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Abstract: A new transformation method is developed for the H∞ analysis
and synthesis of a class of uncertain time-delay systems with Markovian jump
parameters. In these systems, the jumping parameters are modelled as a
continuous-time, discrete-state Markov process and the parametric uncertain-
ties are assumed to be real, time-varying and norm-bounded. The time-delay
factor is constant. Complete results for delay dependent stochastic stability
and stabilization criteria are developed for all admissible uncertainties. Then
a dynamic output feedback controller is designed such that the closed-loop
stochastic stability and a prescribed H∞-performance are guaranteed. All
the developed results are cast in the format of linear matrix inequalities
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1 Introduction

It becomes increasingly apparent that delays occur in industrial and engineering systems
due to various reasons including finite capabilities of information processing among dif-
ferent parts of the system, inherent phenomena like mass transport flow and recycling
and/or by product of computational delays [12]. Considerable discussions on delays and
their stabilization/destabilization effects in control systems have commanded the inter-
ests of numerous investigators in recent years, see [1, 6, 13] and their references. In the
course of control design, it turns out that the design goals have to incorporate the impact
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of parameter shifting, component and interconnection failures which are frequently oc-
curring in practical situations. It is thus appropriate to investigate control processes with
the aid of stochastic models. One direction of investigation has been through piecewise
deterministic systems or Markovian jump dynamical systems [2] in which the underlying
dynamics are governed by different forms depending on the value of an associated finite-
state Markov process thus offer a base model of combined continuous and discrete states.
Research into this class of systems and their applications span several decades [5, 15].
When the plant modelling uncertainty or external disturbance uncertainty is of major
concern in control systems, robust control theory provides tractable design tools using
the time domain and the frequency domain. For Markov jumping linear continuous-time
systems, the issue of robust stability and H∞-control has been investigated in [4, 17]
and their references. The class of time- delay systems with jump parameters have been
recently considered in [1, 13] and for a modest coverage on the subject, see [2, 14].

The purpose of this paper is to extend the results of [1, 2, 13] further by developing
new transformation methods that will help much in the study of stochastic stability
and stabilization of a class of uncertain systems with Markovian jump parameters and
distributed delays. In these systems, the jumping parameters are treated as continuous-
time, discrete-state Markov process and the parametric uncertainties are assumed to be
real, time-varying and norm-bounded. The time-delay factor is treated as a constant
within a prespecified range. Complete results of delay-dependent stochastic stability
criteria are developed for both the nominal and uncertain jumping distributed delay
systems with H∞ performance measure. Then we move to consider the H∞ stabilization
problem with instantaneous and delayed state feedback. Finally, we investigate the design
of an H∞ dynamic output feedback controller that ensures the close-loop stochastic
stability. We establish that the H∞ stability analysis and synthesis problems for the
distributed-delay Markovian jump systems with and without uncertain parameters can
be essentially solved in terms of the solutions of a finite set of coupled linear matrix
inequalities. Several examples are presented to illustrate the theoretical analysis.

Notations and Facts: In the sequel, the Euclidean norm is used for vectors. We use
W t, W−1, λ(W ) and ‖W‖ to denote, respectively, the transpose of, the inverse of, the
eigenvalues of and the induced norm of any square matrix W . We use W > 0 (≥, <
,≤ 0) to denote a symmetric positive definite (positive semidefinite, negative, negative
semidefinite matrix W with λm(W ) and λM (W ) being the minimum and maximum
eigenvalues of W and I to denote the n×n identity matrix. The Lebesgue space L2[0, T ]
consists of square-integrable functions on the interval [0, T ] equipped with the norm ‖·‖2.
IE[·] stands for mathematical expectation. Let S = {1, 2, ..., s} be a finite set, C[−τj, 0] be

the space of continuous functions on the interval [−τj , 0] and define C̄ △
=

⋃

j∈S

C[−τj , 0]×

{j}. Sometimes, the arguments of a function will be omitted in the analysis when no
confusion can arise.

Fact 1: For any real vectors β, ρ and any matrix Qt = Q > 0 with appropriate dimen-
sions, it follows that

−2ρtβ ≤ ρtQρ + βtQ−1β.

Fact 2: For any real matrices Σ1, Σ2 and Σ3 with appropriate dimensions and Σt
3Σ3 ≤ I,

it follows that

Σ1Σ3Σ2 + Σt
2Σ

t
3Σ

t
1 ≤ α−1Σ1Σ

t
1 + αΣt

2Σ2, ∀α > 0.
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Fact 3: Let Σ1, Σ2, Σ3 and 0 < R = Rt be real constant matrices of compatible
dimensions and H(t) be a real matrix function satisfying Ht(t)H(t) ≤ I. Then for any
ρ > 0 satisfying ρΣt

2Σ2 < R, the following matrix inequality holds:

(Σ3 + Σ1H(t)Σ2)R
−1(Σt

3 + Σt
2H

t(t)Σt
1) ≤ ρ−1Σ1Σ

t
1 + Σ3(R − ρΣt

2Σ2)
−1Σt

3.

Fact 4 (Schur Complement): Given constant matrices Ω1, Ω2, Ω3, where Ω1 = Ωt
1

and 0 < Ω2 = Ωt
2 then Ω1 + Ωt

3Ω
−1
2 Ω3 < 0 if and only if

[

Ω1 Ωt
3

Ω3 −Ω2

]

< 0 or

[

−Ω2 Ω3

Ωt
3 Ω1

]

.

2 Problem Statement

2.1 System description

Given a probability space (Ω,F ,P), where Ω is the sample space, F is the algebra of
events and P is the probability measure defined on F . Let the random form process
{ηt, t ∈ [0, T ]} be a homogeneous, finite-state Markovian process with right continuous
trajectories and taking values in a finite set S = {1, 2, ..., s} with generator ℑ = (αij)
and transition probability from mode i at time t to mode j at time t + δ, i, j ∈ S:

pij = Pr(ηt+δ = j | ηt = i) =

{

αijδ + o(δ), if i 6= j,

1 + αijδ + o(δ), if i = j
, (2.1)

with transition probability rates αij ≥ 0 for i, j ∈ S, i 6= j and

αii = −
s

∑

m=1, m 6=i

αim, (2.2)

where δ > 0 and lim
δ↓0

o(δ)/δ = 0. The set S comprises the various operational modes of

the system under study. We consider a class of stochastic uncertain time-delay systems
with Markovian jump parameters described over the space (Ω,F ,P) by:

(ΣJ) : ẋ(t) = [Ao(ηt) + ∆Ao(t, ηt)]x(t) + [Ad(ηt) + ∆Ad(t, ηt)]x(t − τ) + Γ(ηt)w(t),

= A∆o(t, ηt)x(t) + A∆d(t, ηt)x(t − τ) + Γ(ηt)w(t) t ≥ 0,

x(t) = φ(t), t ∈ [−τ, 0], ηo = i, (2.3)

z(t) = G(ηt)x(t) + Φ(ηt)w(t), (2.4)

where x(t) ∈ ℜn is the state vector; w(t) ∈ ℜq is the disturbance input which belongs
to L2[0, T ]; y(t) ∈ ℜp is the measured output; z(t) ∈ ℜr is the controlled output which
belongs to L2

[

(Ω,F ,P), [0, T ]
]

and τ ∈ [0, τ∗] is a constant delay factor. For each

possible value ηt = i, i ∈ S, we will denote the system matrices of (ΣJ ) associated with
mode i by

Ao(ηt)
△
= Ao(i), Γ(ηt)

△
= Γ(i), G(ηt)

△
= G(i),

Ad(ηt)
△
= Ad(i), Φ(ηt)

△
= Φ(i),

(2.5)
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where Ao(i), Ad(i), G(i), Γ(i) and Φ(i) are known real constant matrices of appropri-
ate dimensions which describe the nominal system of (ΣJ ). The matrices ∆Ao(t, ηt)
and ∆Ad(t, ηt) are real, time-varying matrix functions representing the norm-bounded
parameter uncertainties. For ηt = i, the admissible uncertainties are assumed to be
modeled in the form:

[∆Ao(t, i) ∆Ad(t, i)] = Ma(i)∆(t, i)[Na(i) Nd(i)], ‖∆(t, i)‖2 ≤ 1, (2.6)

where Ma(i) ∈ ℜn×α, Na(i) ∈ ℜβ×n and Nd(i) ∈ ℜβ×n are known real constant matrices,
with ∆(t, i) ∈ ℜα×β being unknown, time-varying matrix function whose elements are
Lebesgue measurable for any i ∈ S.

