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Abstract: This paper investigates the problem of robust observer design for a
class of nonlinear stochastic systems with state delays and time-varying norm-
bounded parameter uncertainties. The nonlinearities are assumed to satisfy
the global Lipschitz conditions and appear in both the state and measured
output equations. The purpose is to design a nonlinear observer ensuring
mean square asymptotic stability for the error system, irrespective of the
uncertainties and the time delays. A sufficient condition for the solvability of
this problem is derived in terms of a linear matrix inequality and the explicit
formula of a desired robust observer is also given. An example is given to
illustrate the proposed approach.
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1 Introduction

Observer design for linear as well as nonlinear systems has been an active research area
in the past years. Various approaches, such as transfer-function, geometric, algebraic,
singular value decomposition and so on, have been successfully proposed and many results
on the observer design have been reported in the literature. For some representative
work on this general topic, to name a few, we refer readers to [6, 7, 9, 10, 12] and the
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references therein. However, one of the limitations of classical observer theory is that

it cannot guarantee the observer performance when parameter uncertainty appears in

a system model. This has motivated the study of robust observer design problem; see,

e.g. [1, 3, 15], and the references cited therein. It is worth noting that in the context of

stochastic nonlinear systems, the robust observer design problem has been investigated

in [20], in which a method for the design of time-invariant observers with guaranteed

exponential convergence has been proposed.

On the other hand, it is well known that time delays are inherent in many physical

and engineering systems due to transportation lags, and conduction or computation

times [4, 8]. It has been shown that time delay is often a main cause of instability of

a dynamic system. A number of estimation and control problems related to time-delay

systems have been addressed by many researchers [5, 11, 13, 16 – 18]. Recently, a great

deal of interest has been devoted to the observer design for time-delay systems. A general

form of linear observers for time-delay systems by using the factorization approach was

proposed in [19], where a necessary and sufficient condition for the existence of the

state functional observers was presented. For discrete-time delay systems, a memoryless

state observer was designed by the state augmentation approach in [13]. However, it

should be pointed out that disturbances as well as nonlinearities may be present in

time-delay systems. Therefore, the observer design problem for nonlinear time-delay

stochastic systems is important in both theory and practice and challenging, thus should

be considered. To date, to the authors’ best knowledge, little work has been done for

such stochastic systems.

In this paper, we are concerned with the problem of robust observer design for a class

of nonlinear stochastic systems with state delay and parameter uncertainties. The class of

systems under consideration is described by a linear stochastic differential delay equation

with the addition of known nonlinearities which depend not only on the state but also

on the delayed state and are assumed to satisfy the global Lipschitz conditions. The

nonlinearities appear in both the state and measured output equations. The parameter

uncertainties are real time-varying norm-bounded and appear in both the state and

output matrices of the linear part of the system model. The problem under study is the

design of a nonlinear observer that guarantees mean square asymptotic stability of the

error dynamics for the whole set of admissible systems. A linear matrix inequality (LMI)

approach is proposed to solve this problem and a solution is given in terms of an LMI,

which defines a convex set of solutions and can be easily computed by the available LMI

algorithms ([2]).

Notation Throughout this paper, for symmetric matrices X and Y , the notation

X ≥ Y (respectively, X > Y ) means that the matrix X − Y is positive semi-definite

(respectively, positive definite); I is the identity matrix with appropriate dimension. The

notation MT represents the transpose of the matrix M . While, (Ω, F , P) is a probability

space, where Ω is the sample space, F is the σ-algebra of subsets of the sample space

and P is the probability measure on F . The notation E {·} stands for the expectation

operator; ‖x‖ stands for the Euclidean norm of the vector x. Matrices, if not explicitly

stated, are assumed to have compatible dimensions.
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2 Problem Formulation

Consider the following class of nonlinear stochastic systems with state-delay and para-
meter uncertainties:

