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1 Introduction

Most of the systems, which are encountered in control engineering, contain various non-
linearities and are affected by random disturbance signals. Nonlinear systems with time-
delay constitute basic mathematical models of real phenomena, for instance in biology,
mechanics and economics, see e.g. [8, 18]. Control of time-delay systems has been a sub-
ject of great practical importance, which has attracted a great deal of interest for several
decades. On the other hand, it turns out that the delayed state is very often the cause
for instability and poor performance of systems. Moreover, considerable attention has
been given to both the problems of robust stabilization and robust control for linear sys-
tems with unavoidable time-varying parameter uncertainties in modelling of dynamical
systems and certain types of time-delays [14].
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Since the introduction of fuzzy set theory by Zadeh in [30], many people have devoted
a great deal of time and effort to both theoretical research and implementation technique
for fuzzy logic controllers [15, 22]. With the development of fuzzy systems, it is known
that the qualitative knowledge of a system can also be represented in nonlinear functional
form. On the basis of this idea, some fuzzy models based control system design methods
have appeared in the fuzzy control field [3, 22, 23]. These methods are conceptually simple
and straightforward. Fuzzy controllers are usually characterized using Mamdani and T-
S type. In general, Mamdani type fuzzy controllers are designed empirically. However,
T-S controllers can be designed using the information of several local linearized models
of a given system via the so-called parallel-distributed compensation scheme. Various
stability conditions of fuzzy systems have been obtained by employing Lyapunov stability
theory [4, 9, 10], passivity theory [20], and other methods [5, 12, 22]. Problem of control
design based on the state feedback for T-S fuzzy systems using LMI approach has been
studied in [28] and the delay-independent stability of T-S fuzzy model for a class of
nonlinear time-delay systems was investigated in [7]. Extension of the T-S fuzzy model
approach to the stability analysis and control design for both continuous and discrete-
time nonlinear systems with time-varying delay has been considered in [2] and also Lee,
et al. [11] presented design of an output feedback robust H∞ controller based on T-S
fuzzy model for uncertain fuzzy dynamic systems with time-varying delayed state.

Recently, several criteria of input-to-bounded state (IBS) stabilization and bounded-
input-bounded-output (BIBO) stabilization in mean-square for nonlinear and quasi-linear
stochastic control systems with time-varying uncertainties has been investigated in [6],
also, another stability concepts in the mean-square sense such as mean-square stability
(MSS) and the internal mean-square stability (IMSS) have been studied in [13]. The
stabilization of stochastic systems with multiplicative noise has been studied since the late
sixties, particularly in the context of linear quadratic optimal control, see e.g., [17, 24].
Also, a stochastic fuzzy control has been proposed by applying the stochastic control
theory, instead of using a traditional fuzzy reasoning in [25] and a class of fuzzy stochastic
control systems with random delays investigated in [19].

The main contribution of this paper is to investigate the fuzzy linear control problem
for a class of stochastic nonlinear time-delay systems. The attention was focused on the
design of state feedback controller which ensures stochastical exponential stability in the
mean-square, independent of the time-delay. Finally, the simulation results show that
fuzzy linear state feedback controller can achieve the robust stability in the mean-square
independent of the time-delay.

Notation The following notations will be used throughout the paper. Rm denotes the
m-dimensional Euclidean space and Rn×m denotes the set of all real n×m matrices. The
superscript “T” denotes the transpose and the notation X ≥ Y (respectively, X > Y ),
where X and Y are symmetric matrices, means that X − Y is positive semi-definite
(respectively, positive definite). I is the identity matrix with compatible dimension.
C([−h, 0]; Rn) denote the family of continuous functions ϕ from [−h, 0] to Rn with the
norm ‖ϕ‖ = sup