Our purpose in this paper is to develop criteria for H∞ analysis and synthesis for
system (2.3) – (2.4). Initially, we focus on stochastic stability and L2-gain criterion and
examine their robustness using the performance measure

J (x)
△
= IE

{

∞
∫

0

[zt(t)z(t) − γ2wt(t)w(t)] dt

}

, (2.7)

where γ > 0 is a desired level of disturbance attenuation.

2.2 Model transformation

For each possible value ηt = i, i ∈ S, we introduce the following state transformation

σ(t) = x(t) +

t
∫

t−τ

A∆d(t, i)x(s) ds (2.8)

into (2.3) to yield

σ̇(t) = [A∆o(t, i) + A∆d(t, i)]x(t) + Γ(i)w(t). (2.9)

Given a sufficiently small scalar ε, we define the augmented state-vector

ζ(t) =

[

σ(t)
εx(t)

]

∈ ℜ2n. (2.10)

By combining (2.3) and (2.8) – (2.10) and taking the limit ε → 0, we obtain the trans-
formed system

(ΣT ) : ζ̇(t) = Λ∆(i)ζ(t) +

t
∫

t−τ

Υ(i)ζ(s) ds + Γ̄(i)w(t),

ζ(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (2.11)

z(t) = Ḡ(i)ζ(t) + Φ(i)w(t), (2.12)
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where

Γ̄(i) =

[

Γ(i)
0

]

, Ḡ(i) = [0 G(i)], Aod(i) = Ao(i) + Ad(i),

Λ∆(i) =

[

0 A∆o(t, i) + A∆d(t, i)
−I I

]

, Υ(i) =

[

0 0
0 A∆d(t, i)

]

.

(2.13)

For convenience, we introduce the matrices for i ∈ S

Λo(i) =

[

0 Aod(i)
−I I

]

, M̄(i) =

[

Ma

0

]

, IP(i) =

[

Pσ(i) 0
Pd(i) Px(i)

]

,

Nad(i) = Na(i) + Nd(i), N̄ad(i) = [0 Nad(i)], P̄ (i) = U IP(i),

U =

[

I 0
0 0

]

, E1 =

[

I
0

]

, E2 =

[

0
I

]

.

(2.14)

Remark 2.1 Some discussions on the model transformation are in order. On one
hand, the σ-variable recovers the delay-dependent dynamics of system (ΣJ ). On the
other hand, the use of small scalar ε is meant to capture the slow-modes of the system.
It is readily seen for absolutely continuous initial functions that systems (ΣJ ) and (ΣT )
are equivalent. For single-mode systems s = 1, a different approach was developed in
[6] based on description-type transformation. In the sequel, it will be shown that our
transformation is more flexible.

For system (2.11) – (2.14), we provide the following definition.

Definition 2.1 System (ΣT ) is said to be delay dependent robustly stochastically
stable (DDRSS) with disturbance attenuation γ > 0 if for zero initial vector function
φ ≡ 0 defined on the interval [−τ, 0] and initial mode ηo ∈ S

‖z(t)‖E2
:= IE

[

∞
∫

0

zt(t)z(t) dt

]1/2

< γ‖w(t)‖2

for all 0 6= w(t) ∈ L2[0,∞) and for all admissible uncertainties satisfying (2.6).

3 L2-Gain Analysis

The theorem and corollaries established in the sequel show that the stability behavior of
system ΣT (or equivalently ΣJ) is related to the existence of a positive definite solution
of a family of linear matrix inequalities (LMIs) thereby providing a clear key to designing
the feedback controller.

Theorem 3.1 System ΣT is DDRSS with disturbance attenuation γ > 0 if given
matrix sequence Qx(i) = Qt

x(i) > 0, i ∈ S , there exist matrices 0 < Pσ(i), Pd(i), Px(i),
i ∈ S and scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0, γ > 0, i ∈ S, satisfying the system of
LMIs









Π2(i) Π21(i) Π22(i) Π23(i) Π24(i)
Πt

21
(i) −ε1(i)I 0 0 0

Πt
22

(i) 0 −τε2(i)I 0 0
Πt

23
(i) 0 0 −τQx(i) + τε2(i)Nd(i)Nt

d
(i) 0

Πt
24

(i) 0 0 0 −γ2I + Φt(i)Φ(i)









< 0,

[

−Qx(i) Nd(i)
N t

d(i) −ε2(i)I

]

< 0,

[

−γ2I Φt(i)
Φ(i) −I

]

< 0, i ∈ S,

(3.1)
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where

Π2(i) =













−Pd(i) − P t
d
(i) +

s
∑

m=1

αimPσ(m) −Px(i) + P t
d
(i) + P t

σ(i)Aod(i)

Px(i) + P t
x(i) + τQx(i)

−P t
x(i) + Pd(i) + At

od
(i)Pσ(i) +Gt(i)G(i) + ρ(i)τ2

s
∑

m=1

αimQx(m)

+ε1(i)N̄t
ad

(i)N̄ad(i)













, (3.2)

Π21(i) =

[

P t
σ(i)E1Ma(i)

0

]

, Π22(i) =

[

τP t
σ(i)E1Ma(i) τP t

d(i)E1Ma(i)
0 τP t

x(i)E1Ma(i)

]

, (3.3)

Π23(i) =

[

τP t
d(i)

τP t
x(i)

]

, Π24(i) =

[

P t
σ(i)Γ(i)

Gt(i)Φ(i)

]

. (3.4)

Proof Let xs(t)
△
= x(s + t), t − τ ≤ s ≤ t and define the process {(x(t), ηt), t ≥ 0}

over the state space C̄. It should be observed that {(x(t), ηt), t ≥ 0} is strong Markovian
[9] so is the process {(ζ(t), ηt), t ≥ 0}. Now for ηt = i ∈ S, and given Q(i) = Qt(i) > 0,
let the Lyapunov functional V (·) : ℜn × ℜ+ × S → ℜ+ of the transformed system be
selected as

V (t, ζ, i) = ζt(t)P̄ (i)ζ(t) +

t
∫

t−τ

t
∫

θ

ζt(s)E2Qx(i)Et
2ζ(s) dsdθ. (3.5)

The weak infinitesimal operator ℑζ
1[·] of the process {ζ(t), i, t ≥ 0} for system (2.11) –

(2.14) at the point {t, x, i} is given by [5, 9]:

ℑζ
1[V ] =

∂V

∂t
+

∂V

∂ζ
ζ̇(t)

∣

∣

∣

∣

ηt=i

+

s
∑

m=1

αimV (t, ζ, i, m). (3.6)

Using (2.9) – (2.14) we get:

∂V

∂ζ
ζ̇(t) = 2ζt(t)U IPt(i)ζ̇(t) = 2σt(t)P t

σ(i)σ̇(t) = 2ζt(t)IPt(i)

[

σ̇(t)
0

]

= 2ζt(t)IPt(i)





A∆o(t, i) + A∆d(t, i)]x(t) + Γ(i)w(t)

−σ(t) + x(t) +
t
∫

t−τ

A∆d(t, i)x(s) ds





= 2ζt(t)IPt(i)Λ∆(i)ζ(t) + 2ζt(t)IPt(i)Γ̄(i)w(t)

+ 2

t
∫

t−τ

ζt(t)IPt(i)Υ(i)ζ(θ) dθ.

(3.7)
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Hence, it follows from (3.6) – (3.7) that

ℑζ
1[V ] = ζt(t)

[

Λt
∆(i)IP(i) + IPt(i)Λ∆(i) +

s
∑

m=1

αimIP(m)

]

ζ(t)

+ 2ζt(t)IPt(i)Γ̄(i)w(t) + 2

t
∫

t−τ

ζt(t)IPt(i)Υ(i)ζ(θ) dθ +

t
∫

t−τ

ζt(t)E2Qx(i)Et
2ζ(t) dθ

−
t

∫

t−τ

ζt(θ)E2Qx(i)Et
2ζ(θ) dθ +

s
∑

m=1

αim

t
∫

t−τ

t
∫

θ

ζt(s)E2Qx(m)Et
2ζ(s) dsdθ.