(Σ): dx(t) = [(A + ∆A(t)) x(t) + (Ad + ∆Ad(t)) x(t − τ) + Gg(x(t), x(t − τ))] dt

+ [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t)) x(t − τ)] dω(t), (1)

dy(t) = [(C + ∆C(t)) x(t) + (Cd + ∆Cd(t)) x(t − τ) + Hh(x(t), x(t − τ))] dt

+ [(D + ∆D(t)) x(t) + (Dd + ∆Dd(t)) x(t − τ)] dω(t), (2)

x(t) = φ(t), ∀ t ∈ [−τ, 0], (3)

where x(t) ∈ Rn is the system state, y(t) ∈ Rm is the measurement; ω(t) is a zero-
mean real scalar Wiener process on (Ω, F , P) relative to an increasing family (Ft)t>0

of σ-algebras Ft ⊂ F . We assume

E {dω(t)} = 0, E
{

dω(t)2
}

= dt. (4)

In system (Σ), φ(t) is a real-valued continuous initial function on [−τ, 0], τ > 0 is a
known time delay of the system, g(·, ·) : Rn × Rn → Rng and h(·, ·) : Rn × Rn → Rnh

are known nonlinear functions, A, Ad, B, Bd, C, Cd, D, Dd, G and H are known
real constant matrices, ∆A(t), ∆Ad(t), ∆B(t), ∆Bd(t), ∆C(t), ∆Cd(t), ∆D(t) and
∆Dd(t) are unknown matrices representing time-varying parameter uncertainties, and
are assumed to be of the form

[

∆A(t) ∆Ad(t) ∆B(t) ∆Bd(t)
∆C(t) ∆Cd(t) ∆D(t) ∆Dd(t)

]

=

[

M1

M2

]

F (t) [ N1 N2 N3 N4 ] , (5)

where M1, M2, N1, N2, N3 and N4 are known real constant matrices and F (·) : R →
Rk×l is a unknown real-valued time-varying matrix satisfying

F (t)TF (t) ≤ I, ∀ t. (6)

It is assumed that all the elements of F (t) are Lebesgue measurable. ∆A(t), ∆Ad(t),
∆B(t), ∆Bd(t), ∆C(t), ∆Cd(t), ∆D(t) and ∆Dd(t) are said to be admissible if both (5)
and (6) hold.

Remark 1 The parameter uncertainty structure as in (5) and (6) has been widely
used in the problems of robust control and robust filtering of uncertain systems, see,
for example, [11, 12, 15] and the references therein and many practical systems possess
parameter uncertainties which can be either exactly modeled, or overbounded by (6).
Observe that the unknown matrix F (t) in (5) can even be allowed to be state-dependent,
i.e. F (t) = F (t, x(t)), as long as (6) is satisfied.

Throughout the paper, we make the following assumption on the nonlinear functions
in system (Σ).

Assumption 1

(I) g(0, 0) = 0;

(II) ‖g(x1, x2) − g(y1,y2)‖ ≤ ‖S1g(x1 − y1)‖ + ‖S2g(x2 − y2)‖,
‖h(x1, x2) − h(y1,y2)‖ ≤ ‖S1h(x1 − y1)‖ + ‖S2h(x2 − y2)‖,
for all x1, x2, y1, y2 ∈ Rn, where S1g, S2g, S1h and S2h are known real constant
matrices.

Before formulating the problem to be addressed in this paper, we first introduce the
following concept of stochastic stability.
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Definition 1 The equilibrium x = 0 of the system (1) is said to be mean square
stable if for any ε > 0 there is a δ(ε) > 0 such that

E |x(t)|
2

< ε, t > 0

when sup
−τ≤s≤0

E |φ(s)|
2

< δ(ε). If, in addition,

lim
t→∞

x(t) = 0

for any initial conditions, then the equilibrium x = 0 of the system (1) is said to be
mean square asymptotically stable.

Now, the observer design problem we address in this paper can be formulated as
follows: given the uncertain nonlinear stochastic time-delay system (Σ), we are concerned
with obtaining an estimate x̂(t) of the state x(t) by using the measurement y(t), such
that the error dynamics remain mean square asymptotically stable for all admissible
uncertainties satisfying (5) and (6) and the nonlinearities satisfying Assumption 1.

3 Main Results

In this section, an LMI approach is proposed to solve the robust observe design problems
formulated in the previous section. Before presenting the main results, we give the
following lemmas which will be used in the proof of our main results.

