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1 Introduction

The important concept of dissipativity developed by Willems [14, 15], Hill and Moy-
lan [5, 6] and Anderson [1], has been proven very successful in many feedback design syn-
thesis problems [1, 11, 12, 14]. This concept which was originally inspired from electrical
network considerations, in particular passive circuits, generalizes many other important
concepts of physical systems such as positive realness, passivity, and losslessness. As
such, many important mathematical relations of dynamical systems such as the bounded
real lemma, positive real lemma, the existence of spectral factorization, and L2-gain of
linear and nonlinear systems have been shown to be consequences of this important the-
ory. Moreover, there has been renewed interest lately on this important concept as having
been instrumental in the derivation of the solution of the nonlinear H∞ control problem
[12]. It has been shown that a sufficient condition for the solution to this problem is the
existence of a solution to some dissipation inequalities.
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However, the theory of dissipativeness more generally studied by Hill and Moylan [5, 6],
Willems [14, 15] is purely from a deterministic setting. Many physical systems are how-
ever stochastic; for example, a control system is constantly perturbed by unwanted dis-
turbances, a communication system is affected by noise while an aeroplane is frequently
fluttered by air pockets. In addition, many physical systems are subject to random
changes which may result from abrupt phenomenon such as component and interconnec-
tion failures. Hence fault-tolerant systems have been developed to ensure high reliability
and performance in such situations.

Therefore, in this paper, we extend the theory of dissipativity to include stochastic
state-delayed systems or systems that are subject to random disturbances. In particular,
we consider a class of nonlinear stochastic systems with state-delay and random Markov-
ian jump parameters or disturbances. This class of systems belongs to the class of hybrid
systems with continuous state dynamics and discrete parameter variation. The control
and filtering problems for this class of systems has been discussed by many authors
[3, 9, 10]. In particular, Rishel [10] has derived the minimum principle for the general
nonlinear case without state-delay and in which the adjoint equations are deterministic.
While Ji and Chizeck [3, 7] have derived the structural properties, namely, controllability,
observability and stability for the linear case. Furthermore, the problems of controller
design for the linear case using LQ and LQG criteria have been discussed extensively in
Mariton [9].

Thus, in this paper, we discuss additional structural (or internal) properties of this
class of systems which are closely associated with their stability. We discuss the dissipa-
tive properties of this class of systems, which determine whether they absorb energy and
conserve it, or dissipate it; and based on this property, what could we infer about the
stability of such systems? We also give a fresh interpretation of the concept of dissipativ-
ity as both an input/output property and an internal property of a system. The closest
work to the current one in this paper can be found in [4] for systems without state-delay.

The paper is organized as follows. In Section 2, we define the problem and discuss
necessary and sufficient conditions for a nonlinear state-delayed system with Markov
jump disturbances to be dissipative. We continue this discussion in Section 3 for the case
of a quadratic supply rate and discuss the relationship between the dissipativity of the
system and its L2-gain, which leads to the bounded-real lemma for this class of systems.
Finally, in Section 4, we discuss the implications of dissipativity on the stability of the
system. Conclusions are then given in Section 5.

2 Dissipativity of State-Delayed Nonlinear Stochastic Systems with Jumps

In this section, we define the concept of dissipativity of a state-delayed nonlinear system
with jump Markov disturbances. The notation is standard except where specified other-
wise. Moreover, R+ is the positive real-line, Rn is the n-dimensional Euclidean space and
‖ · ‖ represents the Euclidean vector norm. The spaces L1,loc((t0, t1), R), L2([0, T ], Rn)
are the standard Lebesgue spaces of locally integrable on (t0, t1) and square integrable
over [0, T ] vector functions on Rn respectively. While L2([0, T ], (Ω,F , P )) is the corre-
sponding space over the probability space (Ω,F , P ), in which Ω is the sample space, F
is the σ-algebra generated by Ω and P is a probability measure over F . Lastly, E will
denote the mathematical expectation operator.

Let us at the outset consider the following piece-wise autonomous nonlinear state-
delayed system defined over an open subset X × S of Rn × Z+ with X containing the
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origin,

Σ: ẋ(t) = f(x(t), x(t − d), u(t), r(t)),

x(t) = φ(t), t ∈ [−d, 0], x(t0) = x0 = φ(t0), (1)

y(t) = h(x(t), r(t)), (2)

where x(t) ∈ X is the state vector, u(t) ∈ U ⊂ Rp is the input function belonging to
an input space U , d > 0 is the delay, y(t) ∈ Y ⊂ Rm is the output function which
belongs to the output space Y ⊂ Rm, and φ(t) ∈ C[−d, 0] is the initial function.
Besides the dependence on the input and initial conditions, the state of the system is
also a function of the discrete parameter r(t) which is a continuous-time homogeneous