(3.8)

Since for some ρ(i) > 0, i ∈ S
s

∑

m=1

αim

t
∫

t−τ

t
∫

θ

ζt(s)E2Qx(m)Et
2ζ(s) dsdθ ≤ τ2ρ(i)ζt(t)E2

s
∑

m=1

αimQx(m)Et
2ζ(t) (3.9)

and by Fact 1, we have

2

t
∫

t−τ

ζt(t)IPt(i)Υ(i)ζ(θ) dθ = 2

t
∫

t−τ

ζt(t)IPt(i)E2A∆d(t, i)x(θ) dθ (3.10)

≤ τζt(t)IPt(i)E2A∆d(t, i)Q
−1
x (i)At

∆d(t, i)E
t
2IP

t(i)ζ(θ) +

t
∫

t−τ

xt(s)Qx(i)x(s) ds

= τζt(t)IPt(i)E2A∆d(t, i)Q
−1
x (i)At

∆d(t, i)E
t
2IP(i)ζ(t) +

t
∫

t−τ

ζt(θ)E2Qx(i)Et
2ζ(θ) dθ.

Now, it follows from (3.8) – (3.10) that

ℑζ
1[V ] ≤ ζt(t)

[

Λt
∆(i)IP(i) + IPt(i)Λ∆(i) +

s
∑

m=1

αimIP(m)

+ ρ(i)τ2E2

s
∑

m=1

αimQx(m)Et
2 + τIPt(i)E2A∆d(t, i)Q

−1
x (i)At

∆d(t, i)E
t
2IP(i)

]

ζ(t)

+ τE2Qx(i)Et
2 + 2ζt(t)IPt(i)Γ̄(i)w(t).

(3.11)

Application of Facts 2 – 3 to (3.11) yields:

ℑζ
1[V ] ≤ ζt(t)

[

Λt
o(i)IP(i) + IPt(i)Λo(i) +

s
∑

m=1

αimP̄ (m)

+ τE2Qx(i)Et
2 + ε1(i)N̄

t
ad(i)N̄ad(i) + ε−1

1 (i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1At
d(i)E

t
2IP(i)

+ τ2ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε−1

2 (i)IPt(i)E1Ma(i)M t
a(i)Et

1IP(i)

]

ζ(t)

+ 2ζt(t)IPt(i)Γ̄(i)w(t) = ζt(t)Π1ζ(t) + 2ζt(t)IPt(i)Γ̄(i)w(t)

(3.12)
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for some scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0. By taking w(t) ≡ 0, the robust stability of

system (2.10) readily follows from (3.12) when Π1 < 0. Thus we conclude that ℑζ
1[V ] < 0

for all ζ 6= 0 and ℑζ
1[V ] ≤ 0 for all ζ. By Dynkin’s formula [9], one has IE

[ ∞
∫

0

ℑζ
1[V ] dt

]

=

IE[V (t, x, i)|t=∞] − V (t, ζ, i)|t=0 ≥ 0. With some manipulations using (2.10) and (3.12),
we obtain:

J (x) = IE

{

∞
∫

0

[zt(t)z(t) − γ2wt(t)w(t) + ℑζ
1[V ] −ℑζ

1[V ]]dt

}

≤ IE

{

∞
∫

0

[zt(t)z(t) − γ2wt(t)w(t) + ℑζ
1[V ]]dt

}

≤ IE

{

∞
∫

0

ζt(t)

[

Λt
o(i)IP(i) + IPt(i)Λo(i) +

s
∑

m=1

αimP̄ (m)

+ τE2Qx(i)Et
2 + ε1(i)N̄

t
ad(i)N̄ad(i) + ε−1

1 (i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1At
d(i)E

t
2IP(i)

+ τ2ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε−1

2 (i)IPt(i)E1Ma(i)M
t
a(i)Et

1IP(i) + Ḡt(i)Ḡ(i)

+ [IPt(i)Γ̄(i) + Ḡt(i)Φ(i)][γ2I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)]

]

ζ(t)

}

.

(3.13)

By using (3.1) – (3.4) and Fact 4, it follows from inequality (3.13) that J (x) < 0 and
hence system (2.11) – (2.12) is DDRSS with disturbance attenuation γ > 0.

The following corollary can be readily derived as special case of Theorem 3.1:

Corollary 3.1 Consider the nominal jump system

(ΣTn) : ζ̇(t) = Λo(i)ζ(t) +

t
∫

t−τ

Υ(i)ζ(s) ds + Γ̄(i)w(t),

ζ(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (3.14)

z(t) = Ḡ(i)ζ(t) + Φ(i)w(t). (3.15)

System ΣTn is delay dependent stochastically stable (DDSS) with disturbance attenuation
γ > 0 if given matrix sequence Q(i) = Qt(i) > 0, i ∈ S , there exist matrices P (i) =
P t(i) > 0, i ∈ S, satisfying the system of LMIs





Π20(i) Π23(i) Π24(i)
Πt

23(i) −τQx(i) 0
Πt

24(i) 0 −γ2I + Φt(i)Φ(i)



 < 0,

[

−γ2I Φt(i)
Φ(i) −I

]

< 0, i ∈ S, (3.16)

where

Π20(i) =











−Pd(i) − P t
d
(i) +

s
∑

m=1

αimPσ(m) −Px(i) + P t
d
(i) + P t

σ(i)Aod(i)

Px(i) + P t
x(i) + τQx(i)

−P t
x(i) + Pd(i) + At

od
(i)Pσ(i) +Gt(i)G(i) + ρ(i)τ2

s
∑

m=1

αimQx(m)











.
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Remark 3.1 In the foregoing analysis, τ is assumed to be known and constant. If
it turns out to be known, the largest value can be computed by solving a generalized
eigenvalue problem of the form:

Maximize τ

subject to
Pσ(i) > 0, Pd(i), Px(i),

ε1(i) > 0, ε2(i) > 0, ρ(i) > 0, γ > 0 i ∈ S.

This problem can be readily solved using the LMI toolbox.

3.1 Example 1

In order to illustrate Theorem 3.1, we consider a pilot-scale multi-reach water quality
system [11] which can fall into the type (2.3) – (2.6). Let the Markov process governing
the mode switching has generator

ℑ =





−4 3 1
2 −6 4
4 4 −8



 .

For the three operating conditions (modes), the associated date are:

Mode 1:

Ao(1) =

[

−0.2 0
0 −0.09

]

, Ad(1) =

[

−0.1 0
−0.1 −0.1

]

, Γ(1) =

[

1 0
0 2

]

,

G(1) =

[

0.2 0
0 0.1

]

, Φ(1) =

[

0.5 0
0 0.4

]

, Ma(1) =

[

0.2
0.1

]

,

Na(1) = [0.2 0.4], Nd(1) = [0.1 0.3].

Mode 2:

Ao(2) =

[

−2 −1
0 −2

]

, Ad(2) =

[

0 1
1 0

]

, Γ(2) =

[

2 0
0 1

]

,

G(2) =

[

0.1 0
0 0.1

]

, Φ(2) =

[

0.3 0
0 0.4

]

, Ma(2) =

[

0.1
0.1

]

,

Na(2) = [0.2 0.2], Nd(2) = [0.1 0.2].

Mode 3:

Ao(3) =

[

−1.9 0
0 −1

]

, Ad(3) =

[

−0.9 0
−1 −1.1

]

, Γ(3) =

[

1 0
0 1

]

,

G(3) =

[

0.2 0
0 0.2

]

, Φ(3) =

[

0.2 0
0 0.3

]

, Ma(3) =

[

0.1
0.2

]

,

Na(3) = [0.3 0.3], Nd(3) = [0.2 0.1].
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Invoking the software environment [7], we solve inequalities (3.1) subject to (3.2) – (3.4)
for i = 1, 2, 3. The feasible solutions obtained for

ε1(1) = 0.7825, ε2(1) = 1.5634, ρ(1) = 3.2312,

ε1(2) = 1.2671, ε2(2) = 3.3451, ρ(2) = 2.7645,

ε1(3) = 4.2355, ε2(3) = 0.6673, ρ(3) = 4.4436

show water quality system is DDRSS with a disturbance attenuation level of γ = 1.25
for any constant time delay τ ≤ 0.6715.

