).

where a, b, c are constants and d(t, s) is a given function of t and s.

Definition 2 The following difference equation is called second order linear partial
difference equation with constant coefficients

au(t, s)+bu(t, s−1)+cu(t, s−2)+d(t−1, s−1)+eu(t−1, s)+fu(t−2, s)+g(t, s) = 0. (11)

where a, b, c, d, e, f are all constants, t ≥ 2, s ≥ 2 and g = g(t, s) is a given function.

In this paper we only discuss equation of type (E)

(E) u(t, s) = au(t − 2, s) + bu(t, s − 2) + g(t, s),

u(t, 0) = F0(t), u(t, 1) = F1(t), u(0, s) = E0(s), u(1, s) = E1(s).
(12)
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Lemma For the given constant a, b, c and nonnegative integers k and n, we set

R(n, k) =
∑

i1+i2+···+in=k
ir≥0 (r=1,2...,n)

n
∏

r=1

(H ∗ bir−1)

where

R(n, k) =

{

0, k > 0;

1, k = 0.
, H = ab + c, H ∗ bm−1 =

{

a, m = 0;

Hbm−1, m ≥ 1.

Then for the given function f(t), R(n, k) satisfies the following equation

t
∑

k=0

R(m, k)

t−k
∑

j=0

R(1, j)f(t− k − j) =

t
∑

k=0

R(m + 1, k)f(t − k).

The lemma is easy to verify by induction, so the proof is omitted.

3 Solution of Explicit Expressions of the Partial Difference Equations

In the sequel, we shall give main results of this paper.

Theorem 1 For t ≥ 1 and s ≥ 1,

(1) the solution of type (A) is

u(t, s) =

t−1
∑

k=0

R(s, k)F (t − k) +

t−1
∑

k=0

s−1
∑

j=0

R(j, k)M(t − k, s − j),

where

M(t, s) = bt−1[cu(0, s − 1) + bu(0, s)] +

t−1
∑

i=0

bid(t − i, s)

= bt−1[cE(s − 1) + bE(s)] +
t−1
∑

i=0

bid(t − i, s);

(2) the solution of type (B) is

u(t, s) =

s
∑

k=0

Ck
s as−kbkF (t − k) +

s−1
∑

k=0

k
∑

j=0

Cj
kak−jbjd(t − k, s − j);

(3) the solution of type (C) is

u(t, s) =
t
∑

k=0

Ck
t at−kbkE(t + s − k) +

t−1
∑

k=0

k
∑

j=0

Cj
kak−jbjd(t − k, s + k − j);

(4) the solution of type (D) is

u(t, s) =

s
∑

k=0

Ck
s as−kbkF (t + s − k) +

s−1
∑

k=0

k
∑

j=0

Cj
kak−jbjd(t + k − j, s − k).
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Proof We only prove (1) and (3), the other proofs are similar to each other, hence
omitted.

(1) For the problem (A), b 6= 0. Let us set N(t, s) = au(t, s − 1) + cu(t − 1, s − 1) +
d(t, s), then

u(t, s) = N(t, s) + bu(t − 1, s) = N(t, s) + b[N(t − 1, s) + bu(t − 2, s)]

= N(t, s) + bN(t − 1, s) + b2u(t − 2, s) = . . .
(13)

By induction we have

u(t, s) =

t−1
∑

k=0

bkN(t − k, s) + btu(0, s) =

t−1
∑

k=0

H ∗ bk−1u(t − k, s − 1) + M(t, s)

=

t−1
∑

k=0

R(1, k)u(t − k, s − 1) + M(t, s).

(14)

For any positive integer i (1 ≤ i ≤ s), it is easy to be tested by induction also that

u(t, s) =

t−1
∑

k=0

R(i, k)u(t − k, s − i) +

i−1
∑

j=0

t−1
∑

k=0

R(j, k)M(t − k, s − j), (15)

where i = s (15) is the solution to (A).
(3) The situation “γ = 0 in (1)” is equivalent to the situation “b = 0 in (A)”. But

the proof (1) is under the condition b 6= 0, so the solution of problem (B) can be not
the solution of (A) by letting b = 0. Now we will prove that for any positive integer i
(1 ≤ i ≤ s) the following holds:

u(t, s) =

i
∑

k=0

Ck
i ai−kbku(t − k, s − i) +

i−1
∑

k=0

k
∑

j=0

Cj
kak−jbjd(t − j, s − k). (16)

In fact, while i = 1, (16) becomes (8). Suppose (16) holds for i, then for i+1, substituting
u(t − k, s − i) in (16) by (8) we have

u(t, s) =

i
∑

k=0

Ck
i ai−kbk[au(t − k, s − i − 1) + bu(t− k − 1, s − i − 1) + d(t − k, s − i)]

+

i−1
∑

k=0

k
∑

j=0

Cj
kak−jbjd(t − j, s − k)

=
i
∑

k=0

Ck
i ai+1−kbku(t − k, s − i − 1) +

i
∑

k=0

Ck
i ai−kbk+1u(t − k − 1, s − i − 1)

+
i
∑

k=0

Ck
i ai−kbkd(t − k, s − i) +

i−1
∑

k=0

k
∑

j=0

Cj
kak−jbjd(t − j, s − k).