Markov process with finite discrete state-space S , {1, 2, . . . , l}. We assume that the

probabilities Pt , (P1t, . . . , Plt), with Pit , P (r(t) = i), i = 1, . . . , l, satisfy the forward
Kolmogorov equation

∂Pt

∂t
= ΛPt, P0 = P̄ , t ∈ [0, T ],

where Λ = [λij ]i,j∈S is the transition matrix, and λij are real numbers such that for
i 6= j, λij ≥ 0, and for all i ∈ S, λii = −∑

j 6=i λij . In other words, the transition

probabilities are given by

P [r(t + h) = j, r(t) = i] =

{

λijh + o(h) if j 6= i,

1 + λiih + o(h) if j = i,

where o(h) are the remainder terms such that lim
h→0

o(h)

h
= 0.

The functions f : X × X × U × S → X , h : X × S → Y are real smooth functions of
their arguments for each r(t) ∈ S. We also assume the following.

Assumption 2.1 The system Σ is causal, time-invariant and finite-dimensional.
Further, the functions f(·, ·, ·, r(t)), h(·, r(t)) for each value of r(t) ∈ S are smooth
C∞ functions of x ∈ X and u ∈ U such that the system (1) is well-defined; that is,
for any initial state x(t0) ∈ X , initial mode r(t0) = r0 ∈ S and any admissible input,
u(t) ∈ U , there exists a unique solution x(t, t0, x0, xt0−d, r0, u) to (1) on [t0,∞) which
continuously depends on the initial data.

Alternatively, the following assumptions are also sufficient to guarantee the existence
and uniqueness of solutions to the system Σ [2].

Assumption 2.2 For all t, t1, t2 ∈ [−d,∞), r(t) ∈ S,

(a) (Lipschitz condition)

‖f(x(t2), x(t2 − d), u(t2), r(t))) − f(x(t1), x(t1 − d), u(t1), r(t))‖
≤ K1‖x(t2) − x(t1)‖ + K2‖x(t2 − d) − x(t1 − d)‖ + K3‖u(t2) − u(t1)‖

∀x(t2), x(t1), x(t2 − d), x(t1 − d) ∈ X , u(t1), u(t2) ∈ U ;

(b) (Restriction on Growth)

‖f(x(t), x(t − d), u(t), r(t))‖2P ≤ K2
1(1 + ‖x(t)‖2) + K2

2(1 + ‖x(t − d)‖2)

+ K2
3(1 + ‖u(t)‖2), ∀x(t), x(t − d) ∈ X , u ∈ U

‖h(t, x(t), r(t))‖ ≤ K4(1 + ‖x(t)‖2), ∀x(t) ∈ X ,
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where K1, K2, K3, K4 are positive constants.

Now let Ft be the σ-algebra generated by r(t), t ∈ [0, T ]. Then we take the input
space U and output space Y, to be Ft-measurable, and piecewise continuous. Similarly,
the functions f(·, ·, ·), h(·, ·) are also assumed to be Ft measurable by continuity with
respect to x ∈ X .

If the system Σ is viewed as a black box with only inputs and outputs, then in the above
representation, the system Σ is a map Σ: U × X × S → Y which transforms inputs to
outputs through state functions x(t) ∈ X for each r(t) ∈ S. In view of this, if we assign
an energy measure to both the inputs and outputs of the system, then it is possible
to infer the internal behavior of the system by comparing these two quantities. This
motivates the following definition of a supply rate to the system.

Definition 2.1 A function s(u(t), y(t)) : U × Y → R is a supply rate to the system
Σ if s(·, ·) is piecewise continuous and locally integrable, i.e.,

E

[ t1
∫

t0

|s(u(t), y(t))| dt

]

< ∞ (4)

or s(·, ·) ∈ L1,loc(t0, t1) for any (t0, t1) ∈ R2
+, for all u(t) ∈ U .

Remark 2.1 The supply rate s(·, ·) is a measure of the instantaneous power into the
system. Part of this power is stored as internal energy and part of it is dissipated.

It follows from the above definition of supply rate that, to infer about the internal
behavior of the system, it is sufficient to evaluate the expected total amount of energy
expended by the system over a finite time interval. This leads us to the following defini-
tion.

Definition 2.2 The system Σ is dissipative with respect to (wrt) the supply rate
s(t) = s(u(t), y(t)) if for all u(t) ∈ U and t0, t1 ∈ R2

+,

E

[ t1
∫

t0

s(u(t), y(t)) dt

]

≥ 0; ∀ t1 ≥ t0. (5)

when evaluated along any trajectory of the system starting at t0, x(t) = 0.

Remark 2.2 The above definition suggests that, the dissipativity of the system is an
input-output property. This is also the notion put forward in [5]. Furthermore, it also
raises the following question: Can every finite dimensional, time-invariant, causal system
be rendered dissipative by a suitable choice of input? The answer to this question will
be given in due course, but in short it is: yes and no!