−h≤θ≤0

|ϕ(θ)|, where | · | is the Euclidean norm in Rn. If A is a matrix,

denote by ‖A‖ its operator norm, i.e., ‖A‖ = sup {|Ax| : |x| = 1} =
√

λmax(ATA),
where λmax(A) means the largest eigenvalue of A. L2[0,∞] is the space of the square
integrable vector. Moreover, let (Ω, F, {Ft}t≥0, P ) be a complete probability space and

LP
F0

([−h, 0]; Rn) denote the family of all F0-measurable C([−h, 0]; Rn)–valued random

variables ζ = {ζ(θ) : − h ≤ θ ≤ 0} such that sup
−h≤θ≤0

E|ζ(θ)|P < ∞ where E(·)
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stands for the mathematical expectation operator with respect to the given probability
measure P .

2 Preliminaries and Problem Formulation

Consider a class of nonlinear continuous-time state delayed stochastic systems described
by

dx(t) = [A(x(t))x(t) + Ad(x(t))x(t − h) + B(x(t))u(t)] dt + E1 dw(t), (1)

x(t) = ϕ(t), t ∈ [−h, 0], (2)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vector, u(t) = [u1(t), u2(t), . . . ,
um(t)]T ∈ Rm is the control input, h is the unknown state delay, ϕ(t) is the continuous
vector valued initial function and w(t) = [w1(t), w2(t), . . . , wn(t)]T ∈ Rn is a scalar
Brownian motion defined on the probability space (Ω, F, {Ft}t≥0, P ).

A fuzzy dynamic model has been proposed by Takagi and Sugeno [21] to represent local
linear input-output relations of nonlinear systems. This fuzzy linear model is described
by fuzzy If-Then rules and will be employed here to deal with the control design problem
of the nonlinear system (1) – (2). The i-th rule of this fuzzy model for the nonlinear
system (1) – (2) is of the following form [9, 21, 23]:

Plant Rule i:

If z1(t) is Fi1 and . . . and zg(t) is Fig,

then dx(t) = [Aix(t) + Aidx(t − h) + Biu(t)] dt + E1 dw(t)
(3)

for i = 1, 2, . . . , L, where Fij is the fuzzy set, Ai ∈ Rn×n, Aid ∈ Rn×n, Bi ∈ Rn×m, L

is the number of If-Then rules, and z1(t), z2(t), . . . , zg(t) are the premise variables.
The overall fuzzy system is inferred as follows [9, 21, 23]:

dx(t) =

[

L
∑

i=1

µi(z(t))(Aix(t) + Aidx(t − h) + Biu(t))

]

L
∑

i=1

µi(z(t))

dt + E1 dw(t)

=

L
∑

i=1

hi(z(t))(Aix(t) + Aidx(t − h) + Biu(t)) dt + E1 dw(t)

(4)

where

z(t) = [z1(t), z2(t), . . . , zg(t)]
T, (5)

µi(z(t)) =

g
∏

j=1

Fij(zj(t)), (6)

hi(z(t)) =
µi(z(t))

L
∑

j=1

µj(z(t))

, (7)
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and Fij(zj(t)) is the grade of membership of zj(t) in Fij .

Remark 1 In order to consider parametric uncertainties in the T-S fuzzy system (3),
we formulate the i-th rule of the fuzzy model as

Plant Rule i:

If z1(t) is Fi1 and . . . and zg(t) is Fig ,

then dx(t) = [(Ai + ∆A
p
i )x(t) + Aidx(t − h) + (Bi + ∆B

p
i )u(t)] dt + E1 dw(t)

where ∆A
p
i and ∆B

p
i are assumed norm-bounded matrices with appropriate dimensions,

which represent parametric uncertainties in the plant model with the following structure

[∆A
p
i ∆B

p
i ] = DiΓi(t) [F1i F2i],

where Di, F1i and F2i are known real constant matrices of appropriate dimensions, and
Γi(t) is an unknown matrix function and satisfies ΓT

i (t)Γi(t) ≤ I [12].

Assumption 1 We assume µi(z(t)) ≥ 0 for i = 1, 2, . . . , L and
L
∑

i=1

µi(z(t)) > 0 for

all t.