(17)
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The first two terms of (17) can be merged into one term by using formula Ck
i + Ck−1

i =

Ck
i+1, the third term can be merged into the last term by substituting k by j and i by k

respectively, hence

u(t, s) =
i+1
∑

k=0

Ck
i+1a

i+1−kbku(t − k, s − i − 1) +

(i+1)−1
∑

k=0

k
∑

j=0

Cj
kak−jbjd(t − j, s − k),

which shows that (16) is proved and by letting i = s (16) becomes the solution of (2).

Theorem 2 The solution to (E) is

u(t, s) = at1

s1−1
∑

k=0

Ck
k+t1−1b

ku(δ(t), s − 2k) + bs1

t1−1
∑

j=0

Cj
j+s1−1

aju(t − 2j, δ(s))

+

s1−1
∑

k=0

t1−1
∑

j=0

Ck
k+ja

jbkg(t − 2j, s − 2k),

(18)

where t1 =
[ t − 1

2

]

, s1 =
[s − 1

2

]

, [x] expresses the minimum integer which is greater

than or equals to x,

δ(x) =

{

1, if x is odd;

0 if x is even.

Proof If b = 0 in (12), then the equation becomes the second order difference equa-
tion of one argument t. The solution can be easily calculated as follows:

u(t, s) = at1u(δ(t), s) +

t1−1
∑

k=0

akg(t − 2k, s). (19)

If b 6= 0 in (12), taking u(t, s−2) in (12) as an iterative term calculated successively one
obtains

u(t, s) = au(t − 2, s) + bu(t, s − 2) + g(t, s)

= au(t − 2, s) + b[au(t − 2, s − 2) + bu(t, s − 4) + g(t, s − 2)] + g(t, s)

= au(t − 2, s) + abu(t − 2, s − 2) + b2[au(t − 2, s − 4)

+ bu(t, s − 6) + g(t, s − 4)] + bg(t, s − 2) + g(t, s)

= au(t − 2, s) + abu(t − 2, s − 2) + ab2u(t − 2, s − 4) + b3u(t, s − 6)

+ b2g(t, s − 4) + bg(t, s − 2) + g(t, s)

Hence one can get the following by induction

u(t, s) = a

s1−1
∑

k=0

bku(t − 2, s − 2k) + bs1u(t, δ(s)) +

s1−1
∑

k=0

bkg(t, s − 2k). (20)
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Now we will prove by induction again that for any positive integer i (1 ≤ i ≤ t1)

u(t, s) = ai

s1−1
∑

k=0

Ci−1

k+i−1
bku(t − 2i, s − 2k) + bs1

i−1
∑

j=0

Cj
s1+j−1

aju(t − 2j, δ(s))

+

s1−1
∑

k=0

i−1
∑

j=0

Cj
k+ja

jbkg(t − 2j, s − 2k).

(21)

In fact, when i = 1 (21) becomes (20). Suppose (21) holds for i, then for i + 1,
substituting the term u(t − 2i, s − 2k) in (21) by (20) one can get:

u(t, s) = ai

s1−1
∑

k=0

Ci−1

k+i−1
bk

[

a

[ s−2k−1

2 ]−1
∑

j=0

bju(t − 2i − 2, s − 2k − 2j)

+ b[
s−2k−1

2 ]−1u(t − 2i, δ(s − 2k)) +

[ s−2k−1

2 ]−1
∑

j=0

bjg(t − 2i, s − 2k − 2j)

]

+ bs1

i−1
∑

j=0

Cj
s1+j−1

aju(t − 2j, δ(s)) +

s1−1
∑

k=0

i−1
∑

j=0

Cj
k+ja

jbkg(t − 2j, s − 2k).