The above Definition 2.2 being an inequality postulates the existence of a storage func-
tion and a possible dissipation rate for the system. It follows that if the system is assumed
to have some stored energy which is measured by a function Ψ: R+×X × X × S → R+,
then for the system to be dissipative, it is necessary that in the transition from t0 to t1,
the total amount of energy stored is less than the amount expended. This suggests the
following alternative definition of dissipativity.
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Definition 2.3 The system Σ is said to be dissipative with respect to a supply rate
s(u(t), y(t)) if for all (t0, t1) ∈ R2

+ there exist positive-semidefinite functions (storage
functions) Ψ: R+ ×X × X × S → R+, such that the inequality

EΨ(t1, x(t1), x(t1−d), r(t1))−Ψ(t0, x(t0), x(t0−d), r(t0)) ≤ E

[ t1
∫

t0

s(u(t), y(t)) dt

]

(6)

is satisfied for all t1 ≥ t0, modes r(t1), r(t2) ∈ S and initial states x(t0−d), x0 ∈ X × X ,
where x(t1) = x(t1, t0, x0, xt0−d, r0, u).

In the sequel we shall also use the following notations x(ti) = xti
= xi, x(ti − d) =

xti−d, r(ti) = ri, i ∈ Z.

Remark 2.3 The system is also said to be lossless if the above inequality (6) is satisfied
as an equality.

The above inequality (6) can be converted to an equality by introducing the dissipation
rate d : M×U × S → R according to the following equation

EΨ(t1, xt1 , xt1−d, r1) − Ψ(t0, x0, xt0−d, r0) = E

[ t1
∫

t0

[s(t) + d(t)] dt

]

,

∀ t1 ≥ t0, ∀ r1, r0 ∈ S.

(7)

Remark 2.4 The dissipation rate is nonnegative if the system is dissipative. Moreover,
the dissipation rate uniquely determines the storage function Ψ(·, ·, ·, r(t)) for each r(t) ∈
S [15].

We now define the concept of available storage, the existence of which determines
whether the system is dissipative or not.

Definition 2.4 The available storage Ψa(t, x, r(t)) for each r(t) ∈ S of the dyna-
mical system Σ is the quantity:

Ψa(t, x(t), x(t − d), r(t)) = sup
x0=x, u∈U , t≥0

−E

[ t
∫

0

s(u(τ), y(τ)) dτ

]

, (8)

where the supremum is taken over all possible inputs, u ∈ U starting at x and time t0 = 0.

It follows that, if the system is dissipative, then the available storage is well-defined
and finite in each state of the system x, and mode r0. Moreover, it determines the
maximum amount of energy which may be extracted from the system Σ. This is stated
in the following theorem.

Theorem 2.1 The available storage, Ψa(·, ·, ·, r(t)) for each r(t) ∈ S, is finite if
and only if (iff) the system is dissipative. Furthermore, any other storage function is
lower bounded by Ψa(·, ·, ·, r(t)) for each r(t) ∈ S, i.e., 0 ≤ Ψa(·, ·, ·, r(t)) ≤ Ψ(·, ·, ·, r(t)),
r(t) ∈ S.

Proof Notice that Ψa(·, ·, ·, ·) ≥ 0 since it is the supremum over a set with the zero
element (at t = 0). Now assume that Ψa(·, ·, ·, ·) < ∞. We have to show that the system
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is dissipative, i.e., for any (t0, t1) ∈ R2
+

Ψa(t0, x0, x(t0 − d), r0) + E

[ t1
∫

t0

s(u(τ), y(τ)) dτ

]

≥ EΨa(t1, x1, x(t1 − d), r1),

∀x0, x1 ∈ X , r0, r1 ∈ S.

(9)

In this regard, notice that from (8)

EΨa(t1, x1, x(t1 − d), r1) − Ψa(t0, x0, x(t0 − d), r0) = sup
x0,u

E

[

−
t1

∫

t0

s(t) dt

]

,

∀ r0, r1 ∈ S.

(10)

This implies that

EΨa(t1, x1, x(t1 − d), r1) ≥ Ψa(t0, x0, x(t0 − d), r0) + E

[ t1
∫

t0

s(t) dt

]

, (11)

and since all the above quantities are greater or equal to zero, it implies that Ψa(·, ·, ·, r(t))
satisfies the dissipation inequality (6) for each r(t).