Therefore, we get [9, 23]
hi(z(t)) ≥ 0 (8)

for i = 1, 2, . . . , L and
L

∑

i=1

hi(z(t)) = 1. (9)

Therefore, from (1) we get [4]

dx(t) = [A(x(t))x(t) + Ad(x(t))x(t − h) + B(x(t))u(t)] dt + E1 dw(t)

=

[ L
∑

i=1

hi(z(t))(Aix(t) + Aidx(t − h) + Biu(t))

+

{(

A(x) −

L
∑

i=1

hi(z(t))Ai

)

x(t) +

(

Ad(x) −

L
∑

i=1

hi(z(t))Aid

)

x(t − h)

+

(

B(x) −

L
∑

i=1

hi(z(t))Biu(t)

)}]

dt + E1dw(t)

(10)

where

{(

A(x) −

L
∑

i=1

hi(z(t))Ai

)

x(t) +

(

Ad(x) −

L
∑

i=1

hi(z(t))Aid

)

x(t − h)

+

(

B(x) −
L

∑

i=1

hi(z(t))Biu(t)

)}

(11)
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denotes the approximation error between the nonlinear system (1) and the fuzzy mo-
del (4).

Suppose the following fuzzy controller is employed to deal with the above control
system design:

Control Rule j:
If z1(t) is Fj1 and . . . and zg(t) is Fjg,

then u(t) = Kjx(t)
(12)

for j = 1, 2, . . . , L. Hence, the overall fuzzy controller is given by

u(t) =

L
∑

j=1

µj(z(t)) (Kjx(t))

L
∑

j=1

µj(z(t))

=
L

∑

j=1

hj(z(t))Kjx(t) (13)

where hj(z(t)) is defined in (8) and (9) and Kj are the control parameters.
Substituting (13) into (10) yields the closed-loop nonlinear control system as follows:

dx(t) = [A(x(t))x(t) + Ad(x(t))x(t − h) + B(x(t))u(t)] dt + E1 dw(t)

=

[{ L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)x(t) + Aidx(t − h)

}

+ ∆A + ∆Ad + ∆B

]

dt + E1 dw(t)

(14)

where

∆A =

(

A(x(t)) −

L
∑

i=1

hi(z(t))Ai

)

x(t), (15)

∆Ad =

(

Ad(x(t)) −

L
∑

i=1

hi(z(t))Aid

)

x(t − h), (16)

∆B =
L

∑

i=1

hi(z(t))
L

∑

j=1

hj(z(t))(B(x(t)) − Bi)Kjx(t). (17)

Assumption 2 There exist bounding matrices ∆Ai, ∆Aid and ∆Bi such that for
all trajectory x(t)

‖∆A‖ ≤

∥

∥

∥

∥

L
∑

i=1

hi(z(t))∆Aix(t)

∥

∥

∥

∥

, (18)

‖∆Ad‖ ≤

∥

∥

∥

∥

L
∑

i=1

hi(z(t))∆Aidx(t − h)

∥

∥

∥

∥

, (19)

‖∆B‖ ≤

∥

∥

∥

∥

L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))∆Bi Kjx(t)

∥

∥

∥

∥

(20)
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and the bounding matrices ∆Ai, ∆Aid and ∆Bi can be described by





∆Ai

∆Aid

∆Bi



 =





δiAp

δidApd

ηiBp



 , (21)

where ‖δi‖ ≤ 1, ‖δid‖ ≤ 1 and ‖ηi‖ ≤ 1, for i = 1, 2, . . . , L [1].

