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1 Introduction

Since the celebrated paper [6] appeared, H∞ control and filtering problems based on
state-space approach, have attracted much more researchers’ attention. For example,
[1, 11] and [13] treated of the nonlinear uncertain H∞ control and filtering design, while
the H∞ for linear time-delay systems with norm-bounded uncertainties can be found
in [8, 10, 14, 15] and the references therein. The aforementioned works are confined to
deterministic systems. Up to date, there are few results on stochastic H∞ about which
the system equation is governed by Itô-type differential equation. Below, we summarize
the recent development for stochastic H∞ briefly.

It is fair to say that [4] is the first paper which systematically dealt with the linear
stochastic H∞ control for state and output feedback control, in which, a very useful
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stochastic bounded real lemma (SBRL) was also derived, which has been applied to H∞

filtering design of the stationary continuous time linear stochastic systems [5]. [2] first
studied linear stochastic H2/H∞ control, in which, necessary and sufficient conditions
were given for both finite and infinite horizon H2/H∞ via coupled Riccati equations; [16]
was on output feedback H∞ control for linear stochastic systems with norm bounded
uncertainty in a state matrix, moreover, an applicable algorithm for designing an H∞

control law was presented based on linear matrix inequalities (LMIs). In [3], we discussed
the general nonlinear stochastic H∞ control based on dissipative system theory and an
associated Hamilton-Jacobi equation, which can be viewed as an extension of the results
of [1] in some sense. In conclusion, we can say that stochastic H∞ has become an
attractive topic in recent years.

In spite of deterministic systems or stochastic systems, time-delay phenomena are
inevitable arising from many physical problems, which often cause instability of the
systems (see [18, 19]). Therefore, the H∞ control of time-delay systems has received
much attention in the past years (e.g. [8, 12]). This paper is on robust H∞ control for a
class of continuous time stochastic time-delay systems with nonlinear perturbation. By
imposing a loose limitation on the nonlinear term, a very general theorem is obtained via
matrix inequalities, from which, for some special case, we derived many useful sufficient
conditions for the existence of a desiredH∞ controller in terms of LMIs. More specifically,
as corollary, we also improve the previous conclusions on stochastic stabilization.

The outline of the current paper is organized as follows. In Section 2, we first present
a general theorem on local and global H∞ control by means of matrix inequalities in-
dependent of the length of delays, respectively. As corollaries, for linear or nonlinearly
perturbed stochastic time-delay systems (D = 0), we are in a position to design an
LMI-based state-feedback H∞ control law, which makes our results more applicable [10].

Section 3 presents two examples to illustrate the effectiveness of our developed theory.
Section 4 concludes this note by some remarks.
For convenience, we adopt the following notations: A′ is the transpose of matrix A;

A ≥ 0 (A > 0) is positive semi-definite (positive definite) matrix A; I is identity matrix;
L2
F (R+, R

l) is the space of non-anticipative stochastic processes y(t) ∈ Rl with respect
to an increasing σ-algebras Ft (t ≥ 0) satisfying

E

∞∫

0

‖y(t)‖2dt <∞.

Here ‖ · ‖ denotes the standard Euclidean norm of a vector.

2 Main Results

In this section, we investigate the robust H∞ state feedback control of the following
stochastic time-delay system governed by Itô differential equations of the form

dx(t) = (Ax(t) +Bx(t − τ) +B1u(t) +B2v(t) +H0(x(t), x(t− τ), u(t))) dt

+ (Cx(t) +Dx(t− τ) +D1u(t) +H1(x(t), x(t − τ), u(t)))dw(t),

z(t) = C2x(t) +D2u(t),

x(t) = φ(t) ∈ L2(Ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0], τ > 0.

(1)
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In the above, x(t) ∈ Rn, u(t) ∈ Rm, v(t) ∈ Rr, and z(t) ∈ Rs are called the sys-
tem state, control input, disturbance input, controlled output, respectively. w(t) is the
standard Wiener process defined on the complete probability space (Ω,F ,Ft,P) with
an increasing filtration Ft satisfying the usual conditions. Without loss of generality, we
can suppose w(t) is one-dimensional, and C′