Lemma 1 [14] Let A, D, S, W and F be real matrices of appropriate dimensions
such that W > 0 and FTF ≤ I. Then we have the following:

(1) for scalar ǫ > 0 and vectors x, y ∈ Rn,

2xTDFSy ≤ ǫ−1xTDDTx + ǫyTSTSy;

(2) for any scalar ǫ > 0 such that W − ǫDDT > 0,

(A + DFS)TW−1(A + DFS) ≤ AT(W − ǫDDT)−1A + ǫ−1STS.

Theorem 1 Consider the uncertain nonlinear stochastic time-delay system (1) and
(3), that is,

(Σ1) : dx(t) = [(A + ∆A(t)) x(t) + (Ad + ∆Ad(t)) x(t − τ) + Gg(x(t), x(t − τ))] dt

+ [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t))x(t − τ)] dω(t), (7)

x(t) = φ(t), ∀ t ∈ [−τ, 0]. (8)

Then system (Σ1) is mean square asymptotically stable if there exist matrices P > 0,
Q > 0 and scalars ǫ1 > 0, ǫ2 > 0 and ǫ3 > 0, such that the following LMI holds:















Ω1 PAd + ǫ2N
T

1
N2 + ǫ3N

T

3
N4 PG PM1 0 BTP

AT

d P + ǫ2N
T

2
N1 + ǫ3N

T

4
N3 Ω2 0 0 0 BT

d P

GTP 0 −ǫ1I 0 0 0
MT

1
P 0 0 −ǫ2I 0 0

0 0 0 0 −ǫ3I MT
1 P

PB PBd 0 0 PM1 −P















< 0

(9)
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where

Ω1 = ATP + PA + Q + 2ǫ1S
T

1gS1g + ǫ2N
T

1 N1 + ǫ3N
T

3 N3 (10)

Ω2 = 2ǫ1S
T

2gS2g + ǫ2N
T

2
N2 + ǫ3N

T

4
N4 − Q. (11)

Proof Define the following Lyapunov function candidate:

V (xt, t) = x(t)TPx(t) +

t
∫

t−τ

x(s)TQx(s) ds (12)

where
xt = x(t + β), β ∈ [−τ, 0] .

By Itô’s formula, we obtain the stochastic differential as

dV (xt) = LV (xt, t)dt+2x(t)TP [(B + ∆B(t)) x(t)+(Bd + ∆Bd(t)) x(t− τ)] dω(t), (13)

where

LV (xt, t) = 2x(t)TP [(A + ∆A(t)) x(t) + (Ad + ∆Ad(t))x(t − τ) + Gg(x(t), x(t − τ))]

+ [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t)) x(t − τ)]
T

× P [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t)) x(t − τ)]

+ x(t)TQx(t) − x(t − τ)TQx(t − τ). (14)

From Assumption 1, it follows that

‖g(x(t), x(t − τ))‖ ≤ ‖S1gx(t)‖ + ‖S2gx(t − τ)‖ .

Therefore
‖g(x(t), x(t − τ))‖

2
≤ 2 ‖S1gx(t)‖

2
+ 2 ‖S2gx(t − τ)‖

2
. (15)

Considering this and (5) and using Lemma 1, we have that for any scalars ǫ1 > 0 and
ǫ2 > 0,

2x(t)TPGg(x(t), x(t − τ))

≤ ǫ−1

1
x(t)TPGGTPx(t) + ǫ1g(x(t), x(t − τ))Tg(x(t), x(t − τ))

≤ ǫ−1

1
x(t)TPGGTPx(t) + 2ǫ1

[

x(t)TST

1gS1gx(t) + x(t − τ)TST

2gS2gx(t − τ)
]

(16)

and

2x(t)TP [∆A(t)x(t) + ∆Ad(t)x(t − τ)] = 2x(t)TPM1F (t) [N1x(t) + N2x(t − τ)]

≤ ǫ−1

2
x(t)TPM1M

T

1 Px(t) + ǫ2 [N1x(t) + N2x(t − τ)]
T

[N1x(t) + N2x(t − τ)] .
(17)

Furthermore, from (9) it is easy to see that

ǫ3I − MT

1 PM1 > 0
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which implies
P − ǫ−1

3
PM1M

T

1
P > 0.

Therefore, by using Lemma 1 again, we have

[

B + M1F (t)N
]T

P
[

B + M1F (t)N
]

≤ B
T

P
(

P − ǫ−1

3
PM1M

T

1 P
)−1

PB + ǫ3N
T

N

(18)
where

B = [ B Bd ] , N = [N3 N4 ] .

