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1 Introduction

Nonlinear stochastic control has long been an important research field that has attracted
many researchers, and enormous results have been published in the literature. In partic-
ular, the fundamental nonlinear stochastic stabilization issue has received considerable
research interests, and has found successful applications in control and communication
problems, such as attitude control of satellites and missile control, macroeconomic system
control, chemical process control, etc., see [8] for a survey.
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Recently, there have appeared many methods to tackle different kinds of nonlinear
stochastic systems. For example, in [2], a minimax dynamic game approach has been de-
veloped for the controller design problem of the nonlinear stochastic systems that employ
risk-sensitive performance criteria. The stabilization problem has been investigated in
[3, 4] for nonlinear stochastic systems, and a stochastic counterpart of the input-to-state
stabilization results has been provided. In [7], under an infinite-horizon risk-sensitive
cost criterion, the problem of output feedback control design has been studied for a class
of strict feedback stochastic nonlinear systems. In [16], the decentralized global stabiliza-
tion problem has been dealt with by using a Lyapunov-based recursive design method.
On the other hand, the dual nonlinear stochastic filtering problem has also been an ac-
tive area for three decades [8], and a number of nonlinear filtering approaches have been
proposed in the literature, such as extended Kalman filters, bound-optimal filters [13],
exponentially bounded filters [14, 20], etc.

It is now a recognized fact that the time delay is frequently a source of instability and
encountered in various engineering systems such as chemical processes, long transmission
lines in pneumatic systems, and so on. Recently, increasing attention has been focused on
robust and/or H∞ control problems for linear systems with certain types of time-delays,
see [1] for a survey. Within the stochastic framework, the stability analysis problem
for linear time-delay systems has been studied by many authors. For example, in [11],
the stability analysis problem for linear stochastic delay interval systems with Markovian
switching has been considered. In [17], an LMI approach has been developed to cope with
the robust H∞ control problem for linear uncertain stochastic systems with state delay.
As for nonlinear stochastic time-delay systems, the related results have been scattered,
and most of the results have been concerned with the stability analysis issue, see e.g.[5, 9].
So far, the stabilization problem for general nonlinear time-delay systems has not been
fully investigated and remains important.

In this paper, we will consider the stabilization problem for a class of nonlinear contin-
uous stochastic systems with state delays. Such a class of systems have been intensively
investigated in [18 – 20] for the nonlinear filtering problems. An effective algebraic ma-
trix inequality approach is proposed to design the state feedback controllers, such that
the closed-loop system is stochastically exponentially stable (or exponentially ultimately
bounded) in the mean square, for all admissible nonlinearities and time-delays. We
first investigate the sufficient conditions for the nonlinear stochastic systems to be ex-
ponentially stable (or exponentially ultimately bounded), and then derive the explicit
expression of the desired controller gains. A numerical simulation example is provided
to show the usefulness and effectiveness of the proposed design method.

Notation The notations in this paper are quite standard. Rn and Rn×m denote,
respectively, the n dimensional Euclidean space and the set of all n × m real matri-
ces. The superscript “T” denotes the transpose and the notation X ≥ Y (respectively,
X > Y ) where X and Y are symmetric matrices, means that X − Y is positive
semi-definite (respectively, positive definite). I is the identity matrix with compati-
ble dimension. We let τ > 0 and C([−τ, 0]; Rn) denote the family of continuous
functions ϕ from [−τ, 0] to Rn with the norm ‖ϕ‖ = sup

−τ≤θ≤0
|ϕ(θ)|, where | · | is

the Euclidean norm in Rn. If A is a matrix, denote by ‖A‖ its operator norm, i.e.,

‖A‖ = sup{|Ax| : |x| = 1} =
√

λmax(ATA) where λmax(·) (respectively, λmin(·)) means
the largest (respectively, smallest) eigenvalue of A. l2[0,∞] is the space of square in-
tegrable vector. Moreover, let (Ω,F , {Ft}t≥0, P ) be a complete probability space with
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a filtration {Ft}t≥0 satisfying the usual conditions (i.e., the filtration contains all P -
null sets and is right continuous). Denote by L

p
F0

([−τ, 0]; Rn) the family of all F0-

measurable C([−τ, 0]; Rn)-valued random variables ξ = {ξ(θ) : − τ ≤ θ ≤ 0} such that
sup

−τ≤θ≤0
E|ξ(θ)|p < ∞ where E{·} stands for the mathematical expectation operator with

respect to the given probability measure P . Sometimes, the arguments of a function will
be omitted in the analysis when no confusion can arise.