According to Assumption 2, we get

(∆A)T(∆A) =

((

A(x(t)) −

L
∑

i=1

hi(z(t))Ai

)

x(t)

)T

×

((

A(x(t)) −

L
∑

i=1

hi(z(t))Ai

)

x(t)

)

≤

( L
∑

i=1

hi(z(t))∆Aix(t)

)T( L
∑

i=1

hi(z(t))∆Aix(t)

)

=

( L
∑

i=1

hi(z(t)) δiApx(t)

)T( L
∑

i=1

hi(z(t)) δiApx(t)

)

≤ (Apx(t))T(Apx(t)),

(22)

(∆Ad)
T(∆Ad) =

((

Ad(x(t)) −

L
∑

i=1

hi(z(t))Aid

)

x(t − h)

)T

×

((

Ad(x(t)) −

L
∑

i=1

hi(z(t))Aid

)

x(t − h)

)

≤

( L
∑

i=1

hi(z(t))∆Aidx(t − h)

)T( L
∑

i=1

hi(z(t))∆Aidx(t − h)

)

=

( L
∑

i=1

hi(z(t)) δidApdx(t − h)

)T( L
∑

i=1

hi(z(t)) δidApdx(t − h)

)

≤ (Apdx(t − h))T(Apdx(t − h))

(23)

and

(∆B)T(∆B) =

( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))(B(x(t)) − Bi)Kjx(t)

)T

×

( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))(B(x(t)) − Bi)Kjx(t)

)

(24)

≤

( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))∆BiKjx(t)

)T( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))∆BiKjx(t)

)
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=

( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t)) ηiBp Kjx(t)

)T( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t)) ηiBp Kjx(t)

)

≤

( L
∑

j=1

hj(z(t))BpKjx(t)

)T( L
∑

j=1

hj(z(t))BpKjx(t)

)

,

i.e. the approximation error in the closed-loop nonlinear system is bounded by the spec-
ified structured bounding matrices Ap, Apd and Bp.

Next, observe the closed-loop system (14) and let x(t, ζ) denote the state trajectory
from the initial data x(θ) = ζ(θ) on −h ≤ θ ≤ 0 in L2

F0
([−h, 0]; R2n). Clearly, the

system (14) admits a trivial solution x(t; 0) ≡ 0 corresponding to the initial data ζ = 0.
We introduce the following stability and stabilizability concepts.

Definition 1 [27] For the system (14) and every ζ ∈ L2

F0
([−h, 0] ; R2n), the trivial

solution is asymptotically stable in the mean square if

lim
t→∞

E |x(t; ζ)|
2

= 0, (25)

and is exponentially stable in the mean-square if there exist constants α > 0 and β > 0
such that

E |x(t; ζ)|
2
≤ αe−βt sup

−h≤θ≤0

E |ζ(θ)|
2
. (26)

Definition 2 [27] We say that the system (1) – (2) is exponentially stabilizable in
mean-square if, for every ζ ∈ L2

F0
([−h, 0]; R2n), there exists a fuzzy linear control law

(13) such that the resulting closed-loop system is exponentially stable in mean-square.

The objective of this paper is to design a fuzzy linear control for the stochastic non-
linear time-delay system (1) – (2). More specifically, we are interested in seeking the
control parameters Kj , for j = 1, 2, . . . , L, such that the closed-loop system (14) is
exponentially stable in mean-square, independent of the unknown time-delay h.

3 Main Results and Proofs

We first give the following lemma, which will be used in the proof of our main results.

Lemma 1 [31] For any matrices X and Y with appropriate dimensions and for any
constant η > 0, we have:

XTY + Y TX ≤ ηXTX +
1

η
Y TY. (27)

3.1 Stochastic stability analysis

In this section, assuming that the fuzzy linear control is known and we will study the
conditions under which the closed-loop system is stochastically exponentially stable in
the mean-square. The following theorem will play a key role in the stability analysis of
closed-loop system and design of the expected fuzzy linear control.
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Theorem 1 Let the control parameters Kj, for j = 1, 2, . . . , L, be given. If the fuzzy
controller (13) is employed in the nonlinear system (1) – (2) and there exists positive
scalars ε1, ε2, ε3, ε4 and a positive definite matrix P = PT such that the following
matrix inequalities

(Ai + BiKj)
TP + P (Ai + BiKj) + (ε1 + ε2 + ε3 + ε4)P

2

+ ε−1

1
AT

idAid + ε−1

2
AT

p Ap + ε−1

3
AT

pdApd + ε−1

4
(BpKj)

T(BpKj) < 0
(28)

are satisfied for all i, j = 1, 2, ..., L, then the closed-loop nonlinear system (14) is expo-
nentially stable in the mean-square and independent of the unknown time-delay h.