2D2 = 0. Assume u(t) and v(t) to be adapted
and measurable processes with respect to Ft, Hi(0, ·, ·) = 0, i = 0, 1, i.e., x ≡ 0 is an
equilibrium point of (1). A, B, B1, B2, C, C2, D, D1, and D2 are constant matrices,
τ > 0 is an uncertain time-delay, where we refer the reader to [18] for the notion of
L2(Ω,F0, C([−τ, 0], Rn)). Under very mild conditions on Hi(·, ·, ·), i = 0, 1, (1) exists
a unique global solution on [0, T ] for any T > 0 [18]. It should be pointed out that (1)
can represent a class of more general nonlinear stochastic system via Taylor’s series ex-
pansion at the origin. In what follows, we will show that, for a broader class of nonlinear
functions Hi(·, ·, ·), i = 0, 1, LMI-based algorithms for robust H∞ Control can be given,
which is very efficient in practical computation by means of the existing LMI Toolbox
[7]. Now, we first introduce the following definitions.

Definition 1 Stochastic time-delay differential system (1) with v(t) ≡ 0 is called
locally robustly stabilizable, if there exists a constant state-feedback control law u = Kx,
such that the equilibrium point of the closed-loop system

dx(t) = ((A +B1K)x(t) +Bx(t− τ) +H0(x(t), x(t− τ), Kx(t))) dt

+ ((C +D1K)x(t) +Dx(t− τ) +H1(x(t), x(t− τ), Kx(t))) dw,

x(t) = φ(t) ∈ L2(Ω, F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(2)

is asymptotically stable in probability [9] for all τ > 0. It is called globally robustly
stabilizable, if the equilibrium point of (2) is asymptotically stable in the large [9] for
all τ > 0.

Definition 2 Stochastic time-delay differential system (1) with φ(t) ≡ 0, u(t) ≡ 0,
is said to have an H∞ performance level γ > 0, if

‖z‖2 < γ‖v‖2, ∀ v 6= 0 ∈ L2
F(R+, R

r) (3)

where

‖z‖2
2 = E

∞∫

0

z′(t)z(t) dt.

Definition 3 Stochastic time-delay differential system (1) is called locally (globally)
robustly H∞ controllable, if there exists a constant state-feedback control law u = Kx,
such that system (1) is locally (globally) stabilizable via state-feedback control law u(t) =
Kx, and the corresponding closed-loop system has an H∞ performance level γ > 0.

For robust stabilization of (1) (B2 = 0), a very general result is given as follows, which
can be proved in the same way as Theorem 1 of [17], but for convenience, we would like
to give its detailed proof here.

Lemma 1 Suppose there exists ǫ ≥ 0, such that

sup
y∈Rn

‖Hi(x, y,Kx)‖ ≤ ǫ‖x‖, i = 0, 1, (4)
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for all x ∈ U , where U is a neighborhood of the origin, K ∈ Rm×n, P > 0 and Q > 0
are the solutions of the following matrix inequality

Z + Z1 < 0, (5)

then system (1) can be locally robustly stabilized by u(t) = Kx(t). If U is replaced by
Rn, then system (1) can be globally robustly stabilized by the same controller. In (5), Z
and Z1 are defined by

Z =




{P (A+B1K) + (A+B1K)′P +Q

+(C +D1K)′P (C +D1K)} PB + (C +D1K)′PD

B′P +D′P (C +D1K) D′PD −Q



 ,

Z1 =

[
(2ǫ‖C‖ + 2ǫ‖D1‖ ‖K‖+ ǫ‖D‖ + 2ǫ+ ǫ2)‖P‖I 0

0 ǫ‖D‖ ‖P‖I

]
.

Proof We construct the Lyapunov–Krasovskii functional as follows:

V (t, x) = x′Px+

τ∫

0

x′(t− s)Qx(t− s) ds

where P > 0 and Q > 0 are the solutions of (5). Let L1 be the infinitesimal generator
of the closed-loop system (2) with K a solution to (5), then by Itô’s formula, we have

L1V (t, x(t)) = ((C +D1K)x(t) +Dx(t− τ) +H1(x(t), x(t− τ), Kx(t)))′P

× ((C +D1K)x(t) +Dx(t− τ) +H1(x(t), x(t − τ),Kx(t))

+ 2[(A+B1K)x(t) +Bx(t − τ) +H0(x(t), x(t − τ),Kx(t))]′Px(t)

+ x′(t)Qx(t) − x′(t− τ)Qx(t − τ).