4 Robust H∞ Stabilization

In this section, we consider the control uncertain jumping system with ηt = i ∈ S:

(ΣJC) : ẋ(t) = A∆o(t, i)x(t) + A∆d(t, i)x(t − τ) + B∆o(t, i)u(t) + Γ(i)w(t), t ≥ 0,

x(t) = φ(t), t ∈ [−τ, 0], ηo = i, (4.1)

z(t) = G(i)x(t) + Φ(i)w(t), (4.2)

where u(t) ∈ ℜr is the control input and

B∆o(t, i) = Bo(t, i) + Ma(i)∆(t, i)Nb(i) (4.3)

with Nb(i) ∈ ℜβ×r. We will examine two distinct case of state feedback stabilization:
instantaneous feedback and delayed feedback.

4.1 Instantaneous state feedback

In this case we use the control law for ηt = i ∈ S

u(t) = K(i)x(t), i ∈ S (4.4)

such that the use of (2.8) and (4.4) into (4.1) yields for ηt = i:

σ̇(t) = [A∆k(t, i) + A∆d(t, i)]x(t) + Γ(i)w(t),

A∆k(t, i) = A∆o(t, i) + B∆o(t, i)K(i).
(4.5)

In this case the transformed system becomes

(ΣTK) : ζ̇(t) = Λ∆k(i)ζ(t) +

t
∫

t−τ

Υ(i)ζ(s) ds + Γ̄(i)w(t),

ζ(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (4.6)

z(t) = Ḡ(i)ζ(t) + Φ(i)w(t), (4.7)

where

Λ∆k(i) =

[

0 A∆k(t, i) + A∆d(t, i)
−I I

]

. (4.8)
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Taking into consideration the standard result

IP−1(i) =

[

Xσ(i) 0
Xd(i) Xx(i)

]

,

Xσ(i) = P−1
σ (i), Xx(i) = P−1

x (i), Xd(i) = −XxPd(i)Xσ

(4.9)

we define the following matrices for i ∈ S:

Λok(i) =

[

0 Aod(i) + Bo(i)K(i)
−I I

]

, B̄o(i) =

[

Bo(i)
0

]

, Z(i) =

[

0
Xσ(i)

]

,

Āt
od(i) = [At

od(i) I], Nkd(i) = Nad(i) + Nb(i)K(i), N̄kd(i) = [0 Nkd(i)],

Y (i) = [Xd(i) Xx(i)], H(i) = [H2(i) H1(i)], Ndk(i) = Nd(i) + Nb(i)Kd(i),

Ω(τ, i) = Gt(i)G(i) + τE2Qx(i)Et
2 + ρ(i)τ2E2

s
∑

m=1

αimQx(m)Et
2 + ε1(i)N

t
ad(i)Nad(i).

(4.10)
The following theorem establish the main result:

Theorem 4.1 System ΣTK is DDRSS with disturbance attenuation γ > 0 under the
control law (4.3) if given matrix sequence Qx(i) = Qt

x(i) > 0, i ∈ S , there exist matrices
Y (i), Z(i), H(i), i ∈ S and scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0, γ > 0, i ∈ S, satisfying
the system of LMIs























Π3(i) M̄(i) τE1Ma(i) τE2Ad(i)
Γ̄(i)

+ Y t(i)G(i)Φ(i)
R(i)

M̄ t(i) −ε1(i)I 0 0 0 0
M t

a(i)Et
1

0 −τε2(i)I 0 0 0

τAt
d
(i)Et

2
0 0

−τQx(i)
+ τε2(i)Nd(i)Nt

d(i)
0 0

Γ̄t(i)
+ Φt(i)Gt(i)Y (i)

0 0 0
−γ2I

+ Φt(i)Φ(i)
0

Rt(i) 0 0 0 0 −Y(i)























< 0,

[

−Qx(i) Nd(i)
N t

d(i) −ε2(i)I

]

< 0,

[

−γ2I Φt(i)
Φ(i) −I

]

< 0, i ∈ S, (4.11)

where

Π3(i) = Y t(i)Āt
od(i) + Āod(i)Y (i) − E1(i)Z

t(i) − Z(i)Et
1 + B̄o(i)H(i)

+ Ht(i)B̄t
o(i) + Y t(i)Ω(τ, i)Y (i) + αiiE1Z

t(i)E2

+ ε1(i)Y
t(i)N t

ad(i)Nb(i)E
t
1L(i) + ε1(i)L

t(i)E1N
t
b(i)Nb(i)E

t
1L(i)

+ ε1(i)L
t(i)E1N

t
b(i)Nad(i)Y (i)

Y(i) = diag
[

E1Z
t(1)E2 . . . E1Z

t(i − 1)E2 E1Z
t(i + 1)E2 . . . E1Z

t(s)E2

]

,

R(i) =
[√

αi1E1Z
t(1)E2 . . .

√
αisE1Z

t(s)E2

]

,

(4.12)

and the state-feedback gain is given by K(i) = H1(i)[Y (i)E1]
−1

.

Proof Again, let xs(t)
△
= x(s+ t), t−τ ≤ s ≤ t and define the process {(x(t), ηt), t ≥

0} over the state space C̄. It should be observed that {(x(t), ηt), t ≥ 0} is strong
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Markovian [9] so is the process {(ζ(t), ηt), t ≥ 0}. Now for ηt = i ∈ S, and given
Q(i) = Qt(i) > 0, let the Lyapunov functional V (·) : ℜn × ℜ+ × S → ℜ+ as given by

(3.5) and hence the weak infinitesimal operator ℑζ
2[·] of the process {ζ(t), ηt, t ≥ 0} for

system (4.6) – (4.9) at the point {t, x, ηt} is given by (3.6). It is easy to see that:

∂V

∂ζ
ζ̇(t) = 2ζt(t)IPt(i)Λ∆k(i)ζ(t) + 2ζt(t)IPt(i)Γ̄(i)w(t) + 2

t
∫

t−τ

ζt(t)IPt(i)Υ(i)ζ(θ) dθ.

(4.13)
Hence, it follows from (3.6) and (4.13) that

ℑζ
2[V ] = ζt(t)

[

Λt
∆k(i)IP(i) + IPt(i)Λ∆k(i) +

s
∑

m=1

αimP̄ (m)

]

ζ(t) (4.14)

+ 2ζt(t)IPt(i)Γ̄(i)w(t) + 2

t
∫

t−τ

ζt(t)IPt(i)Υ(i)ζ(θ) dθ +

t
∫

t−τ

ζt(t)E2Qx(i)Et
2ζ(t) dθ

−
t

∫

t−τ

ζt(θ)E2Qx(i)Et
2ζ(θ) dθ +

s
∑

m=1

αim

t
∫

t−τ

t
∫

θ

ζt(s)E2Qx(m)E2ζ(s) dsdθ.