2 Problem Formulation and Assumptions

Consider the following nonlinear continuous-time state delayed stochastic system in a
fixed complete probability space (Ω,F , {Ft}t≥0, P ):

dx(t) = [f(x(t), u(t)) + g(x(t − τ))] dt + Dx(t) dw(t), (1)

x(t) = ϕ(t), t ∈ [−τ, 0], (2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the deterministic input, y(t) ∈ Rp is the
measurement output, and f(·, ·) ∈ Rn and g(·) ∈ Rn are nonlinear vector functions.
τ > 0 denotes the state delay and ϕ(t) is a continuous vector valued initial function.
Here, w(t) = [w1(t)w2(t) . . . wm(t)]T ∈ Rm is an m-dimensional Brownian motion.
The initial state x(0) has the mean x̄(0) and covariance P (0), and is uncorrelated
with w(t). D is a known constant matrices with appropriate dimensions.

Assumption 1 The nonlinear vector functions f(·, ·) and g(·) are assumed to satisfy
f(0, 0) = 0, g(0) = 0 and

∣

∣

∣

∣

f(x(t), u(t)) − [ A B ]

[

x(t)
u(t)

] ∣

∣

∣

∣

≤ a11

∣

∣

∣

∣

[

x(t)
u(t)

] ∣

∣

∣

∣

+ a12, (3)

|g(x(t − τ)) − Adx(t − τ)| ≤ a21|x(t − τ)| + a22, (4)

where A ∈ Rn×n, B ∈ Rn×m, Ad ∈ Rn×n are known constant matrices, and a11 > 0,
a12 ≥ 0, a21 > 0 and a22 ≥ 0 are known scalars.

Remark 1 The system (1) – (2) can be used to represent many important physical
nonlinear systems subject to inherent state delays and stochastic exogenous noises with
known statistics. Similar to [18 – 20], the nonlinear descriptions (3) – (4) quantify the ma-
ximum possible derivations from a linear model with (A, B, Ad) as its system parameter
matrices, and are more general than those of [13], [14].

When a state feedback control law

u(t) = Kx(t) (5)

is applied to the system (1) – (2), the closed-loop system is governed by

dx(t) = [f(x(t), Kx(t)) + g(x(t − τ))] dt + Dx(t) dw(t). (6)

For notation convenience, we give the following definitions:

Ac = A + BK, (7)

p(t) = f(x(t), Kx(t)) − Acx(t), (8)

q(t) = g(x(t − τ)) − Adx(t − τ), (9)
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and then obtain from (6) that

dx(t) = [Acx(t) + Adx(t − τ) + p(t) + q(t)] dt + Dx(t) dw(t). (10)

Now, let x(t; ξ) denote the state trajectory from the initial data x(θ) = ξ(θ) on
−τ ≤ θ ≤ 0 in L2

F0
([−τ, 0]; Rn). It is clear from Assumption 1 that the system (10)

admits a trivial solution x(t; 0) ≡ 0 corresponding to the initial data ξ = 0.
Furthermore, we introduce the following concepts for stability and boundedness in the

mean square.

Definition 1 Consider the system (10). For every ξ ∈ L2
F0

([−τ, 0]; Rn),

(1) the trivial solution is exponentially stable in the mean square if there exist con-
stants α > 0 and β > 0 such that

E|x(t; ξ)|2 ≤ αx−βt sup
−τ≤θ≤0

E|ξ(θ)|2; (11)

(2) the trivial solution is exponentially ultimately bounded in the mean square if
there exist constants α > 0, β > 0, γ > 0 such that

E|x(t; ξ)|2 ≤ αx−βt sup
−τ≤θ≤0

E|ξ(θ)|2 + γ. (12)

The objective of this paper is to design a controller for the nonlinear time-delay sys-
tem (1) – (2), such that the closed-loop systems is exponentially stable (or exponentially
ultimately bounded) in the mean square. More specifically, we are interested in designing
a controller parameter K such that:

(1) in the case of a12 = 0 and a22 = 0 (i.e., there are no bounded nonlinearities
and uncertain disturbances), the solution of the system (10) is guaranteed to be
exponentially stable;

(2) in the case of a12 6= 0 or a22 6= 0 (i.e., there are bounded nonlinearities or
uncertain disturbances), the solution of the system (10) is guaranteed to be ex-
ponentially ultimately bounded in the mean square.