(6)

Rearranging (6) yields

L1V (t, x(t)) = x′(t)(P (A+B1K) + (A+B1K)′P +Q+ (C +D1K)′P (C +D1K))x(t)

+ 2x′(t)(PB + (C +D1K)′PD)x(t − τ) + x′(t− τ)(D′PD −Q)x(t− τ)

+ 2H ′
0(x(t), x(t − τ),Kx(t))Px(t) + 2H ′

1(x(t), x(t − τ),Kx(t))PDx(t − τ)

+ 2H ′
1(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+H ′
1(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t))

=

[
x(t)

x(t− τ)

]′

Z

[
x(t)

x(t− τ)

]
+ 2H ′

0(x(t), x(t − τ),Kx(t))Px(t) (7)

+ 2H ′
1(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+ 2H ′
1(x(t), x(t − τ),Kx(t))PDx(t − τ)

+H ′
1(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t)).
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In addition, by (4), we have

2H ′
0(x(t), x(t− τ),Kx(t))Px(t) + 2H ′

1(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+ 2H ′
1(x(t), x(t − τ),Kx(t))PDx(t − τ)

+H ′
1(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t))

≤ 2ǫ‖P‖(‖C‖+ ‖D1‖ ‖K‖)‖x(t)‖2 + 2ǫ‖D‖ ‖P‖ ‖x(t)‖ ‖x(t− τ)‖
+ ǫ2‖P‖ ‖x(t)‖2 + 2ǫ‖P‖ ‖x(t)‖2).

(8)

for (t, x) ∈ {t > 0} × U . By inequality |ab| ≤ 1

2
(a2 + b2), (8) follows

2H ′
0(x(t), x(t − τ),Kx(t))Px + 2H ′

1(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+ 2H ′
1(x(t), x(t − τ),Kx(t))PDx(t − τ)

+H ′
1(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t))

≤ (2ǫ‖C‖ + 2ǫ‖D1‖ ‖K‖+ ǫ‖D‖ + 2ǫ+ ǫ2)‖P‖ ‖x(t)‖2

+ ǫ‖D‖‖P‖ ‖x(t− τ)‖2

=

[
x(t)

x(t− τ)

]′

Z1

[
x(t)

x(t− τ)

]
.

(9)

Substituting (9) into (7), it follows

L1V (t, x(t)) ≤
[

x(t)
x(t− τ)

]′
(Z + Z1)

[
x(t)

x(t− τ)

]
< 0

due to (5). That is, L1V (t, x(t)) < 0 in the domain {t > 0} × U for x 6= 0. So the
locally robust stabilization is obtained by Corollary 1 of [9] (page 168). By the same
discussion, the globally robust stabilization can also be shown by Theorem 4.4 of [9].

Using Lemma 1, a sufficient condition for robust H∞ control is obtained as follows.

Theorem 1 Suppose there exists ǫ ≥ 0, such that (4) holds for all x ∈ U with U
a neighborhood of the origin, K ∈ Rm×n, P > 0 and Q > 0 are the solutions to the
following matrix inequality

Σ =




Z11 + C′

2C2 +K ′D′
2D2K Z12 PB2

Z ′
12 Z22 0

B′
2P 0 −γ2I



 < 0 (10)

where [
Z11 Z12

Z ′
12 Z22

]
= Z + Z1.

Then system (1) is locally robustly H∞ controlled by u(t) = Kx(t). If U is replaced by
Rn, then system (1) is globally robustly H∞ controlled by the same controller.

Proof It is obvious that (5) can be derived from (10), i.e. system (1) is robustly stable.
Therefore we only need to prove that the closed-loop system has H∞ performance level
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γ. For any T > 0, by (10), it follows

‖z‖2
2,[0,T ] − γ2‖v‖2

2,[0,T ] = E

T∫

0

[(z′(t)z(t) − γ2v′(t)v(t)) dt

= E

T∫

0

[(x′(t)C′
2C2x(t) + x′(t)K ′D′

2D2Kx(t) − γ2v′(t)v(t)) dt + d(V (x(t))] − EV (x(T ))

≤ E

T∫

0

[(x′(t)C′
2C2x(t) + x′(t)K ′D′

2D2Kx(t) − γ2v′(t)v(t)) dt + d(V (x(t))] (11)

≤ E

T∫

0

ψ′(t)Σψ(t) < 0

for ψ 6= 0, where ψ = [x′(t) x′(t− τ)) v′(t)]′. Let T → ∞ in (11), (3) is immediately
obtained. Theorem 1 is proved.

Generally speaking, Theorem 1 cannot be directly used in practice, because the ele-
ments of Z1 contain the norm of an unknown matrix P . However, from Theorem 1, we
can derive some useful results, which can be expressed in terms of LMIs.