Proof Fix ζ ∈ L2

F0
([−h, 0]; R2n) arbitrarily, and write x(t, ζ) = x(t). We define the

Lyapunov function candidate

Υ(x(t), t) = xT(t)Px(t) +

t
∫

t−h

xT(s)Qx(s) ds (29)

where P = PT is the positive definite solution to the matrix inequality (28) and Q =
QT > 0 is defined by

Q = ε−1

1

( L
∑

i=1

hi(z(t))Aid

)T( L
∑

i=1

hi(z(t))Aid

)

+ ε−1

3
AT

pdApd. (30)

The stochastic differential of Υ along a given trajectory is obtained as

dΥ(x(t), t) =

{

xT(t)

({ L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)

}T

P + Q

)

x(t)

+ xT(t − h)

( L
∑

i=1

hi(z(t))Aid

)T

Px(t) + xT(t)P

( L
∑

i=1

hi(z(t))Aid

)

x(t − h)

+ xT(t)P

( L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)

)

x(t)

+ (∆A + ∆Ad + ∆B)TPx(t) + xT(t)P (∆A + ∆Ad + ∆B)

− xT(t − h)Qx(t − h)

}

dt + 2xT(t)PE1 dw(t).

(31)

Now, by Lemma 1, it is trivial to show that for any positive scalars of ε1, ε2, ε3, ε4

the following matrix inequalities hold:

(( L
∑

i=1

hi(z(t))Aid

)

x(t − h)

)T

Px(t) + xT(t)P

(( L
∑

i=1

hi(z(t))Aid

)

x(t − h)

)

≤ ε1x
T(t)P 2x(t) + ε−1

1
xT(t − h)

( L
∑

i=1

hi(z(t))Aid

)T( L
∑

i=1

hi(z(t))Aid

)

x(t − h),

(32)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(3) (2004) 317–332 325

(∆A)TPx(t) + xT(t)P (∆A) ≤ ε2x
T(t)P 2x(t) + ε−1

2
(∆A)T(∆A)

≤ ε2x
T(t)P 2x(t) + ε−1

2
(Apx(t))T(Apx(t))

= xT(t)(ε2P
2 + ε−1

2
AT

p Ap)x(t),

(33)

(∆Ad)TPx(t) + xT(t)P (∆Ad) ≤ ε3x
T(t)P 2x(t) + ε−1

3
(∆Ad)

T(∆Ad)

≤ ε3x
T(t)P 2x(t) + ε−1

3
(Apdx(t − h))T(Apdx(t − h))

= ε3x
T(t)P 2x(t) + ε−1

3
x(t − h)TAT

pdApdx(t − h)

(34)

and

(∆B)TPx(t) + xT(t)P (∆B) ≤ ε4x
T(t)P 2x(t) + ε−1

4
(∆B)T(∆B)

≤ ε4x
T(t)P 2x(t) + ε−1

4

( L
∑

j=1

hj(z(t))BpKjx(t)

)T( L
∑

j=1

hj(z(t))BpKjx(t)

)

= xT(t)

(

ε4P
2 + ε−1

4

( L
∑

j=1

hj(z(t))BpKj

)T( L
∑

j=1

hj(z(t))BpKj

))

x(t).