3 Main Results and Proofs

In this section, the controller analysis problem will be considered firstly. Given a con-
troller structure, we shall establish the conditions under which the system dynamics is
stochastically exponentially stable (or exponentially ultimately bounded) in the mean
square. Then, we shall take the controller design problem into account, whose purpose is
to derive the explicit expression for the expected controller gain in terms of the positive
definite solution to an algebraic matrix inequality.

The following theorem will play an essential role in the design of the expected con-
trollers. It reveals that the exponential stability (or exponential ultimate boundedness)
of the controlled nonlinear time-delay stochastic system (10) can be guaranteed if a pos-
itive definite solution to a modified algebraic Riccati-like matrix inequality (quadratic
matrix inequality) is known to exist.
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Theorem 1 Let the controller parameter K be given. If there exist positive scalars
ε1, ε2, ε3, ε4 such that the following matrix inequality

AT
c P + PAc + DTPD + (ε1 + ε2)P

2 + 4ε−1
2 a2

11(I + KTK) + Q < 0 (13)

where
Q = ε−1

1 AT
d Ad + 4ε−1

2 a2
21I (14)

has a solution P > 0, then in the mean square, the system (10) is

(i) exponentially stable in the case of a12 = 0 and a22 = 0;
(ii) exponentially ultimately bounded in the case of a12 6= 0 or a22 6= 0.

Proof Fix ξ ∈ L2
F0

([−τ, 0]; Rn) arbitrarily and write x(t; ξ) = x(t). For (x(t), t) ∈
Rn × R+, we define the Lyapunov function candidate

V (x(t), t) = xT(t)Px(t) +

t
∫

t−τ

xT(s)Qx(s) ds, (15)

where P is the positive definite solution to the matrix inequality (13) and Q > 0 is
defined in (14).

By Itô’s formula (see, e.g., [10]), the stochastic derivative of V along a given trajectory
is obtained as

dV (x(t), t) =
{

xT(t)P [Acx(t) + Adx(t − τ) + p(t) + q(t)]

+ [Acx(t) + Adx(t − τ) + p(t) + q(t)]TPx(t)

+ xT(t)Qx(t) − xT(t − τ)Qx(t − τ)

+ xT(t)DTPDx(t)
}

dt + 2xT(t)PDx(t) dw(t)

=
{

xT(t)[AT
c P + PAc + DTPD + Q]x(t)

+ xT(t)PAdx(t − τ) + xT(t − τ)AT
d Px(t)

+ xT(t)P [p(t) + q(t)] + [p(t) + q(t)]TPx(t)

− xT(t − τ)Qx(t − τ)
}

dt + 2xT(t)PDx(t) dw(t).

(16)

Let ε1 and ε2 be two positive scalars. Then the matrix inequality

[

ε
1/2
1 xT(t)P − ε

−1/2
1 xT(t − τ)AT

d

][

ε
1/2
1 xT(t)P − ε

−1/2
1 xT(t − τ)AT

d

]T
≥ 0

yields
xT(t)PAdx(t − τ) + xT(t − τ)AT

d Px(t)

≤ ε1x
T(t)P 2x(t) + ε−1

1 xT(t − τ)AT
d Adx(t − τ).

(17)

In the sequel, we will use several times the following simple inequality

(u + v)T(u + v) ≤ 2uTu + 2vTv,

where u ∈ Rn and v ∈ Rn.
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Noticing the Assumption 1 and the definitions (7) – (9), we have

pT(t)p(t) = |f(x(t), Kx(t)) − Acx(t)|2 ≤

{

a11

∣

∣

∣

∣

[

x(t)
Kx(t)

] ∣

∣

∣

∣

+ a12

}2

(18)

≤ 2a2
11

∣

∣

∣

∣

[

x(t)
Kx(t)

] ∣

∣

∣

∣

2

+ 2a2
12 ≤ 2a2

11x
T(t)

(

I + KTK
)

x(t) + 2a2
12,

qT(t)q(t) = |g(x(t − τ)) − Adx(t − τ)|2 ≤
{

a21|x(t − τ)| + a22

}2

(19)
≤ 2a2

21x
T(t − τ)x(t − τ) + 2a2

22.