Corollary 1 If the matrix inequality



Z11 + C′

2C2 +K ′D′
2D2K Z12 PB2

Z
′

12 Z22 0
B′

2P 0 −γ2I



 < 0 (12)

has solutions P > 0, Q > 0 and K ∈ Rm×n, and

lim
‖x‖→0

sup
y∈Rn

‖Hi(x, y,Kx)‖/‖x‖ = 0, i = 0, 1, (13)

where [
Z11 Z12

Z
′

12 Z22

]
= Z,

then system (1) can be locally robustly H∞ controlled by u(t) = Kx(t).

Corollary 2 If Hi ≡ 0, i = 0, 1, and the matrix inequality (12) has solutions P > 0,
Q > 0, and K ∈ Rm×n, then the linear stochastic time-delay system

dx(t) = (Ax(t) +Bx(t− τ) +B1u(t) +B2v(t)) dt

+ (Cx(t) +Dx(t− τ) +D1u(t)) dw(t),

z(t) = C2x(t) +D2u(t),

x(t) = φ(t) ∈ L2(Ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(14)

is globally robustly H∞ controllable. Especially, if D = 0, and the following LMI




AP̂ + P̂A′ + B1Y + Y ′B′

1
+ BQ̂B′ P̂C′ + Y ′D′

1
P̂ P̂C′

2
Y ′D2 B2

CP̂ + D1Y −P̂ 0 0 0 0
P̂ 0 −Q̂ 0 0 0

C2P̂ 0 0 −I 0 0
D2Y 0 0 0 −I 0
B′

2
0 0 0 0 −γ2I




< 0 (15)
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admits solutions P̂ > 0, Q̂ > 0 and Y ∈ Rm×n, then system (14) with D = 0 is
globally robustly H∞ controllable. In this case, the state feedback control law u(t) =

Kx(t) = Y P̂−1x(t).

Proof If Hi(·, ·, ·) ≡ 0, i = 0, 1, we can take ǫ = 0 in (4), then L1V (t, x(t)) < 0
for (t, x) ∈ {t > 0} × Rn, except possibly at x = 0, and Σ < 0. Thus, the first part of
Corollary 2 is proved.

Furthermore, if D = 0, (10) degenerates into





{P (A+B1K) + (A+B1K)′P +Q+
(C +D1K)′P (C +D1K) + C′

2C2 +K ′D′
2D2K} PB PB2

B′P −Q 0
B′

2P 0 −γ2I



 < 0. (16)

Pre- and postmultiply the above matrix inequality by diag(P−1, I, I), and set P̂ = P−1,

Y = KP−1 = KP̂ , Q̂ = Q−1. Then by Schur’s complement again, (16) is equivalent to
(15). Thus the second part of Corollary 2 is also proved.

Corollary 3 The unforced system

dx(t) = (Ax(t) +Bx(t− τ) +B2v(t)) dt + (Cx(t) +Dx(t− τ)) dw(t),

z(t) = C2x(t),

x(t) = φ(t) ∈ L2(Ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(17)

is robustly stable and has H∞ performance level γ, if the following LMI




PA+ A′P + C′PC +Q+ C′

2C2 PB + C′PD PB2

B′P +D′PC D′PD −Q 0

B′
2P 0 −γ2I



 < 0 (18)

has solutions P > 0, Q > 0.

Corollary 4 The stochastic linear time-delay controlled system

dx(t) = (Ax(t) +Bx(t − τ) +B1u(t)) +B2v(t)) dt + (Cx(t) +Dx(t− τ)) dw(t),

z(t) = C2x(t),

x(t) = φ(t) ∈ L2(Ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(19)

is globally robustly H∞ controlled, if the following LMI





PA+A′P + C′PC + C′
2C2 +Q

√
2PB1 PB + C′PD PB2√

2B′
1P −Q 0 0

B′P +D′PC 0 D′PD −Q 0

B′
2P 0 0 −γ2I



 < 0 (20)

admitting solutions P > 0 and Q > 0. Moreover, the feedback control law u(t) =
Q−1B′

1Px(t).