By making use of (3.9) – (3.10) into (4.14) and applying Facts 2 – 3, we get

ℑζ
2[V ] ≤ ζt(t)

[

Λt
ok(i)IP(i) + IPt(i)Λok(i) +

s
∑

m=1

αimP̄ (m) + ε1(i)N̄
t
kd(i)N̄kd(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1At
d(i)E

t
2IP(i) + τE2Qx(i)Et

2

+ τ2ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε−1

2 (i)IPt(i)E1Ma(i)M t
a(i)Et

1IP(i)

]

ζ(t)

+ ε−1
1 (i)IPt(i)M̄(i)M̄ t(i)IP(i) + 2ζt(t)IPt(i)Γ̄(i)w(t)

(4.15)

for some scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0. By similarity to Theorem 3.1 the robust
stability of system ΣTK is guaranteed readily follows from (3.12) and Definition 2.1. Thus

we conclude that ℑζ
2[V ] < 0 for all ζ 6= 0 and ℑζ

2[V ] ≤ 0 for all ζ. Also, by Dynkin’s

formula [9], one has IE[
∞
∫

0

ℑζ
2[V ]dt] = IE[V (t, x, i)|t=∞] − V (t, ζ, i)|t=0 ≥ 0. With some

manipulations using (4.7) and (4.15), it is readily seen that:

J (x) ≤ IE

{
∫ ∞

0

[zt(t)z(t) − γ2wt(t)w(t) + ℑζ
2[V ]]dt

}

(4.16)

≤ IE

{
∫ ∞

0

ζt(t)

[

Λt
ok(i)IP(i) + IPt(i)Λok(i) +

s
∑

m=1

αimP̄ (m)

+ τE2Qx(i)Et
2 + ε1(i)N̄

t
kd(i)N̄kd(i) + ε−1

1 (i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1At
d(i)E

t
2IP(i) + Ḡt(i)Ḡ(i)

+ τ2ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε−1

2 (i)IPt(i)E1Ma(i)M t
a(i)Et

1IP(i)

+ [P̄ t(i)Γ̄(i) + Ḡt(i)Φ(i)][γ2I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)]

]

ζ(t)

}

.
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In line of Theorem 3.1, it follows from inequality (4.16) that J (x) < 0 is guaranteed if
the following inequality

Λt
ok(i)IP(i) + IPt(i)Λok(i) +

s
∑

m=1

αimP̄ (m) + τE2Qx(i)Et
2 + ε1(i)N̄

t
kd(i)N̄kd(i)

+ ε−1
1 (i)IPt(i)E1M̄(i)M̄ t(i)Et

1IP(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1At
d(i)E

t
2IP(i)

+ τ2ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε−1

2 (i)IPt(i)E1Ma(i)M
t
a(i)Et

1IP(i) + Ḡt(i)Ḡ(i)

+ [IPt(i)Γ̄(i) + Ḡt(i)Φ(i)][γ2I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)] < 0

(4.17)

holds. Premultiplying (4.17) by IP−t(i), postmultiplying by IP−1(i), using (4.9) – (4.10)
and manipulating with the help of Fact 3, we obtain the LMI (4.11). It follows that
system (4.6) – (4.7) is DDRSS with disturbance attenuation γ > 0 under the control
law (4.4).

The following corollary can be readily derived as special case of Theorem 3.1:

Corollary 4.1 The nominal jump system ΣTn is delay dependent stochastically stable
(DDSS) with disturbance attenuation γ > 0 under the control law (4.4) if given matrix
sequence Qx(i) = Qt

x(i) > 0, i ∈ S , there exist matrices Y (i), Z(i), H(i), i ∈ S,
satisfying the system of LMIs







Π30(i) τE2Ad(i) Γ̄(i) + Y t(i)G(i)Φ(i) R(i)
τAt

d(i)Et
2 −τQx(i) 0 0

Γ̄t(i) + Φt(i)Gt(i)Y (i) 0 −γ2I + Φt(i)Φ(i) 0
Rt(i) 0 0 −Y(i)






< 0,

[

−γ2I Φt(i)
Φ(i) −I

]

< 0, i ∈ S,

(4.18)

where

Π30(i) = Y t(i)Āt
od(i) + Āod(i)Y (i) − E1Z

t(i) − Z(i)Et
1 + B̄o(i)H(i)

+ Ht(i)B̄t
o(i) + Y t(i)Ωo(τ, i)Y (i) + αiiE1Z

t(i)E2,

Ωo(τ, i) = Gt(i)G(i) + τE2Qx(i)Et
2 + ρ(i)τ2E2

s
∑

m=1

αimQx(m)Et
2,

and the state-feedback gain is given by K(i) = H1(i)[Y (i)E1]
−1

.

4.2 Delayed state feedback

In this case we use the control law for ηt = i ∈ S as

u(t) = Kd(i)x(t − τ), i ∈ S, (4.19)
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along with the following state transformation

σ(t) = x(t) +

t
∫

t−τ

[A∆d(t, i) + B∆o(t, i)Kd(i)]x(s) ds (4.20)

such that the use of (4.19) – (4.20) into (4.1) with (2.13) – (2.14) yields for ηt = i ∈ S:

σ̇(t) = [A∆o(t, i) + A∆kd(t, i)]x(t) + Γ(i)w(t),

A∆kd(t, i) = A∆d(t, i) + B∆o(t, i)Kd(i).
(4.21)

Simple algebra yields the transformed system:

(ΣTD) : ζ̇(t) = Λ∆d(i)ζ(t) +

t
∫

t−τ

Υk(i)ζ(s) ds + Γ̄(i)w(t),

ζ(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (4.22)

z(t) = Ḡ(i)ζ(t) + Φ(i)w(t), (4.23)

where

Λ∆d(i) =

[

0 A∆o(t, i) + A∆kd(t, i)
−I I

]

, Υk(i) =

[

0 0
0 A∆kd(t, i)

]

. (4.24)

Define

Aokd(i) = Aod(i) + Bo(i)Kd(i), Akd(i) = Ad(i) + Bo(i)Kd(i),

L(i) = [L2(i) L1(i)],

Λod(i) =

[

0 Aokd(i)
−I I

]

, Ndr(i) = Nd(i) + Nb(i)L(i)NR(i).

(4.25)

Taking into account the matrices of (4.9) – (4.10), we establish the following theorem:

Theorem 4.2 System ΣTD is DDRSS with disturbance attenuation γ > 0 under
the control law (4.19) if given matrix sequence Qx(i) = Qt

x(i) > 0, i ∈ S , there exist
matrices Y (i), Z(i), L(i), R(i), i ∈ S and scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0, γ > 0,
i ∈ S, satisfying the system of LMIs

























Π4(i) M̄(i) τE1Ma(i)
τE2Ad(i)

+ τE2Bo(i)
× L(i)E2R(i)

Γ̄(i) + Y t(i)
× G(i)Φ(i)

R(i)

M̄ t(i) −ε1(i)I 0 0 0 0
M t

a(i)Et
1

0 −τε2(i)I 0 0 0

τAt
d(i)Et

2

+ τRt(i)Et
2Lt(i)Bt

o(i)Et
2

0 0
−τQx(i) + τε2(i)
× Ndr(i)Nt

dr(i)
0 0

Γ̄t(i) + Φt(i)Gt(i)Y (i) 0 0 0
−γ2I

+ Φt(i)Φ(i)
0

Rt(i) 0 0 0 0 −Y(i)

























< 0,

[

−Qx(i) Ndr(i)
N t

dr(i) −ε2(i)I

]

< 0,

[

−Y (i)E1 I
I −R(i)

]

≥ 0,

[

−γ2I Φt(i)
Φ(i) −I

]

< 0, i ∈ S, (4.26)
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where

Π4(i) = Y t(i)Āt
od(i) + Āod(i)Y (i) − E1Z

t(i) − Z(i)Et
1 + B̄o(i)L(i)

+ Lt(i)B̄t
o(i) + Y t(i)Ω(τ, i)Y (i) + αiiE1Z

t(i)E2

+ ε1(i)Y
t(i)N t

ad(i)Nb(i)E
t
1L(i) + ε1(i)L

t(i)E1N
t
b(i)Nb(i)E

t
1L(i)

+ ε1(i)L
t(i)E1N

t
b(i)Nad(i)Y (i)

(4.27)

and the delayed-feedback gain is given by Kd(i) = L(i)E1R(i).

Proof By similarity to Theorem 3.1 and letting the Lyapunov functional V (·) be

given by (3.5), the weak infinitesimal operator ℑζ
3[·] of the process {ζ(t), ηt, t ≥ 0} for

system (4.22) – (4.23) at the point {t, x, ηt} is given by (3.6). Hence, it is easy to see
that:

∂V

∂ζ
ζ̇(t) = 2ζt(t)IPt(i)Λ∆d(i)ζ(t) + 2ζt(t)IPt(i)Γ̄(i)w(t)

+ 2

t
∫

t−τ

ζt(t)IPt(i)Υk(i)ζ(θ) dθ.