Conversely, assume that Σ is dissipative. Then the dissipation inequality (6) implies
that

Ψ(t0, x0, xt0−d, r0) + E

[ t1
∫

t0

s(t) dt

]

≥ EΨ(t1, x1, xt1−d, r1) ≥ 0;

∀x0, x1 ∈ X , r0, r1 ∈ S,

(12)

by definition. Therefore,

Ψ(t0, x0, xt0−d, r0) ≥ −E

[ t1
∫

0

s(t) dt

]

+ E

[ t0
∫

0

s(t) dt

]

(13)

which implies that

Ψ(t0, x0, xt0−d, r0) ≥ sup
x=x0, u∈U , t≥0

E

[

−
t1

∫

0

s(t) dt

]

= Ψa(t0, x0, xt0−d, r0). (14)

Hence Ψa(t, x, x(t − d), r(t)) < ∞ ∀x ∈ X , r(t) ∈ S.

Remark 2.5 The above theorem summarizes the answer to the question we raised
above, that dissipativity is both an input/output property and an internal property. It
suggests that a system that is not dissipative wrt one supply rate may be dissipative wrt
to another. It therefore follows that the system must possess some internal structure
such that, the available storage Ψa(·, ·, ·, r(t)) is well-defined for each r(t) ∈ S and in
each state of the system for a particular supply rate.
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Remark 2.6 The importance of the above theorem in checking dissipativeness of
the nonlinear system Σ cannot be overemphasized. It follows that, if the system is
reachable from the origin {0}, then by an appropriate choice of an input u(t) such
thatΨa(·, ·, ·, r(t)), r(t) ∈ S is finite, it can be rendered dissipative. However, evaluating
Ψa(·, ·, ·, ·) is a difficult task without the output of the system specified a priori or solving
the state equations. This therefore calls for an alternative approach for determining the
dissipativeness of the system. This is discussed in the next section.

3 Relationship with L2-gain

In this section, we discuss the connection between the dissipativity of the nonlinear system
Σ with its L2-gain. In the classical paper by Willems [14], the relationship between
dissipativity and Linear Quadratic (LQ)-control has been shown and this relationship
has been exploited to prove the existence of solutions to certain infinite-horizon LQ-
control problems leading to the Algebraic-Ricatti equation (ARE). Similarly, we also
discuss the relationship between the dissipativity of the nonlinear system with certain
Hamilton-Jacobi equations arising in the L2-gain optimization of the nonlinear system.
To this end and for the purpose of clearity, let us consider an affine representation Σa of
the system Σ defined by:

Σa : ẋ(t) = f(x(t), x(t − d), r(t)) + g(x, r(t))u(t), (15)

x(t) = φ(t), t ∈ [−2d, 0], x(t0) = x0 = φ(t0)

y(t) = h(x(t), r(t)), (16)

where g(·, ·) ∈ C∞(X × S) ∈ Rn×k. In this case, our existence and uniqueness Assump-
tions 2.2 take the following form:

Assumption 3.1 For all t1, t2 ∈ [−2d,∞), r(t) ∈ S,

(a) (Lipschitz condition)

‖f(x(t2), x(t2 − d), r(t)) − f(x(t1), x(t1 − d), r(t))‖ + ‖g(x(t2), r(t)) − g(x(t1), r(t))‖
≤ K1‖x(t2) − x(t1)‖ + K2‖x(t2 − d) − x(t1 − d)‖ + ‖u(t2) − u(t1)‖,

∀x(t1), x(t2) ∈ X , u(t1), u(t2) ∈ U ;

(b) (Restriction on growth)

‖f(x(t), x(t − d), r(t))‖2 + ‖g(x(t), r(t)‖2 ≤ K2
1 (1 + ‖x‖2) + K2

2 (1 + ‖x(t − d)‖2)

+ K2
3 (1 + ‖u(t)‖2), ∀x(t), x(t − d) ∈ X , u(t) ∈ U ,

where K1, K2, K3 are positive constants and ‖g‖2 = Tr(ggT ) represents the matrix trace
norm.

The question we wish to answer in this section is the following: If we restrict the
input space U of the system to be the space L2[−2d,∞), then under what conditions is
the system dissipative ? or can be rendered dissipative? To motivate the discussion, we
expand the definition of L2-gain [12] as follows.
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Definition 3.1 The system (15) is said to have L2-gain from u(t) to y(t) less than
or equal to some number γ′ > 0 if for all (t0, t1) ∈ [−d,∞), initial state vector x0 ∈ X ,
and mode r0 ∈ S, the response of the system y(t) due to any u(t) ∈ L2[0,∞) satisfies

E

[ t1
∫

t0

‖y(t)‖2 dt

]

≤ 1

2
γ

′2

t1
∫

t0

(‖u(t)‖2 + ‖u(t − d)‖2) dt + β(x0, r0); ∀ t1 ≥ t0 (17)

and some class K functions [13] β : X × S → R+, β(0, r(t)) = 0 ∀ r(t) ∈ S.

Remark 3.1 In the above definition, if d = 0, we recover the usual definition of
L2-gain for non-delay systems. In this regard, right-hand side represents an average.

Moreover, in the sequel we shall let γ = γ′/
√

2 and call γ the L2-gain of the system with
a slight abuse of the definition.