(22)

Because

[

s − 2k − 1

2

]

=

[

s − 1

2
− k

]

=

[

s − 1

2

]

− k = s1 − k, δ(s − 2k) = δ(s),

s1−1
∑

k=0

Ci−1

k+i−1
bk

s1−k−1
∑

j=0

bj =

s1−1
∑

k=0

C
(i+1)−1

k+(i+1)−1
bk,

s1−1
∑

k=0

Ci−1

k+i−1
= Ci−1

s1+i−1
,

hence (22) can be written as

u(t, s) = ai+1

s1−1
∑

k=0

Ci−1

k+i−1
bk

s1−k−1
∑

j=0

bju(t − 2i − 2, s − 2k − 2j)

+ ai

s1−1
∑

k=0

Ci−1

k+i−1
bs1u(t − 2i, δs) + ai

s1−1
∑

k=0

Ci−1

k+i−1
bk

s1−k−1
∑

j=0

bjg(t − 2i, s − 2k − 2j)

+

s1−1
∑

k=0

i−1
∑

j=0

Cj
k+ja

jbkg(t − 2j, s − 2k) + bs1

i−1
∑

j=0

Cj
s1+j−1

aju(t − 2j, δs)

= ai+1

s1−1
∑

k=0

C
(i+1)−1

k+(i+1)−1
bku(t − 2(i + 1), s − 2k) + bs1

(i+1)−1
∑

j=0

Cj
s1+j−1

aju(t − 2j, δs)

+ ai

s1−1
∑

k=0

C
(i+1)−1

k+i−1
bkg(t − 2i, s − 2k) +

s1−1
∑

k=0

i−1
∑

j=0

Cj
k+ja

jbkg(t − 2j, s − 2k)
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= ai+1

s1−1
∑

k=0

C
(i+1)−1

k+(i+1)−1
bku(t − 2(i + 1), s − 2k) + bs1

(i+1)−1
∑

j=0

Cj
s1+j−1

aju(t − 2j, δ(s))

+

s1−1
∑

k=0

(i+1)−1
∑

j=0

Cj
k+ja

jbkg(t − 2j, s − 2k).

One obtains (21). With i = t1 =
[ t − 1

2

]

, (21) becomes (18). It is easy to know that

(19) is the exception of (18), thus the proof of Theorem 2 is completed.

4 Examples

Example 1 Find the numbers of the shortest lattice paths with diagonal steps [3].
On the coordinate plane, the number of the shortest lattice paths with diagonal steps

is called Delannoy number [3], which satisfies the difference equation:

D(t, s) = D(t, s − 1)D(t − 1, s) + D(t − 1, s − 1),

D(t, 0) = D(0, s) = 1.
(23)

Problem (23) is the type of (A), where a = b = c = 1, d = 0 and its solution is

D(t, s) =

t−1
∑

k=0

R(s, k)F (t − k) +

t−1
∑

k=0

s−1
∑

j=0

R(j, k)M(t − k, s − j),

where F (t) = D(t, 0) = 1, M(t, s) = D(0, s − 1) + D(0, s) = 2, from which one gets

D(t, s) =

t−1
∑

k=0

R(s, k) + 2

t−1
∑

k=0

s−1
∑

j=0

R(j, k). (24)

Because

H = ab + c = 2, H ∗ bm−1 =

{

1, m = 0;

2, m ≥ 1;

R(n, k) =
∑

i1+i2+···+in=k,
ir≥0, (r=1,2...,n)

n
∏

r=1

(H ∗ bir−1) =

n
∑

m=0

Cm
n

(

∑

i1+i2+···+in−m=k,

ir≥1, (r=1,2...,n−m)

n−m
∏

r=1

(H ∗ bir−1)

)

=
n
∑

m=0

Cm
n

(

∑

i1+i2+···+in−m=k,

ir≥1, (r=1,2...,n−m)

2n−m

)

=
n
∑

m=0

Cm
n 2n−m

(

∑

i1+i2+···+in−m=k,

ir≥1, (r=1,2...,n−m)

1

)

.

From the literature [4] we know that the number of the natural number solution to

the equation x1 + x2 + · · · + xn−m = k is Cn−m−1

k−1
, hence

R(n, k) =
n
∑

m=0

2n−mCm
n Cn−m−1

k−1
.
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It follows that

t−1
∑

k=0

R(s, k) =

t−1
∑

k=0

s
∑

m=0

2s−mCm
s Cs−m−1

k−1
=

s
∑

m=0

2s−mCm
s

(

t−1
∑

k=0

Cs−m−1

k−1

)

=

s
∑

m=0

2s−mCm
s

(

t−1
∑

k=s−m

Cs−m−1

k−1

)

=

s
∑

m=0

2s−mCm
s Cs−m

t−1 =

s
∑

m=0

2mCm
s Cm

t−1,

where
t−1
∑

k=s−m

Cs−m−1

k−1
= Cs−m

t−1 .