Then, it follows from (18), (19) and

Ψ1 = ε
1/2
2 xT(t)P − ε

−1/2
2 [p(t) + q(t)]T, Ψ1Ψ

T
1 ≥ 0

that
xT(t)P [p(t) + q(t)] + [p(t) + q(t)]TPx(t)

≤ ε2x
T(t)P 2x(t) + ε−1

2 [p(t) + q(t)]T[p(t) + q(t)]

≤ ε2x
T(t)P 2x(t) + 2ε−1

2 [pT(t)p(t) + qT(t)q(t)]

= xT(t)[ε2P
2 + 4ε−1

2 a2
11(I + KTK)]x(t)

+ 4ε−1
2 a2

21x
T(t − τ)x(t − τ) + 4ε−1

2 (a2
12 + a2

22).

(20)

For simplicity, we denote

Π = AT
c P +PAc+DTPD+(ε1+ε2)P

2+4ε−1
2 a2

11(I+KTK)+ε−1
1 AT

d Ad+4ε−1
2 a2

21I, (21)

and then (13) and (14) indicate that Π < 0.
Substituting (14), (17) and (20) into (16) gives

dV (x(t), t) ≤
[

xT(t)Πx(t) + 4ε−1
2 (a2

12 + a2
22)
]

dt + 2xT(t)PDx(t)dw(t). (22)

We are now in a position to show the expected exponential stability (or exponential
ultimate boundedness) of the system (10), by using the the technique developed in [10].
Let β > 0 be the unique root of the equation

λmin(−Π) − βλmax(P ) − βτλmax(Q)xβτ = 0 (23)

where Π and Q are defined, respectively, in (21) and (14), P is the positive definite
solution to (13), and τ is the time-delay.

We can obtain from (22) that

d
[

xβtV (x(t), t)
]

= xβt
[

βV (x(t), t)dt + dV (x(t), t)
]

≤ xβt

(

−
[

λmin(−Π) − βλmax(P )
]

|x(t)|2 + βλmax(Q)

t
∫

t−τ

|x(s)|2ds

)

dt

+ 4ε−1
2 (a2

12 + a2
22)x

βtdt + 2xβtxT(t)PDx(t)w(t)dt.
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Then, integrating both sides from 0 to T > 0 and taking the expectation result in

xβT EV (x(T ), T ) ≤
[

λmax(P ) + τλmax(Q)
]

sup
−τ≤θ≤0

E|ξ(θ)|2

−
[

λmin(−Π) − βλmax(P )
]

E

T
∫

0

xβt|x(t)|2dt

+ βλmax(Q)E

T
∫

0

xβt

t
∫

t−τ

|x(s)|2dsdt + 4ε−1
2 (a2

12 + a2
22)β

−1(xβT − 1).

Note that

T
∫

0

xβt

t
∫

t−τ

|x(s)|2dsdt ≤

T
∫

−τ

( min(s+τ,T )
∫

max(s,0)

xβtdt

)

|x(s)|2ds

≤

T
∫

−τ

τxβ(s+τ)|x(s)|2ds ≤ τxβτ

T
∫

0

xβt|x(t)|2dt + τxβτ

0
∫

−τ

|ξ(θ)|2dθ.

Then, considering the definition of β in (23), we have

xβT EV (x(T ), T ) ≤
[

λmax(P ) + τλmax(Q)
]

sup
−τ≤θ≤0

E|ξ(θ)|2

+ βλmax(Q)τ2xβτ sup
−τ≤θ≤0

E|ξ(θ)|2 + 4ε−1
2 (a2

12 + a2
22)β

−1(xβT − 1),

and

E|x(T )|2 ≤ λ−1
min(P )

(

[

λmax(P ) + τλmax(Q)
]

sup
−τ≤θ≤0

E|ξ(θ)|2

+ βλmax(Q)τ2xβτ sup
−τ≤θ≤0

E|ξ(θ)|2
)

x−βT

+ 4ε−1
2 (a2

12 + a2
22)β

−1λ−1
min(P )(xβT − 1)x−βT .