Remark 3.2 It is also obvious from the definition of L2-gain and dissipativity of the
nonlinear system (15) wrt to the supply rate s(u(t), y(t)), that, dissipativity of the
system wrt the supply rate s(u(t), y(t)), implies finite L2-gain ≤ γ.

Furthermore, from the definition of dissipativity given in (6), if the function Ψ(t, x(t),
x(t− d), r(t)) belongs to C1(R+ ×X × X ), it is possible to go from the integral version
of the above dissipation inequality (6) to the differential form. This is stated in the
following lemma. We shall also be particularly interested in the following supply rate
s(u(t), y(t)) = 1

2γ2(‖u(t)‖2 + ‖u(t − d)‖2) − 1
2‖y(t)‖2, γ > 0.

In the sequel, we shall also use the notation r(t) = i and r(t) = j, i, j ∈ S.

Lemma 3.1 The nonlinear system Σa is dissipative wrt the supply rate

s(u(t), y(t)) =
1

2
γ2(‖u(t)‖2 + ‖u(t − d)‖2) − 1

2
‖y(t)‖2,

if there exist some C1 nonnegative functions Ψ: R × X × X × S → R+ such that the
following differential dissipation inequality is satisfied for all x(t) ∈ X , r(t) ∈ S:

Ψt(t, xt, xt−d, r(t)) + Ψxt
(t, xt, xt−d, r(t))[f(xt, xt−d, r(t)) + g(xt, r(t))u]

+ Ψxt−d
[f(xt−d, xt−2d, r(t − d)) + g(xt−d, r(t − d))u(t − d)]

+
∑

r(t)=j∈S

λijΨ(t, xt, xt−d, j) −
1

2
γ2(‖u(t)‖2 + ‖u(t − d)‖2) +

1

2
‖y(t)‖2 ≤ 0,

Ψ(t, 0, 0, r(t)) = 0 ∀ t ∈ R, r(t) = i, u(t), u(t − d) ∈ L2[−d,∞),

(18)

where Ψt(·, ·, ·, ·), Ψxt
(·, ·, ·, ·) and Ψxt−d

(·, ·, ·) are the row vectors of partial derivatives
of Ψ(·, ·, ·, ·) wrt t, xt and xt−d respectively.

Proof Without any lost of generality, we will take t0 = 0 and t1 = T . Now consider
the following variation of the Dynkin’s formula [8]:

EΨ(T, x(T ), x(T − d), r(T )) − Ψ(0, x0, x−d, r0)

= E

[ T
∫

0

LΨ(t, x(t), x(t − d), r(t)) dt

]

∀T > 0,
(19)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(3) (2004) 243–256 251

where L is the infinitesimal generator of the process (x(t), r(t)), t ≥ 0 [8, 9]. Then using
the above formula (19) in the dissipation inequality (6) and the fact that

LΨ(t, xt, xt−d, r(t)) = Ψt(t, xt, xt−d, r(t))

+ Ψxt
(t, xt, xt−d, r(t))[f(xt, xt−d, r(t)) + g(xt, r(t))u]

+ Ψxt−d
[f(xt−d, xt−2d, r(t − d)) + g(xt−d, r(t − d))u(t − d)]

+
∑

r(t)=j∈S

λijΨ(x, r, j), r(t) ∈ S,

(20)

the result follows.

Remark 3.3 By virtue of the above lemma, we will henceforth consider only C1 storage
functions in this paper.

Lemma 3.2 For the nonlinear system Σa, we have the following implications: (a) ⇔
(b) → (c)

(a) the system Σa satisfies the dissipation inequality (18);
(b) the system Σa is dissipative wrt to the supply rate s(u(t),y(t));
(c) the system Σa has L2-gain from u(t) to y(t) less than or equal to γ.

Proof (sketch) (a) ⇔ (b) follows from Lemma 3.1 above, while (c) follows from
(6),(17) and the fact that EΨ(·, ·, ·, ·) ≥ 0 by Theorem 2.1.

We now state the main result of this section which is a consequence of Lemmas 3.1
and 3.2 above.

Theorem 3.1 A necessary and sufficient condition for the nonlinear system (15) to
be dissipative wrt the supply rate

s(u(t), y(t)) =
1

2
γ2(‖u(t)‖2 + ‖u(t − d)‖2) − 1

2
‖y(t)‖2

is that there exist a set of smooth positive-semidefinite solutions of the following stochastic
Hamilton-Jacobi (HJ) inequality for each r(t) ∈ S:

Ψt(t, xt, xt−d, r(t)) + Ψxt
(t, xt, xt−d, r(t))f(xt, xt−d, r(t))

+ Ψxt−d
(t, xt, xt−d, r(t))f(xt−d, xt−2d, r(t)) +

1

2γ2
Ψxt

g(xt, r(t))g
T (xt, r(t))Ψ

T
xt

+
1

2γ2
Ψxt−d

g(xt−d, r(t − d))gT (xt−d, r(t − d))ΨT
xt−d

+
1

2
hT (xt, i)h(xt, i)

+
∑

r(t)=j∈S

λijΨ(t, xt, xt−d, j) ≤ 0, Ψ(t, 0, 0, i) = 0 ∀x ∈ X , r(t) = i ∈ S.