(35)

Then, noticing the definition (30), substituting (32) – (35) into (31) result in

dΥ(x(t), t) ≤ xT(t)

{( L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)

)T

P

+ P

( L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)

)

+ (ε1 + ε2 + ε3 + ε4)P
2

+ ε−1

1

( L
∑

i=1

hi(z(t))Aid

)T( L
∑

i=1

hi(z(t))Aid

)

+ ε−1

2
AT

p Ap + ε−1

3
AT

pdApd

+ ε−1

4

( L
∑

j=1

hj(z(t))BpKj

)T( L
∑

j=1

hj(z(t))BpKj

)}

x(t)dt + 2xT(t)PE1 dw(t)

≤

L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t)){xT(t)[(Ai + BiKj)
TP + P (Ai + BiKj)

+ (ε1 + ε2 + ε3 + ε4)P
2 + ε−1

1
AT

idAid + ε−1

2
AT

p Ap + ε−1

3
AT

pdApd

+ ε−1

4
(BpKj)

T(BpKj)]x(t)} dt + 2xT(t)PE1 dw(t)

≤ −

L
∑

i=1

L
∑

j=1

λmin(−Πij)x
T(t)x(t) dt + 2xT(t)PE1 dw(t),

(36)

where
Πij = (Ai + BiKj)

TP + P (Ai + BiKj) + (ε1 + ε2 + ε3 + ε4)P
2

+ ε−1

1
AT

idAid + ε−1

2
AT

p Ap + ε−1

3
AT

pdApd + ε−1

4
(BpKj)

T(BpKj).
(37)
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Then, according to the inequality (28), we find

Πij < 0, for i, j = 1, 2, . . . , L. (38)

Consequently, the inequalities (36) and (38) mean that the nonlinear stochastic time-
delay closed-loop system (14) is asymptotically stable (in the mean-square) by the fuzzy
control law (13).

The expected exponential stability (in the mean-square) of the closed-loop system (14)
can be proved by making some standard manipulation on (36), see [16]. Let βij be the
unique root of the equation

λmin(−Πij) − βijλmax(P ) − βijhλmax(Q)eβijh = 0, (39)

where Πij and Q are defined, respectively, in (37) and (30) and P is the positive definite
solution to (28) and h is the unknown time-delay. Then, by [26], we have

E|x(t)|2 ≤ λ−1

min
(P )

(

[λmax(P ) + hλmax(Q)]

+ βijλmax(q)h
2eβijh

)

sup
−h≤θ≤0

E|ζ(θ)|2e−βijt.
(40)

Notice that, according to (40), the definition of exponential stable in Definition 1 is
satisfied and this complete the proof of Theorem 1.

The result of Theorem 1 may be conservative due to the use of inequalities (32) – (35).
However, such conservativeness can be significantly reduced by appropriate choices of
the parameters ε1 ε2, ε3, ε4 in a matrix norm sense.

Remark 2 The result of Theorem 1 can be easily extended to the multiple state
time-delay case. Consider the following nonlinear continuous-time multidelay stochastic
system

dx(t) =

[

A(x(t))x(t) +

r
∑

i=1

Ad(x(t))x(t − hi) + B(x(t))u(t)

]

dt +

r
∑

i=1

Ei dwi(t),

x(t) = ϕ(t), t ∈ [−h, 0], 0 < h = max
i

(hi),

(41)

where (w1, w2, . . . , wm) is an m-dimensional Brownian motion, instead of a scalar one
in system (1) – (2). Also, instead of (29), we define the Lyapunov function

Υ(x(t), t) = xT(t)Px(t) +

r
∑

i=1

t
∫

t−hi

xT(s)Qi x(s) ds. (42)

Remark 3 We can conclude the following matrix inequality, similar to matrix inequal-
ity (28) in Theorem 1, for the T-S fuzzy systems with norm-bounded and structured
parametric uncertainties introduced in Remark 1 as

(Ai + BiKj)
TP + P (Ai + BiKj) + P

(

(η1 + η2)DiD
T

i + (ε1 + ε2 + ε3 + ε4)I
)