Calculating shows that

2

t−1
∑

k=0

s−1
∑

j=0

R(j, k) = 2

s−1
∑

j=0

(

t−1
∑

k=0

R(j, k)

)

= 2

s−1
∑

j=0

j
∑

m=0

2mCm
j Cm

t−1

= 2

s−1
∑

m=0

s−1
∑

j=m

2mCm
j Cm

t−1 = 2

s−1
∑

m=0

2mCm
t−1

(

s−1
∑

j=m

Cm
j

)

= 2
s−1
∑

m=0

2mCm
t−1C

m+1
s =

s−1
∑

m=0

2m+1Cm
t−1C

m+1
s ,

where
s−1
∑

j=m

Cm
j = Cm+1

s .

With the above result one gets

D(t, s) =

t−1
∑

k=0

R(s, k) + 2

t−1
∑

k=0

s−1
∑

j=0

R(j, k) =

s
∑

m=0

2mCm
s Cm

t−1 +

s−1
∑

m=0

2m+1Cm+1
s Cm

t−1

=

s
∑

m=0

2mCm
s (Cm

t−1 + Cm−1

t−1 ) =

s
∑

m=0

2mCm
s Cm

t .

This is the very result given out of [3].

Example 2 Find all eigenvalues of the following matrix B

B =





















α γ
. . .

α β
. . .

γ
. . .

β α





















,

where the matrix B has the following characteristics:
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1. All the main diagonal elements of B are α.

2. All the skew diagonal elements of the downright square submatrix of B are β. If
the number of the submatrix‘s order is odd, then the cross-element of the main diagonal
line of the submatrix and its skew diagonal line is still α (the line connecting the upright
corner of a square matrix with its downleft corner is called skew diagonal line).

3. The remained elements of B are all γ.

To find the eigenvalues of the matrix B is to find the roots of equation det (λI−B) = 0,
where I is a unit matrix of order equivalent to B. Let us first calculate det B. In fact,
the matrix B is similar to matrix A(t, s) where

A(t, s) =































α β
β α

α β
β α

. . .
α β
β α

α
. . .

α































(t+s)×(t+s)

(25)

(t ≥ s ≥ 0) is a matrix of order (t + s)× (t + s), where there are s submatrixes of order

2:

(

α β
β α

)

, and a submatrix of order (t− s):





α
. . .

α



, the unlisted elements are

all γ, which is shown above.

It is easy to know that

det B = det A(t, s) = 2(α − β) detA(t, s − 1) − (α − β)2 detA(t − 1, s − 1),

t ≥ s ≥ 1.
(26)

The initial condition is that

detA(t, 0) = (α − γ)t−1[α + (t − 1)γ], detA(0, 0) = 1.

This is the very type of problem (B), where

a = 2(α − β), b = −(α − β)2, c = 0, F (t) = (α − γ)t−1[α + (t − 1)γ].

The solution of it can be calculated as follows

detA(t, s) = (α − β)s(α + β − 2γ)s−1(α − γ)t−s−1

× {(α + β − 2γ)[α + (t − 1)γ] + sγ(α − β)}.
(27)

Substituting elements α, β and γ of matrix B by λ − α, −β and −γ respectively,
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then we can get immediately eigenvalues of B:

(i) If t > s > 1, then

λ1 = (α − β) is a root of s-multiplicity;

λ2 = (α − γ) is a root of (t − s − 1)-multiplicity;

λ3 = (α + β − 2γ) is a root of (s − 1)-multiplicity;

λ4 =
1

2

{

[(α + β − 2γ) + (α + (t − 1)γ) + sγ]

+
√

[(α + β − 2γ) + (α + (t + s − 1)γ)]2 − 4[(α + β − 2γ)(α + (t − 1)γ + sγ(α − β))]
}

,

λ5 =
1

2

{

[(α + β − 2γ) + (α + (t − 1)γ) + sγ]

−
√

[(α + β − 2γ) + (α + (t + s − 1)γ)]2 − 4[(α + β − 2γ)(α + (t − 1)γ + sγ(α − β))]
}

are two single roots.

(ii) If t = s ≥ 1, then

det A(t, s) = (α − β)s(α + β − 2γ)s−1(α + β + (s − 2)γ),

λ1 = (α − β) is a root of s-multiplicity;
λ2 = (α + β − 2γ) is a root of (s − 1)-multiplicity;
λ3 = (α + β − 2γ) is a single root.

(iii) If t > s = 0, then

detA(t, s) = (α − γ)t−1(α + (t − 1)γ);

λ1 = α − γ is a root of (t − 1)-multiplicity;
λ2 = α + (t − 1)γ is a single root.

5 Conclusions

This paper has been focused on the study of the solution’s explicit expressions of some
kind of partial difference equations. The method is very simple, but the results can be
used in the study of some kind of combinatorial enumerations and some other related
fields.
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