(21)

Proof (Necessity) Theorem 2.1 has shown that if the system Σa is dissipative, then
there exists at least one set of solutions to the dissipation inequality (6) for each r(t) ∈ S
which is given by the available storage, Ψa(t, xt, xt−d, r(t)), r(t) ∈ S. We now show that
any solution of the dissipation inequality (6) is also a solution to the HJ-inequality (21).
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If the system is dissipative with storage function Ψ(·, ·, ·, ), then along any trajectory
of the system, the differential dissipation inequality (18) is satisfied. The left-hand-side
(LHS) of this inequality is a quadratic function of u with maximum at

u⋆(t, xt) =
1

γ2
gT (xt, r(t))Ψ

T
xt

(xt, r(t)). (22)

The maximum value of the function corresponding to this stationary point, is given by

Ψt(t, xt, xt−d, i) + Ψxt
(t, xt, xt−d, i)f(xt, xt−d, i)

+ Ψxt−d
(t, xt, xt−d, r(t))f(xt−d, xt−2d, r(t)) +

1

2γ2
Ψxt

g(xt, i)g
T (xt, i)Ψ

T
xt

+
1

2γ2
Ψxt−d

g(xt−d, r(t − d))gT (xt−d, r(t − d))ΨT
xt−d

+
1

2
hT (x, i)h(x, i)

+
∑

j∈S

λijΨ(t, xt, xt−d, j) ∀x ∈ X , i ∈ S.

(23)

But the inequality (18) holds for all u(t), u(t− d) ∈ L2[−d,∞). Hence it must also hold
for u⋆(·), and the result follows. This proves the necessity part of the theorem.

(Sufficiency) To prove sufficiency, we will show that, if there exists a solution to the HJ
inequality (21), then the system is dissipative. Therefore, let Ψ(·, ·, ·) ≥ 0 satisfy (21),
then completing the squares, we get

Ψt(t, xt, xt−d, i) + Ψxt
(t, xt, xt−d, i)[f(xt, xt−d, i) + g(xt, i)u(t)]

+ Ψxt−d
[f(xt−d, xt−2d, r(t − d)) + g(xt−d, i)u(t − d)] +

∑

j∈S

λijΨ(t, xt, xt−d, j)

≤ γ2

2
‖u(t)‖2 − 1

2
‖y(t)‖2 − γ2

2
‖u(t) − 1

γ2
gT (x, i)ΨT

xt
(x, i)‖2 +

γ2

2
‖u(t − d)‖2

− γ2

2
‖u(t − d) − 1

γ2
gT (xt−d, i)ΨT

xt−d
(t − d, xt−d, xt−2d, r(t − d))‖2

∀x(t), x(t − d) ∈ X , i ∈ S,

which implies that

Ψt(t, xt, xt−d, i) + Ψxt
(t, xt, xt−d, i)[f(xt, xt−d, i) + g(xt, i)u(t)]

+ Ψxt−d
[f(xt−d, xt−2d, r(t − d)) + g(xt−d, i)u(t − d)] +

∑

j∈S

λijΨ(t, xt, xt−d, j)

≤ γ2

2
(‖u(t)‖2 + ‖u(t − d)‖2) − 1

2
‖y(t)‖2 ∀x ∈ X , i ∈ S.

Thus, the dissipation inequality (6) and (18) are satisfied, and hence the system is dissi-
pative wrt to s(u(t), y(t)).

Remark 3.4 The inequality (21) is known as the bounded-real inequality or condition
for the system Σa and Theorem 3.1 is the equivalent of the bounded-real lemma for linear
systems.
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Remark 3.5 The above theorem provides an alternative approach for determining
dissipativeness wrt to the quadratic supply rate. It follows that, if the system possesses
the structure such that there exist smooth solutions to the HJ inequality (21) for each
mode of the system, then it guarantees the dissipativeness of the system.

4 Stability of Stochastic State-Delayed Jump Systems

In the previous two sections we have defined the concept of dissipativity of the state-
delayed nonlinear Markovian jump stochastic system (1), and have derived necessary and
sufficient conditions for the system to be dissipative wrt to any supply rate. We have also
explored the relationship between the dissipativity of the system and its L2-gain which
is expressed in terms of the bounded-real condition or a set of coupled HJ-inequalities.
Finally in this section, we shall relate the three concepts of dissipativity, L2-gain and
stability of the system Σa. The question we would like to answer is the following: under
what conditions relating to the dissipativity of the system Σa is the equilibrium x = {0}
stable, asymptotically stable?