P

+ ε−1

1
AT

idAid + ε−1

2
AT

p Ap + ε−1

3
AT

pdApd

+ η−1

1
FT

1iF1i + ε−1

4
(BpKj)

T(BpKj) + η−1

2
(F2iKj)

TF2iKj < 0,
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where according to Lemma 1 the following matrix inequalities are satisfied for ∀ η1, η2 > 0

(∆A
p
i )

TP + P∆A
p
i ≤ η1PDiD

T

i P + η−1

1
FT

1iF1i,

(∆B
p
i Kj)

TP + P∆B
p
i Kj ≤ η2PDiD

T

i P + η−1

2
(F2iKj)

TF2iKj .

3.2 Fuzzy control design

This subsection is devoted to the design of control parameters Kj, for j = 1, 2, . . . , L,
by using the result in Theorem 1. We will show that the design of control parameters
problem can be solved via the resolution of matrix inequalities. Our approach follows
the one developed by Gahinet for the deterministic case [6]. The key tool, which makes
this possible, is the stochastic version of the Bounded Real Lemma. From deterministic
H∞ control theory we will need the following lemma, so-called, Projection Lemma.

Lemma 2 [29] Given a symmetric matrix H ∈ Rm×m and two matrices N ∈ Rl×m

and M ∈ Rn×m, consider the problem of finding some matrix X such that

H + NTXTM + MTXN < 0. (43)

Then, (43) is solvable for X if and only if

NT⊥H NT⊥T < 0, MT⊥H MT⊥T < 0. (44)

Here, if Σ ∈ Rn×m and rankΣ = r, the orthogonal complement Σ⊥ is defined as a
possibly nonunique (n − r) × n matrix with rank n − r, such that Σ⊥Σ = 0.

By using the Schur complement formula, inequality (28) is equivalent to





(Ai + BiKj)
TP + P (Ai + BiKj) + ΨT

i Ψi (BpKj)
T P

BpKj −ε4I 0
P 0 −(ε1 + ε2 + ε3 + ε4)

−1I



 < 0,

(45)
where

Ψi =







ε
−1/2

1
Aid

ε
−1/2

2
Ap

ε
−1/2

3
Apd






. (46)

The inequality (45) has the form

Γi + NT

i ΩM + MTΩTNi < 0, (47)

where

Ω = Kj , M = [ I 0 0 ], NT

i =





PBi

Bp

0



 =





P 0 0
0 I 0
0 0 I









Bi

Bp

0



 ,

Γi =





AT

i P + PAi + ΨT

i Ψi 0 P

0 −ε4I 0
P 0 −(ε1 + ε2 + ε3 + ε4)

−1I



 .

(48)

Then, we have the following result.
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Theorem 2 The closed-loop fuzzy system (14) is exponentially stable in the mean-
square and independent of the unknown time-delay h, if the following conditions are
satisfied, for i = 1, 2, . . . , L,

NT⊥
i ΓiN

T⊥T
i < 0,

MT⊥ΓiM
T⊥T < 0,

P = PT > 0,

(49)

where M , Ni and Γi are defined in (48).

Proof The proof follows directly from Theorem 1 and Projection lemma.

Let [ V1i V2 ] = [ Bi Bp ]T⊥ and, by some calculation, we have

NT⊥
i =

[

V1i V2 0
0 0 I

]





P−1 0 0
0 I 0
0 0 I



 , (50)

and

MT⊥ =

[

0 I 0
0 0 I

]

. (51)

Then, it follows from (49) that we have:

MT⊥ΓiM
T⊥T =

[

−ε4I 0
0 −(ε1 + ε2 + ε3 + ε4)

−1 I

]

< 0. (52)

This further implies that MT⊥ΓiM
T⊥T < 0 is satisfied for i = 1, 2, . . . , L and

NT⊥
i ΓiN

T⊥T
i =









W [ V1i V2 ]

[

I

0

]

[ I 0 ]

[

V T

1i

V T

2

]

−(ε1 + ε2 + ε3 + ε4)
−1I









< 0, (53)

where

W = [ V1i V2 ]

[

P−1(AT

i P + PAi + ΨT

i Ψi)P
−1 0

0 −ε4I

] [

V T

1i

V T

2

]

.