Proof Applying Theorem 1, this corollary is easily obtained.
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Below, for D = 0, we give another sufficient condition for the local (global)H∞ control
of system (1) in terms of LMIs. Applying the well known inequality

X ′Y + Y ′X ≤ εX ′X + ε−1Y ′Y, ∀ ε > 0, (21)

with ε = 1 for simplicity, we have (if 0 < P ≤ 1

α
I for some α > 0)

2H ′
0(x(t), x(t − τ),Kx(t))Px(t) + 2H ′

1(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+H ′
1(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t))

≤ 3ǫ2

α
‖x(t)‖2 + x′(t)Px(t) + x′(t)(C +D1K)′P (C +D1K)x(t).

(22)

Substituting (22) into (7), it follows

L1V (t, x(t)) ≤
[

x(t)
x(t− τ)

]′
Ẑ

[
x(t)

x(t− τ)

]

where

Ẑ =




{P (A+B1K) + (A+B1K)′P +Q+ P+

3ǫ2

α I + 2(C +D1K)′P (C +D1K)} PB

B′P −Q



 .

So if (4) holds for all x ∈ U (x ∈ Rn), and Ẑ < 0, then system (1) can be locally
(globally) robustly stabilized by u(t) = Kx(t). Accordingly, (12) is equivalent to




Ẑ11 + C′

2C2 +K ′D′
2D2K Ẑ12 PB2

Ẑ ′
12 Ẑ22 0

B′
2P 0 −γ2I



 < 0, (23)

admitting solutions 0 < P ≤ 1

α
I, Q > 0 and K, where

[
Ẑ11 Ẑ12

Ẑ ′
12 Ẑ22

]
= Ẑ.

In analogy with the proof of Corollary 2, it is easy to show that (23) is equivalent to that
the following LMIs





AP̂ + P̂A′ + B1Y

+Y ′B′

1
+ BQ̂B′ + P̂

√

2(P̂C′ + Y ′D′

1
) P̂ P̂ P̂C′

2
Y ′D2 B2

√

2(CP̂ + D1Y ) −P̂ 0 0 0 0 0

P̂ 0 −Q̂ 0 0 0 0

P̂ 0 0 −
α

3ǫ
2
I 0 0 0

C2P̂ 0 0 0 −I 0 0

D2Y 0 0 0 0 −I 0

B′

2
0 0 0 0 0 −I





< 0 (24)

and
P̂ ≥ αI (25)

exist solutions P̂ > 0, α > 0, Q̂ > 0 and Y = KP−1 ∈ Rm×n, where P̂ = P−1,

Y = KP−1 = KP̂ , and Q̂ = Q−1.
Summarize the above discussion, we have the following result.
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Theorem 2 For D = 0 in (1), suppose (4) holds for all x ∈ U (x ∈ Rn). If LMIs

(24) and (25) exist solutions P̂ > 0, α > 0, Q̂ > 0 and Y ∈ Rm×n, simultaneously,

then system (1) can be locally (globally) robustly H∞ controlled by u(t) = Y P̂−1x(t).

Remark 1 All results obtained in this section can be extended without difficulty to
systems with multiple delays and independent stochastic perturbations.

Remark 2 Following the same line adopted above, there is no any difficulty to gen-
eralize what we have obtained to delay-dependent results with time-varying delay. For
instance, if we take τ(t) to be a time-varying bounded delay satisfying

0 < τ(t) ≤ h, τ̇(t) ≤ d < 1

and take the Lyapunov–Krasovskii functional

V (x) = x′(t)Px(t) +

t∫

t−τ(t)

x′(θ)Rx(θ) dθ +

0∫

−τ(t)

t∫

t+β

x′(s)Qx(s) ds dβ,

P > 0, R > 0, Q > 0,

correspondingly, then the delay-dependent consequences can be obtained.
In (1), if we take τ = 0, B = D = B2 = D2 = C2 = 0, φ(0) = x(0), then for the

system
dx(t) = (Ax(t) +B1u(t) +H0(x(t), u(t))) dt

+ (Cx(t) +D1u(t) +H1(x(t), u(t))) dw(t)
(26)

a locally stabilizable condition is concluded by Theorem 2.

Corollary 5 If for some R̂ > 0, Q̂ > 0, the following generalized algebraic Riccati
equation (GARE)

P̂A+A′P̂ + C′P̂C − (P̂B1 + C′P̂D1)(R̂ +D′
1P̂D1)

−1(B′
1P̂ +D′

1P̂C) + Q̂ = 0 (27)

has a positive definite solution P̂ > 0, and

lim
‖x‖→0

‖Hi(x, K̂x)‖/‖x‖ = 0, i = 0, 1, (28)

holds for K̂ = −(R̂+D′
1P̂D1)

−1(B′
1P̂ +D′

1P̂C), then system (27) is locally asymptoti-

cally stabilizable. In this case, u(t) = K̂x(t) = −(R̂ +D′
1P̂D1)

−1(B′
1P̂ +D′

1P̂C)x(t) is
a stabilizing control law.