(4.28)

Hence, it follows from (3.6) and (4.27) that

ℑζ
3[V ] = ζt(t)

[

Λt
∆d(i)IP(i) + IPt(i)Λ∆d(i) +

s
∑

m=1

αimP̄ (m)

]

ζ(t)

+ 2ζt(t)IPt(i)Γ̄(i)w(t) + 2

t
∫

t−τ

ζt(t)IPt(i)Υk(i)ζ(θ) dθ

+

t
∫

t−τ

ζt(t)E2Qx(i)Et
2ζ(t) dθ −

t
∫

t−τ

ζt(θ)E2Qx(i)Et
2ζ(θ) dθ

+

s
∑

m=1

αim

t
∫

t−τ

t
∫

θ

ζt(s)E2Qx(m)Et
2ζ(s) dsdθ.

(4.29)

Following parallel developments to Theorem 4.1, we applying Facts 2 – 3, use (3.9), (4.7),
(4.10) and (4.24) – (4.25) and manipulate, we get

J (x) ≤ IE

{

∞
∫

0

ζt(t)

[

Λt
od(i)IP(i) + IPt(i)Λod(i) +

s
∑

m=1

αimP̄ (m) (4.30)

+ τE2Qx(i)Et
2 + ε1(i)N̄

t
kd(i)N̄kd(i) + ε−1

1 (i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Akd(i)[Qx(i) − ε2(i)Ndk(i)N t
dk(i)]−1At

kd(i)E
t
2IP(i)

+ τ2ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε−1

2 (i)IPt(i)E1Ma(i)M
t
a(i)Et

1IP(i) + Ḡt(i)Ḡ(i)

+ [P̄ t(i)Γ̄(i) + Ḡt(i)Φ(i)][γ2I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)]

]

ζ(t)

}
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for some scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0. It follows from inequality (4.30) that
J (x) < 0 is guaranteed if the following inequality

Λt
od(i)IP(i) + IPt(i)Λod(i) +

s
∑

m=1

αimP̄ (m) + τE2Qx(i)Et
2 + ε1(i)N̄

t
kd(i)N̄kd(i)

+ ε−1
1 (i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Akd(i)[Qx(i) − ε2(i)Ndk(i)N t
dk(i)]−1At

kd(i)Et
2IP(i)

+ τ2ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε−1

2 (i)IPt(i)E1Ma(i)M
t
a(i)Et

1IP(i) + Ḡt(i)Ḡ(i)

+ [IPt(i)Γ̄(i) + Ḡt(i)Φ(i)][γ2I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)] < 0

(4.31)

holds. Premultiplying (4.17) by IP−t(i), postmultiplying by IP−1(i), using (4.27) and
manipulating with the help of Fact 3, we obtain the LMI (4.26). It follows that system
(4.22) – (4.23) is DDRSS with disturbance attenuation γ > 0 under the state-delayed
control law (4.19).

The following corollary can be readily derived as special case of Theorem 3.1:

Corollary 4.2 The nominal jump system ΣTn is delay dependent stochastically stable
(DDSS) with disturbance attenuation γ > 0 under the control law (4.19) if given matrix
sequence Qx(i) = Qt

x(i) > 0, i ∈ S , there exist matrices Y (i), Z(i), L(i), R(i), i ∈ S,
satisfying the system of LMIs









Π40(i) τE2[Ad(i) + Bo(i)L(i)E2R(i)] Γ̄(i) + Y t(i)G(i)Φ(i) R(i)

τAt
d
(i)Et

2
−τQx(i) 0 0

Γ̄t(i) + Φt(i)Gt(i)Y (i) 0 −γ2I + Φt(i)Φ(i) 0

Rt(i) 0 0 −Y(i)









< 0,

[

−γ2I Φt(i)
Φ(i) −I

]

< 0,

[

−Y (i)E1 I
I −R(i)

]

≥ 0, i ∈ S, (4.32)

where

Π40(i) = Y t(i)Āt
od(i) + Āod(i)Y (i) − E1Z

t(i) − Z(i)Et
1 + B̄o(i)L(i)

+ Lt(i)B̄t
o(i) + Y t(i)Ωo(τ, i)Y (i) + αiiE1Z

t(i)E2

(4.33)

and the delayed-feedback gain is given by Kd(i) = L(i)NR(i).

4.2 Example 2

We use the data of Example 1 in addition to

Bo(1) =

[

1 0
0 1

]

, Bo(2) =

[

1 0
0 2

]

, Bo(3) =

[

2 0
0 1

]

,

Nb(1) = [0.1 0.3], Nb(2) = [0.2 0.2], Nb(3) = [0.3 0.1]
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and the level of disturbance attenuation γ = 1.35. For the data under consideration and
in view of Theorem 4.1, the feasible solutions of LMIs (4.11) using the software LMILab
[7] yields the gain matrices

K(1) =

[

0.8532 0.9260
−1.4317 −1.2628

]

, K(2) =

[

0.9145 −0.6128
0.5844 1.9912

]

,

K(3) =

[

1.1425 0.6603
−0.3123 0.4912

]

for

ε1(1) = 1.3345, ε2(1) = 0.9144, ρ(1) = 2.4367,

ε1(2) = 2.3567, ε2(2) = 2.5433, ρ(2) = 1.5321,

ε1(3) = 5.2355, ε2(3) = 0.6673, ρ(3) = 2.3226,

and τ ≤ 0.4772.
On the other hand, considering Theorem 4.2 we solve the LMIs (4.26) to get the gain

matrices

Kd(1) =

[

0.0454 −0.9231
0.0422 0.9123

]

, Kd(2) =

[

−0.1636 0.2628
−0.5628 1.2182

]

,

Kd(3) =

[

0.3144 1.1268
−0.7435 −0.8655

]

for

ε1(1) = 3.4225, ε2(1) = 0.7428, ρ(1) = 1.3452,

ε1(2) = 1.7111, ε2(2) = 1.6655, ρ(2) = 3.0987,

ε1(3) = 4.0205, ε2(3) = 0.0876, ρ(3) = 4.2247

and τ ≤ 0.4653.

5 H∞-Output Feedback Controller

In this section, we consider the design of an H∞-output feedback controller for the
jumping system for η = i ∈ S

ẋ(t) = A∆o(t, i)x(t) + A∆d(t, i)x(t − τ) + B∆o(t, i)u(t) + Γ(i)w(t),

x(t) = φ(t), t ∈ [−τ, 0], t ≥ 0, (5.1)

y(t) = Co(i)x(t) + Do(i)w(t), (5.2)

z(t) = G(i)x(t) + Φ(i)w(t), (5.3)

where y(t) ∈ ℜp is the measured output and the matrices Co(i), Do(i) are constant with
appropriate dimensions. Note that system (5.1) – (5.3) is more general (2.3) – (2.4) for
control design purposes. A dynamic output feedback controller for i ∈ S, has the form:

ẋC(t) = AC(i)xC(t) + BC(i)[y(t) − Co(i)xC(t)],

u(t) = CC(i)xC(t), (5.4)
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where xC(t) ∈ ℜn is the state of the controller and the matrices AC(i) ∈ ℜn×n, BC(i) ∈
ℜn×p, CC(i) ∈ ℜm×n are controller matrices to be determined. Combining (5.1) – (5.4)
for i ∈ S, we obtain the closed-loop system

ξ̇(t) = AJC∆(t, i)ξ(t) + AJCd∆(t, i)ξ(t − τ(t)) + ΓJC∆(t, i)w(t), t ≥ 0,

ξ(t) = φJC(t), t ∈ [−τ∗, 0],

z(t) = Ḡ(i)ξ(t) + Φ(i)w(t),

(5.5)

where

ξ(t) =

[

x(t)
xC(t)

]

∈ ℜ2n,

AJCd∆(t, i) = Ād(i) + M̄JC(i)∆(t, i)N̄JCd(i), (5.6)

AJC∆(t, i) =

[

A∆o(i) B∆o(i)CC(i)
BC(i)Co(i) AC(i) − BC(i)Co(i)

]

= AJCo(i) + M̄JC(i)∆(t, i)N̄JCa(i),

ΓJC∆(t, i) =

[

Γ(i)
BCDo(i)

]

= ΓJCo(i) + M̄a(i)∆aN̄d(i)

and

AJCo(i) =

[

Ao(i) Bo(i)CC(i)
BC(i)Co(i) AC(i) − BC(i)Co(i)

]

,

M̄JC(i) =

[

0
M̄a

]

, N̄JCd = [0 N̂d],

M̄a(i) =

[

Ma(i) 0
0 0

]

, N̂a(i) =

[

Na(i) 0
0 0

]

,

N̂d(i) =

[

Nd(i) 0
0 0

]

, Ād(i) =

[

Ad(i) 0
0 0

]

, ΓJCo(i) =

[

Γ(i)
BCDo(i)

]

.