Notice that (xβT − 1)x−βT < 1 and let

α = λ−1
min(P )

[

λmax(P ) + τλmax(Q)(1 + βτxβτ )
]

, γ = 4ε−1
2 (a2

12 + a2
22)β

−1λ−1
min(P ).

Since T > 0 is arbitrary, the definition of exponential ultimate boundedness in (12) is
then satisfied if a12 6= 0 or a22 6= 0. If a12 = a12 = 0, it is obvious that the definition
of exponential stability in (11) is met. This completes the proof of Theorem 1.

Next, let us focus on deriving the explicit expression of expected controller gains by
using an algebraic matrix inequality approach. It is worth mentioning that, in most
literature concerning nonlinear stochastic stabilization problems, the solution has not
been given as an explicit representation.

Based on Theorem 1, we can see that the controller design problem can be transformed
into the following two-step problem: (i) find a necessary and sufficient condition for the
existence of the positive definite matrix P such that there exists a controller gain K

satisfying (13); and (ii) if the controller gain K exists, give the characterization of the
set of expected controller gains in terms of the positive definite matrix P and some other
free parameters.
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Lemma 1 [6] Let X ∈ Rm1×n1 and Y ∈ Rm1×p1 (m1 ≤ p1). There exists a
matrix U ∈ Rn1×p1 which simultaneously satisfies Y = XU and UUT = I if and only
if XXT = Y Y T.

For presentation convenience, we define

Γ(ε1, ε2, P ) = ATP + PA + DTPD + (ε1 + ε2)P
2 + 4ε−1

2 a2
11I + Q, (24)

Ξ(ε1, ε2, P ) = ATP + PA + DTPD + P [(ε1 + ε2)I − 0.25 ε2a
−2
11 BBT]P

(25)
+ 4ε−1

2 (a2
11 + a2

21)I + ε−1
1 AT

d Ad,

where Q is defined in (14).
The aforementioned two-step problem is solved in the following theorem.

Theorem 2 There exist positive scalars ε1, ε2 and a positive definite matrix P such
that the matrix inequality (13) has a solution K if and only if the following quadratic
matrix inequality

Ξ(ε1, ε2, P ) < 0 (26)

holds, where Ξ(ε1, ε2, P ) is defined in (25). Furthermore, if (26) is true, all gain matrices
K satisfying the matrix inequality (13) can be parameterized by

K = (0.5 a−1
11 ε

1/2
2 ΛU − 0.25 a−2

11 ε2PB)T (27)

where Λ ∈ Rn×m is any matrix satisfying

ΛΛT < −Ξ(ε1, ε2, P ) (28)

and U ∈ Rm×m is arbitrary orthogonal matrix (i.e., UUT = I).

Proof Rewrite the matrix inequality (13) as

KTBTP + PBK + 4ε−1
2 a2

11K
TK + Γ(ε1, ε2, P ) < 0, (29)

where Γ(ε1, ε2, P ) is defined in (24).
In terms of the definition of Ξ(ε1, ε2, P ) in (25), we can rearrange (29) as

(2ε
−1/2
2 a11K

T + 0.5ε
1/2
2 a−1

11 PB)(2ε
−1/2
2 a11K

T + 0.5ε
1/2
2 a−1

11 PB)T < −Ξ(ε1, ε2, P ). (30)

Obviously, there exists a controller gain matrix K such that the inequality (13) (or
equivalently (30)) holds for some positive scalars ε1, ε2 and positive definite matrix P if
and only if the right-hand side of (30) is positive definite, i.e., −Ξ(ε1, ε2, P ) > 0 or (26)
holds. The first part of this theorem is proved.

Assume now that (26) is true. Note that the dimension of the controller gain K is
m×n. From (30) and the definition of Λ ∈ Rn×m in (28), we could relate a Λ such that

(2ε
−1/2
2 a11K

T + 0.5ε
1/2
2 a−1

11 PB)(2ε
−1/2
2 a11K

T + 0.5ε
1/2
2 a−1

11 PB)T = ΛΛT. (31)

It then follows from Lemma 1 that (31) holds if and only if

2ε
−1/2
2 a11K

T + 0.5 ε
1/2
2 a−1

11 PB = ΛU, (32)

where U ∈ Rm×m is an arbitrary orthogonal matrix. Therefore, the expression (27)
follows immediately. This completes the proof of the theorem.