In the deterministic case, if we regard the storage functions Ψ(·, ·, ·, r(t)), r(t) ∈ S as
generalized energy functions similar to Lyapunov functions, then to investigate stability
using these functions, we would require that they be positive-definite and their time
derivatives along trajectories of the system are negative-definite. Such an approach can
also be considered in the stochastic case with stability defined in a stochastic sense.
Therefore, we begin by first considering the conditions under which the storage function
Ψ(·, ·, ·) is positive definite. This leads us to the following definition.

Definition 4.1 The free system (15) (with u(t) ≡ 0) is said to be stochastically
zero-state detectable if for any trajectory of the system such that y(t) ≡ 0 ∀ t ≥ 0 ⇒
lim

t→∞
E{‖x(t, 0, x0, x−d, r0, 0)‖2} = {0}.

We now show that, if Ψ(·, ·, ·, ·) ≥ 0 ∀x ∈ X , r(t) ∈ S, satisfies the HJ-inequality (21)
as in the above Theorem 3.1, and the free system is stochastically zero-state detectable,
then the following lemma guarantees that Ψ(·, ·, ·) > 0 ∀x(t), x(t − d) ∈ X , x(t) 6= 0 or
x(t − d) 6= 0, r(t) ∈ S.

Lemma 4.1 Suppose Ψ(·, ·, ·, ·) ≥ 0 ∀x(t), x(t − d) ∈ X , r(t) ∈ S, satisfies the
HJ-inequality (21) and the system is dissipative as in Theorem 3.1 above, then if the
free system is stochastically zero-state detectable, then Ψ(·, ·, ·, ·) > 0 for all x(t) 6= 0 or
x(t − d) 6= 0, r(t) ∈ S.

Proof The available storages given in equation (8) are strictly convex in u for each
r(t) ∈ S and are the infima of all solutions of the HJ inequality (21). Any other set of
solutions Ψ(t, x(t), x(t − d), r(t)), ∀ r(t) ∈ S of the HJ inequality is lower bounded by
Ψa(·, ·, ·, r(t)), i.e.,

Ψa(t, x(t), x(t − d), r(t)) ≤ Ψ(t, x(t), x(t − d), r(t))

∀x(t), x(t − d) ∈ X , r(t) ∈ S.
(24)

We now show that, if the system (15) is reachable from the origin, then there exists
a choice of input u(x(t), r(t)), such that Ψa(t, x(t), x(t − d), r(t)) > 0 ∀x(t) 6= 0,
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x(t − d) 6= 0, ∀ r(t) ∈ S and for T > 0

Ψa(t, xt, xt−d, r(t)) = sup
u∈U

E

[

− 1

2

{ T
∫

0

(γ2‖u(t)‖2 + ‖u(t − d)‖2) − ‖y(t)‖2

}

dt

]

. (25)

It has been shown (Theorem 3.1) that for any solution Ψ(·, ·, ·, r(t)), r(t) ∈ S, of the
dissipation inequality (18), the control u⋆(·, ·) attains the above supremum. Therefore,

Ψa(t, xt, xt−d, r(t)) = E

[

− 1

2

{

γ2

T
∫

0

(‖u⋆(t)‖2 + ‖u⋆(t − d)‖) − ‖y(t)‖2

}

dt

]

. (26)

Now using the HJ-inequality (21) or the dissipation inequality (18), we get

Ψa(t, xt, xt−d, r(t)) ≥ −E

[ T
∫

0

{

Ψt(t, xt, xt−d, i) + Ψxt
(t, xt, xt−d, i)[f(xt, xt−d, i)

+ g(xt, i)u
⋆(t)] + Ψxt−d

[f(xt−d, xt−2d, r(t − d)) + g(xt−d, r(t − d))u⋆(t − d)]

+
∑

j∈S

λijΨ(t, xt, xt−d, j)

}

dt

]

≥ −E

[ T
∫

0

LΨ(t, xt, xt−d, r(t))dt

]

≥ Ψ(0, x0, x−d, r0) − EΨ(T, x(T ), x(T − d), r(T )) ≥ 0, ∀T > 0

by dissipativity and Theorem 2.1. Now, from the above inequality, the condition when
Ψa(·, ·, ·, 0) = 0 corresponds to

Ψ(0, x0, x−d, r0) = EΨ(T, x(T ), x(T − d), r(T )) = 0,

and since this holds for all T > 0, it implies that Ψa(·, ·, ·, ·) ≡ Ψ(0, x0, x−d, r0) ≡
EΨ(T, x(T ), x(T − d), r(T )) = 0. This further implies that y(t) ≡ 0, u(t) ≡ 0, which
by stochastic zero-state detectability implies that x0 = x(T ) = x(T − d) = {0}. Since
T > 0 is arbitrary, the result follows.