(5.7)

Now for each possible value ηt = i, i ∈ S, we introduce the following state transformation

µ(t) = ξ(t) +

t
∫

t−τ

AJCd∆(t, i)ξ(s) ds (5.8)

into (5.5) to yield

µ̇(t) = [AJC∆(t, i) + AJCd∆(t, i)]ξ(t) + Γ̄JCo(i)w(t). (5.9)

Define the augmented state-vector

ω(t) =

[

µ(t)
ξ(t)

]

∈ ℜ4n. (5.10)

By combining (5.1) and (5.8) – (5.10), we obtain the transformed system

ω̇(t) = ΛJC∆(i)ω(t) +

t
∫

t−τ

ΥJC∆(i)ω(s) ds + ΓJCo(i)w(t),

ω(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (5.11)

z(t) = Ĝ(i)ω(t) + Φ(i)w(t), (5.12)
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where

ΛJC∆(i) =

[

0 AJC∆(t, i) + AJCd∆(t, i)
−I I

]

= ΛJCo(i) + M̄JC(i)∆(t, i)N̄JCe(i),

ΥJC∆(i) =

[

0 0
0 AJCd∆(t, i)

]

= ΥJCo(i) + M̄JC(i)∆(t, i)N̄JCd, (5.13)

ΛJCo(i) =

[

0 AJCo(i) + Ād(i)
−I I

]

, ΥJCo(i) =

[

0 0
0 Ād(i)

]

,

Γ̄JCo(i) =

[

ΓJCo(i)
0

]

, N̄JCe = [N̂d(i) + N̂a(i) 0], Ĝ(i) = [0 Ḡ(i)].

Given matrices

0 < Pµ(i) ∈ ℜ2n, Pd(i) ∈ ℜ2n, Pξ(i) ∈ ℜ2n, i ∈ S,

P(i) =

[

Pµ(i) 0
Pd(i) Pξ(i)

]

∈ ℜ4n
(5.14)

such that for i ∈ S

P−1(i) =

[

Xµ(i) 0
Xd(i) Xξ(i)

]

, Xµ(i) =

[

Xµ1(i) 0
0 Xµ2

]

,

Xξ(i) =

[

Xξ1(i) 0
0 Xξ2

]

, Xd(i) =

[

Xd1(i) 0
0 Xd2

]

,

Xµ(i) = P−1
µ (i), Xd(i) = −Xµ(i)Pd(i)Xξ(i), Xξ(i) = P−1

ξ (i)

(5.15)

and define the matrices:

Σ(i) = [Xµ(i) Xξ(i)], Āt
JCod(i) = [At

JCo(i) + Āt
d(i) I], Ξ(i) =

[

0
Xµ(i)

]

,

Θ(τ, i) = τE2IR(i)Et
2 + ε1(i)N̄

t
JCd(i)N̄JCd(i) (5.16)

+ Ḡt(i)Ḡ(i) + τ2ρ(i)E2

s
∑

m=1

αimIR(m)Et
2.

It follows from Theorem 3.1 that given matrix sequence 0 < IR(i) = IRt(i), i ∈ S the
transformed system (5.11) – (5.12) is DDRSS with disturbance attenuation γ > 0 if the
algebraic inequality:

Σt(i)Λt
JCod(i) + ΛJCod(i)Σ(i) − E1Ξ

t(i) − Ξ(i)Et
1

+ E1Ξ
t(i)E2

( s
∑

m=1

αim[Et
2Ξ(m)]−1

)

Et
2Ξ(i)Et

1 + ε−1
1 (i)M̄a(i)E1M̄

t
a(i)Et

1

+ τε−1
2 (i)M̄JC(i)M̄ t

JC(i) + Σt(i)Θ(τ, i)Σ(i)(i)

+ τE2Ād(i)[IR(i) − ε2(i)N̄JCd(i)N̄
t
JCd(i)]

−1Āt
d(i)E

t
2

+ [Γ̄JCo(i) + X t(i)Ĝt(i)Φ(i)][γ2I − Φt(i)Φ(i)]−1[Γ̄t
JCo(i) + Φt(i)Ĝ(i)X ]

△
= IM(τ, i) =

[

IMµ(τ, i) IM c(τ, i)

IM t
c(τ, i) IM ξ(τ, i)

]

< 0

(5.17)



352 PENG SHI, M.S. MAHMOUD AND A. ISMAIL

is satisfied for some positive scalars ε1(i), ε2(i), ρ(i), i ∈ S, where

IMµ(τ, i) =

[

IMµ1(τ, i) IMµ3(τ, i)

IM t
µ3(τ, i) IMµ2(τ, i)

]

, (5.18)

IM c(τ, i) =

[

IM c1(τ, i) IM c3(τ, i)
IM c4(τ, i) IM c2(τ, i)

]

,

IM ξ(τ, i) =

[

IM ξ1(τ, i) 0
0 IM ξ2(τ, i)

]

,

Ωµ(τ, i) = τIR(i) + ǫ1(i)[Na(i) + Nd(i)][N
t
a(i) + N t

d(i)] + Gt(i)G(i)

+ τ2ρ(i)
∑

m

αimIR(m),

IMµ1(τ, i) = [Ao(i) + Ad(i)]Xd1(i) + X t
d1(i)[A

t
o(i) + At

d(i)]

+ X t
µ1(i)

∑

m

X−1
µ1 (m)Xµ1(i) + ǫ−1Ma(i)M t

a(i) + Γ(i)[γ2I − Φt(i)Φ(i)]−1Γt(i),

IMµ3(τ, i) = Bo(i)CC(i)Xd2(i) + X t
d1(i)C

t
o(i)B

t
C(i)

+ Γ(i)[γ2I − Φt(i)Φ(i)]−1[Dt
o(i)B

t
C(i) + Φt(i)G(i)Xd2(i)],

IMµ2(τ, i) = [AC(i) − BC(i)Co(i)]Xd2(i) + X t
d2[A

t
C(i) − Ct

o(i)B
t
C(i)]

+ X t
µ2(i)Ωµ(τ, i)Xµ2(i) + X t

µ2(i)
∑

m

αimX−1
µ2 (m)Xµ2(i),

IM c1(τ, i) = −X t
µ1(i) + X t

d1(i) + [Ao(i) + Ad(o)]X t
µ1(i),

IM c2(τ, i) = −X t
µ2(i) + X t

d2(i) + [AC(i) − BC(i)Co(i)]Xµ2(i)

+ [BC(i)Do(i) + X t
d2(i)G

t(i)Φ(i)][γ2I − Φt(i)Φ(i)]−1Φt(i)G(i)Xµ2(i)

+ X t
µ2(i)Ωµ(τ, i)Xµ2(i) + X t

µ2(i)
∑

m

αimX−1
µ1 (m)Xξ2(i),

IM c4(τ, i) = BC(i)Co(i)X t
µ1(i),

IM c3(τ, i) = Γ(i)[γ2I − Φt(i)Φ(i)]−1Φt(i)G(i)X t
µ2(i) + Bo(i)CC(i)X t

µ2(i),

IM ξ1(τ, i) = Xµ1(i) + X t
µ1(i) + τǫ−1

2 Ma(i)M t
a(i) + τAd(i)[IR(i) − ǫ2NodN

t
od]

−1At
d(i),

IM ξ2(τ, i) = Xµ2(i) + X t
µ2(i) + X t

µ2(i)Ωµ(τ, i)Xµ2(i)

+ X t
µ2(i)G

t(i)Φ(i)[γ2I − Φt(i)Φ(i)]−1Φt(i)G(i)Xµ2(i).

Our objective is to develop conditions that can be used for computing the gains of
the dynamic output feedback controller. The following theorem summarizes the main
solvability conditions for controller (5.4) guaranteeing that the closed-loop system (5.11) –
(5.12) is delay-dependent robustly stochastically stable with disturbance attenuation γ.