Finally, our main results can be summarized in the following corollary.
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Corollary 1 Consider the nonlinear discrete-time state delayed stochastic system
(1) – (2) with the state feedback controller u(t) = Kx(t). If there exist positive scalars
ε1, ε2, and a positive definite matrix P such that the matrix inequality (26) holds, then
the state feedback controller with its gain given in (27) will be such that the system (10)
is exponentially stable in the case of a12 = 0 and a22 = 0; or exponentially ultimately
bounded in the case of a12 6= 0 or a22 6= 0, both in the mean square.

Remark 2 Corollary 1 solves the addressed stabilization problem for the class of non-
linear time-delay stochastic systems in this paper. In implementation, we could first
solve the quadratic matrix inequality (26), and then obtain the expected control param-
eters from (27) easily. Firstly, based on the algorithms provided in [15] and references
therein, we may select appropriate positive scalar parameters ε1 and ε2 so as to reduce
the conservatism that may have resulted from the inequalities (17) and (20). Then, (26)
will be a standard quadratic matrix inequality (QMI) for P . For details concerning the
general QMIs and relevant algorithms, we refer the reader to [12]. It can also be no-
ticed that, there exists a lot of design freedom in our proposed procedure, such as the
choices of matrices Λ and U , which could be used to achieve other expected performance
specifications, e.g., reliability constraints.

4 Numerical Simulation

In this section, for the purpose of illustrating the usefulness and flexibility of the theory
developed in this paper, we present a simulation example.

Assume that the nonlinear continuous-time stochastic state delayed system (1) – (2) is
given by

dx1(t) = [−2x1(t) − 0.1x2(t) + 0.2 cos(x1(t) + x2(t))

+ 0.1x1(t − 0.1) + 0.16 sinx2(t) + 2.9u1(t) + 0.2u2(t)] dt + 0.2x1 dw(t),

dx2(t) = [−0.1x1(t) + x2(t) + 0.15 sinx2(t)

+ 0.1x2(t − 0.1) + 0.15 cosx1(t) + 0.1u1(t) − 2.1u2(t)] dt + 0.2x2 dw(t).

Considering the system (1) – (2) with the constraints (3) – (4), we can obtain that

A =

[

−2 −0.1
−0.1 1

]

, B =

[

2.9 0.2
0.1 −2.1

]

, Ad = 0.1I2, D = 0.2I2,

d = 0.1, a11 = 0.25; a12 = 0.12; a21 = 0; a22 = 0.

We choose ε1 = 4.8, ε1 = 8.2, and solve (26) to obtain

P =

[

0.1287 0.0013
0.0013 0.2003

]

.

Then, setting Λ = 2I2 which meets (28) and considering two cases of U = I2 and
U = −I2, we have two desired gain matrices as follows:

Case 1: K1 =

[

−0.7938 −0.7764
−0.7580 25.2439

]

, Case 2: K2 =

[

−23.7023 −0.7764
−0.7580 2.3354

]

.
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Figure 4.1. x1 (solid), x2 (dashed).

Figure 4.2. x1 (solid), x2 (dashed).

The responses of closed-loop system dynamics to initial conditions are shown in Fig-

ure 4.1 and Figure 4.2. The simulation results imply that the desired goal is well achieved,

i.e., the closed-loop system is exponentially stable in the mean square.
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5 Conclusions

In this paper, we have studied the stabilization problem for a class of nonlinear sto-
chastic time-delay systems. The nonlinearities are assumed to have the similar form as
those in [18 – 20]. We have developed an effective algebraic matrix inequality approach
to designing the state feedback controllers, such that the closed-loop system is stochas-
tically exponentially stable (or exponentially ultimately bounded) in the mean square,
for all admissible nonlinearities and time-delays. We have investigated the sufficient con-
ditions for the nonlinear stochastic systems to be exponentially stable (or exponentially
ultimately bounded), and have derived the explicit expression of the desired controller
gains. A numerical simulation example has been provided to show the usefulness and
effectiveness of the proposed design method.

References

[1] Boukas, E.K. and Liu, Z.-K. Deterministic And Stochastic Time-Delay Systems. Birk-
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