We are now in a position to exploit Ψ(·, ·, ·, ·) as a candidate Lyapunov function for
the system Σa since any solution Ψ(·, ·, ·, r(t)), r(t) ∈ S, of the HJ-inequality is positive-
definite and guarantees dissipativity of the system for all r(t) ∈ S. To do this, we first
define the following concept of stochastic stability.

Definition 4.2 The equilibrium point x = 0 of the nonlinear system (15) with
u(t) ≡ 0 is stochastically stable, if for any initial state x0 ∈ X and r0 ∈ S,

∞
∫

0

E{‖x(t, t0, x0, x−d, r0, 0)‖2} dt < ∞. (27)

However, the following definition of stochastic stability will be more appropriate for
our application in this paper.
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Definition 4.3 The equilibrium point x = 0 of the nonlinear system (15) with
u(t) ≡ 0 is locally asymptotically mean-square stable, if for any initial state x0 ∈ X
and r0 ∈ S,

lim
t→∞

E{‖x(t, t0, x0, x−d, r0, 0)‖2} = 0. (28)

Remark 4.1 The above definition also implies that stochastic stability or asymptotic
stability in the mean-square sense implies stochastic L2-stability [13].

Remark 4.2 It is also seen from the definition of L2-gain (Definition 3.1) that, if we
take (t0, t1) = (0,∞), then if the L2-gain of the system is finite, then the system is
stochastically L2-stable.

Furthermore, since the question of stability can only be addressed on the infinite-time
horizon, the HJ-inequality (21) takes the following form:

Ψxt
(xt, xt−d, i)f(xt, xt−d, i) + Ψxt−d

(xt, xt−d, r(t))f(xt−d, xt−2d, r(t))

+
1

2γ2
Ψxt

g(xt, i)g
T (xt, i)Ψ

T
xt

+
1

2γ2
Ψxt−d

g(xt−d, r(t − d))gT (xt−d, r(t − d))ΨT
xt−d

+
1

2
hT (x, i)h(x, i) +

∑

j∈S

λijΨ(t, xt, xt−d, j) ≤ 0 ∀xt, xt−d ∈ X , i ∈ S.

(29)
We now state our main stability theorem.

Theorem 4.1 Suppose Σa is dissipative wrt to the supply rate

s(u(t), y(t)) =
1

2
γ2(‖u(t)‖2 + ‖u(t − d)‖2) − 1

2
‖y(t)‖2,

then Σa satisfies HJ-inequality (23) for each r(t) ∈ S and the system has L2-gain less
than or equal to γ. Moreover, if Σa is stochastically zero-state detectable, then the free
system ẋ(t) = f(x(t), x(t − d), r(t)) is locally mean square asymptotically stable.

Proof The first part of the theorem has already been proved in Lemmas 3.1 and
3.2. For the second part, from Lemma 4.1, Ψ(·, ·, ·, r(t)), ∀ r(t) ∈ S is positive-definite.
Since Σa is dissipative, the free system with u(t) = u(t − d) = 0 satisfies the following
dissipation inequality:

Ψ(x(∞), x(∞), r(∞)) + E

[

1

2

∞
∫

0

‖y(t)‖2 dt

]

≤ Ψ(x0, x−d, r0)

for any initial conditions x0, x−d ∈ X , r0 ∈ S. This implies that

E

[

1

2

∞
∫

0

‖y(t)‖2 dt

]

≤ Ψ(x0, x−d, r0), ∀x0, x−d ∈ X , r0 ∈ S

or y(t) ∈ L2((Ω,F , P )[0,∞)), and therefore, lim
t→∞

E(‖y(t)‖2) = 0. By the assumption

of stochastic zero-state detectability, we also get lim
t→∞

E(‖x(t)‖2) = 0.
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Remark 4.3 Theorem 4.1 above gives the bounded-real [1] conditions for the nonlin-
ear system Σa. In the special case of linear systems, it gives necessary and sufficient
conditions for the L2-gain (or H∞-norm ) of the system to be less than or equal to γ and
to be locally asymptotically stable [1].

Remark 4.4 As a final remark, we mention that, if the jump rates λij , i, j ∈ S, are
very small, then all the results derived in this paper will approach the deterministic case.

5 Conclusion

In this paper, we have extended the theory of dissipative system developed for deter-
ministic systems to the case of stochastic state-delayed systems with jump Markov dis-
turbances. We have derived necessary and sufficient conditions for the system to be
dissipative and to have finite L2-gain or the bounded-real condition, and have given
sufficient conditions for stochastic stability of the system.

This paper has clearly laid down a framework for studying the H∞ control and filtering
problems for such systems and the stability of feedback interconnections. Future work
will concentrate on these issues.
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