It can be seen that Corollary 5 generalizes and improves Proposition 1 of [20].

Remark 3 There is something wrong in Proposition 1 of [20]. By checking its proof

therein, we can find that the smallest eigenvalue of Q̂ ≥ 0 must be larger than zero, i.e.,

Q̂ > 0. In other words, (Q̂1/2, A) being observable should be replaced by Q̂ > 0.

3 Numerical Examples

Now, we present two examples to illustrate the validity of our developed theory in de-
signing the H∞ controller for nonlinear time-delay system (1).
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Example 1 In (1), take D = 0, and

A =

[
−4.12 1.23
−0.36 1.15

]
, B =

[
−0.13 −0.91

0.22 −0.76

]
, B1 =

[
−1.25

3.48

]
, B2 =

[
−0.2

0.3

]
,

C =

[
−0.02 −0.09

0.09 −0.08

]
, D1 =

[
0.16
0.23

]
, C2 = [ 0.1 0.02 ] , D2 = [ 0.1 ] ,

H0(x(t), x(t− τ), u(t)) =

[
sin(u(t)x2(t− τ))x1(t)

cos(u(t)x1(t− τ))x2(t)

]
,

H1(x(t), x(t− τ), u(t)) =

[
e−(u(t)+x1(t−τ)+x2(t−τ))2x2(t)

e[−u2(t)x2

1
(t−τ)]x1(t)

]
, ∀ τ > 0.

Obviously, (4) holds for all x ∈ Rn with ǫ = 1. Substituting all the above data into (24),
and then solving the LMIs (24) and (25) by LMI Toolbox [7], we can obtain solutions,
when γ = 1,

P̂ =

[
0.3539 −0.0042

−0.0042 0.1263

]
> 0, Q̂ =

[
1.1197 0.0008
0.0008 1.0076

]
> 0,

Y = [−0.2930 −1.3061 ] , α = 1.1255 > 0.

So by Theorem 2, system (1) can be globally robustly H∞ controlled by u(t) =

Y P̂−1x(t) = −0.8566x1(t) − 2.4518x2(t).

Example 2 In Example 1, we take

H0(x(t), x(t− τ), u(t)) =

[
(ex1(t) − 1) sinu(t)

sinx2(t) cosu(t)

]
,

H1(x(t), x(t− τ), u(t)) =

[
(cosx1(t) − 1)e−x2

2
(t−τ)

x2(t) sin u(t)

]
, ∀ τ > 0.

Obviously, we have

‖H0(·, ·, ·)‖ ≤
√

(ex1(t) − 1)2 + sin2 x2(t) ,

‖H1(·, ·, ·)‖ ≤
√

(cosx1(t) − 1)2 + x2
2(t) ,

and

lim
x1→0

(ex1 − 1)

x1
= 1, lim

x2→0

sinx2

x2
= 1, lim

x1→0

(cos x1 − 1)

x1
= 0.

So there exists a sufficient small neighborhood U of the origin, such that for all x ∈ U ,
(4) holds with ǫ = 1.05. Substituting all coefficient matrices of Example 1 into (24) with
ǫ = 1.05, when γ = 1, via solving the LMIs (24) and (25), one has

P̂ =

[
0.3527 −0.0060

−0.0060 0.1371

]
> 0, Q̂ =

[
1.1064 −0.0018

−0.0018 1.0000

]
> 0,

Y = [−0.2993− 0.3101 ] , α = 1.0995 > 0.
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So by Theorem 2, system (1) can be locally robustly H∞ controlled by u(t) =

Y P̂−1x(t) = −0.8875x1(t) − 2.3013x2(t).

4 Conclusions

In the above sections, we have discussed the state feedback H∞ control for a class of
stochastic time-delay systems with nonlinear perturbations. By means of LMIs, some
sufficient conditions are given for the existence of an H∞ control law. Theorem 1 is a
very general consequence, from which we derive some useful results for linear time-delay
systems, delay-free systems or special nonlinearly perturbed time-delay systems. All
consequences except Theorem 1 and Corollary 1 are expressed in terms of LMIs, which
makes them more readily applied.
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