Theorem 5.1 Consider the closed-loop system (5.11) – (5.12) with matrices described
in (5.6) – (5.7) and (5.13) – (5.16). Given scalars γ > 0, ε1(i) > 0, ε2(i) > 0, ρ(i), i ∈ S,
there exists a dynamic output feedback controller of the type (5.4) such that the closed-loop
system (5.11) – (5.12) is DDRSS with a disturbance attenuation γ if there exist matrices
Xµ1(i), Xµ2(i), Xξ1(i), Xξ2(i), Xd1(i), Xd2(i), i ∈ S satisfying the following system of
simultaneous matrix inequalities and equations
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Xξ1(i) + X t
ξ1(i) τMa(i) τAd(i)

τM t
a(i) −ǫ2I 0

τAt
d(i) 0 −[IR − ǫ2NodN

t
od]



 < 0, (5.19)









[Ao(i) + Ad(i)]Xd1(i)
+ X t

d1
(i)[Ao(i) + Ad(i)]t + αiiX

t
µ1(i)

Ma(i) Γ(i) W1(i)

M t
a(i) −ǫ1I 0

Γt(i) 0 −[γ2I − Φt(i)Φ(i)] 0
Wt

1
(i) 0 0 −V1(i)









< 0, (5.20)

[

Xµ2(i) + X t
µ2(i) + X t

µ2(i)Ωµ(τ, i)Xµ2(i) X t
µ2(i)G

t(i)Φ(i)

Φt(i)G(i)Xµ2(i) −[γ2I − Φt(i)Φ(i)]

]

< 0, (5.21)









[AC(i) − BC(i)Co(i)]Xd2(i)

+ X t
d2(i)[AC(i) − BC(i)Co(i)]

t + αiiX t
µ2(i)

X t
µ2(i) W2(i)

Xµ2(i) −Ωµ(τ, i) 0
Wt

2(i) 0 −V2(i)









< 0, (5.22)

Xd1(i) −Xµ1(i) + X t
ξ1(i)[Ao(i) + Ad(i)]

t = 0, (5.23)

Xd2(i) −Xµ2(i) + X t
ξ2(i)[AC(i) − BC(i)Co(i)]

t + Xξ2(i)Ωµ(τ, i)Xµ2(i) = 0. (5.24)

Then the associated controller matrices are given by:

AC(i) = Ao(i),

BC(i) = −X t
d2(i)G

t(i)[γ2I − Φt(i)Φ(i)]Φ(i)D†
o(i),

CC(i) = B†
o(i)Γ(i)[γ2I − Φt(i)Φ(i)]Φ(i)G(i),

(5.25)

where

V1(i) = diag
[

X t
µ1(1) . . .X t

µ1(i − 1) X t
µ1(i + 1) . . .X t

µ1(s)
]

,

V2(i) = diag
[

X t
µ2(1) . . .X t

µ2(i − 1) X t
µ2(i + 1) . . .X t

µ2(s)
]

,

W1(i) =
[√

αi1X t
µ1(1) . . .

√
αisX t

µ1(s)
]

,

W2(i) =
[√

αi1X t
µ1(1) . . .

√
αisX t

µ1(s)
]

and B†
o(i) and D†

o(i) are the pseudo-inverse of Do(i) and Bo(i), respectively.

Proof We start from matrix inequality (5.17) and using (5.18) with standard alge-
braic manipulations, it follows that the choice of the controller matrices (5.25) subject
to inequalities (5.19) – (5.24) ensures that IM(τ, i) < 0, i ∈ S and hence guarantees
that system (5.11) – (5.12) is DDRSS with a disturbance attenuation γ and the proof is
completed.

In the absence of uncertainties, the closed-loop system (5.11) – (5.12) reduces to

ω̇(t) = ΛJCo(i)ω(t) +

t
∫

t−τ

ΥJCo(i)ω(s) ds + ΓJCo(i)w(t),

ω(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (5.26)

z(t) = Ĝ(i)ω(t) + Φ(i)w(t) (5.27)

and for which the following corollary holds:
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Corollary 5.1 Consider the closed-loop system (5.26) – (5.27) with matrices descri-
bed in (5.6) – (5.7) and (5.13) – (5.16). Given scalars ρ(i) > 0, i ∈ calS, γ > 0, there
exists a dynamic output feedback controller of the type (5.4) such that the closed-loop
system (5.26) – (5.27) is DDRSS with a disturbance attenuation γ if there exist matrices
Xµ1(i), Xµ2(i), Xξ1(i), Xξ2(i), Xd1(i), Xd2(i), i ∈ S satisfying the following system of
simultaneous matrix inequalities and equations

[

Xξ1(i) + X t
ξ1(i)(i) τAd(i)

τAt
d(i) −IR

]

< 0, (5.28)







[Ao(i) + Ad(i)]Xd1(i)

+ X
t
d1

(i)[Ao(i) + Ad(i)]t + αiiX
t
µ1(i)

Γ(i) W1(i)

Γt(i) −[γ2I − Φt(i)Φ(i)] 0
Wt

1
(i) 0 −V1(i)






< 0, (5.29)

[

Xµ2(i) + X t
µ2(i) + X t

µ2(i)Ω̄µ(τ, i)Xµ2(i) X t
µ2(i)G

t(i)Φ(i)

Φt(i)G(i)Xµ2(i) −[γ2I − Φt(i)Φ(i)]

]

< 0, (5.30)









[AC(i) − BC(i)Co(i)]Xd2(i)

+ X t
d2(i)[AC(i) − BC(i)Co(i)]

t + αiiX t
µ2(i)

X t
µ2(i) W2(i)

Xµ2(i) −Ω̄µ(τ, i) 0
Wt

2(i) 0 −V2(i)









< 0, (5.31)

Xd1(i) −Xµ1(i) + X t
ξ1(i)[Ao(i) + Ad(i)]

t = 0, (5.32)

Xd2(i) −Xµ2(i) + X t
ξ2(i)[AC(i) − BC(i)Co(i)]

t + Xξ2(i)Ω̄µ(τ, i)Xµ2(i) = 0, (5.33)

where
Ω̄µ(τ, i) = τIR(i) + Gt(i)G(i) + τ2ρ(i)

∑

m

αimIR(m) (5.34)

and the associated controller matrices are given by (5.25).

5.1 Example 3

We consider the multi-reach water quality system with the data given in Examples 1 and
2 in addition to the following

Co(1) =

[

2 0
0 2

]

, Co(2) =

[

2 0
0 2

]

, Co(3) =

[

2 0
0 2

]

,

Do(1) =

[

1 0
0 1

]

, Do(2) =

[

1 0
0 1

]

, Do(3) =

[

1 0
0 1

]

.

With the aid of the LMILab [7], the feasible solutions of LMIs (5.19) – (5.24) yields the
controller matrices:

AC(1) =

[

−0.2 0
0 −0.09

]

, AC(2) =

[

−2 −1
0 −2

]

, AC(3) =

[

−1.9 0
0 −1

]

,

BC(1) =

[

0.7854 −1.3246
0.2234 −2.0045

]

, BC(2) =

[

−1.1157 0.8006
0.7256 −1.7654

]

,
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BC(3) =

[

0.3423 −1.0206
−0.5494 3.1145

]

,

CC(1) =

[

0.2238 0.0912
0.5412 0.7644

]

, CC(2) =

[

0.3458 0.9442
−0.1244 −0.4564

]

,

CC(3) =

[

−0.8121 0.8724
0.8126 −0.6944

]

for τ ≤ 0.6545.

6 Conclusion

This paper has introduced a new transformation method for the H∞ analysis and syn-
thesis of a class of uncertain time-delay systems with Markovian jump parameters. It has
been established that the new method exhibits the delay-dependence properties of the
uncertain jumping system and therefore provides a tractable methodology for stability
analysis, stabilization and output feedback control. All the developed results have been
cast into the format of linear matrix inequalities and several examples have been worked
out to illustrate the theory.

References

[1] Boukas, E.K., Liu, Z.K. and Liu, G.X. Delay-dependent robust stability and H∞ control
of jump linear systems with time-delay. Int. J. Control 74(4) (2001) 329–340.

[2] Boukas, E.K. and Liu, Z.K. Deterministic and Stochastic Time-Delay Systems. Birkhäu-
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