Using the Schur complement formula, it is easy to see that (53) is equivalent to

AT

i P + PAi + (ε1 + ε2 + ε3 + ε4)P
2 + ΨT

i Ψi < 0. (54)

If the LMI in (54) have a positive-definite solution for P , then the closed-loop system
(14) is exponentially stable in the mean-square and independent of the unknown time-
delay h. Moreover, in this case, a set of particular solutions of control parameters Kj ,
for j = 1, 2, . . . , L, corresponding to a feasible solution P can be obtained by using the
result of matrix inequality (54). Then, we obtain the following result.
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Theorem 3 If there exist positive scalars ε1, ε2, ε3, ε4 such that the linear matrix
inequality (54) has positive definite solution P , then, the fuzzy control with parameters
Ω = Kj for j = 1, 2, . . . , L can be easily obtained by solving (47) and will be such that
the closed-loop system (14) is exponentially stable in the mean-square and independent
of the unknown time-delay h.

Remark 4 In the case when E1 = 0, that is, the stochastic system (1) – (2) is spe-
cialized to a deterministic system. Therefore, Theorems 1, 2 and 3 can be viewed as
extensions of existing results from deterministic systems to stochastic systems.

4 Simulation Results

In this section, to illustrate the effectiveness of the proposed method, we will design a
fuzzy linear controller for the following stochastic nonlinear time-delay system

dx(t) = [−0.06 x(t)3 + x(t − h) + u(t)] dt + dw(t) (55)

x(t) = 1, t ∈ [−h, 0]. (56)

Consider h = 1 second as the time-delay parameter. To use the fuzzy linear controller
design, we consider a fuzzy model, which represents the dynamics of the nonlinear plant.
Therefore, we represent the system (55) – (56) by the following T-S fuzzy model

Plant Rule 1:

If x(t) is F11,

then dx(t) = [−3 x(t) + 0.5 x(t − h) + 2 u(t)] dt + dw(t).

Plant Rule 2:

If x(t) is F21,

then dx(t) = [−2 x(t) + 0.1 x(t − h) + u(t)] dt + dw(t).

where the membership functions of F11 and F21 are given as follows:

F11 = 1 −
1

1 + e−x2
, F21 = 1 − F11 =

1

1 + e−x2
,

and the bounding matrices are chosen as Ap = 0.5, Apd = 0.5 and Bp = 1.

Substituting the above parameters into Theorem 3, using the LMI toolbox in MAT-
LAB the solutions of (47), i.e., state feedback gains, can be obtained as K1 = 0.1 and
K2 = 0.1709 and the positive scalars ε1, ε2, ε3, ε4 found as ε1 = ε2 = ε3 = ε4 = 0.1.

Robust stability of the state of system (55) in the presence of disturbance, i.e. Brownian
motions has been depicted in Figure 4.1 and it is seen that due to Brownian motion as
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Figure 4.1. Time behavior of the state of system.

Figure 4.2. Control input.

the external disturbance, state still is bounded. The overall fuzzy controller is shown in
Figure 4.2.

5 Conclusions

In this paper, the fuzzy linear control design method for a class of stochastic nonlinear
time-delay systems with state feedback was developed. First, the Takagi and Sugeno
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fuzzy linear model was employed to approximate a nonlinear system. Next, based on
the fuzzy linear model, a fuzzy linear controller was developed to stabilize the non-linear
system. The control law has been obtained to ensure stochastical exponential stability
in the mean-square, independent of the time-delay and the sufficient conditions for the
existence of such a control were proposed in terms of certain linear matrix inequality.
A simulation example was given to illustrate the applicability of the proposed design
method.
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