Noting

[(B + ∆B(t))x(t) + (Bd + ∆Bd(t))x(t − τ)]TP

× [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t)) x(t − τ)]

= [ x(t)T x(t − τ)T ]
[

B + M1F (t)N
]T

P
[

B + M1F (t)N
]

[

x(t)
x(t − τ)

]

and using (16) – (18) we obtain

LV (xt, t) ≤ [ x(t)T x(t − τ)T ] W

[

x(t)
x(t − τ)

]

(19)

where

W =

[

Ω1 + ǫ−1

1
PGGTP + ǫ−1

2
PM1M

T

1
P PAd + ǫ2N

T

1
N2 + ǫ3N

T

3
N4

AT

d P + ǫ2N
T
2 N1 + ǫ3N

T
4 N3 Ω2

]

+ B
T

P
(

P − ǫ−1

3
PM1M

T

1 P
)−1

PB.

On the other hand, pre and post-multiplying (9) by















I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 0 I

0 0 0 0 I 0















and using Schur complement, we have W < 0, this together with (19) implies

LV (xt, t) < 0

for
[

x(t)
x(t − τ)

]

6= 0,

which, by the result in [8], guarantees the mean square asymptotic stability of sys-
tem (Σ1).

Now, we are in a position to give a solution to the robust observer design problem
formulated in the previous section.
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Theorem 2 Consider the uncertain nonlinear stochastic time-delay system (Σ) under
Assumption 1. If there exist matrices P1 > 0, P2 > 0, Q1 > 0, Q2 > 0 and Z and
scalars ǫ1 > 0, ǫ2 > 0 and ǫ3 > 0, such that the following LMI holds:











Ξ1 Λ1 Λ2 0 Λ3

ΛT
1 Ξ2 0 0 Π1

ΛT

2
0 −Υ1 0 0

0 0 0 −Υ2 Π2

ΛT

3 ΠT

1 0 ΠT

2 −Υ3











< 0 (20)

where

Ξ1 = diag (Ξ11, Ξ12) ,

Ξ2 = diag (Ξ21, Ξ22) ,

Ξ11 = ATP1 + P1A + Q1 + 2ǫ1S
T

1gS1g + ǫ2N
T

1 N1 + ǫ3N
T

3 N3,

Ξ12 = ATP2 + P2A − ZC − CTZT + Q2 + 2ǫ1S
T

1
S1,

Ξ21 = 2ǫ1S
T

2gS2g + ǫ2N
T

2 N2 + ǫ3N
T

4 N4 − Q1,

Ξ22 = 2ǫ1S
T

2
S2 − Q2,

Λ1 =

[

P1Ad + ǫ2N
T

1
N2 + ǫ3N

T

3
N4 0

0 P2Ad − ZCd

]

,

Λ2 =

[

P1G 0 0 P1M1

0 P2G −ZH P2M1 − ZM2

]

,

Λ3 =

[

BTP1 BTP2 − DTZT

0 0

]

,

Π1 =

[

BT

d P1 BT

d P2 − DT

d ZT

0 0

]

,

Π2 = [ MT

1
P1 MT

1
P2 − MT

2
ZT ] ,

Υ1 = diag (ǫ1I, ǫ1I, ǫ1I, ǫ2I) ,

Υ2 = ǫ3I,

Υ3 = diag(P1, P2).

Then the robust observer design problem is solvable, where

S1 =

[

S1g

S1h

]

, S2 =

[

S2g

S2h

]

. (21)

Furthermore, when LMI (20) is satisfied, a suitable nonlinear observer is given as follows:

dx̂(t) = [Ax̂(t) + Adx̂(t − τ) + Gg(x̂(t), x̂(t − τ))] dt

+ L [dy(t) − (Cx̂(t) + Cdx̂(t − τ) + Hh(x̂(t), x̂(t − τ))) dt] ,
(22)

where L = P−1

2
Z.

Proof Let
x̃(t) = x(t) − x̂(t)
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then from (1) – (3) and (22), we obtain

dx̃(t) = [(A − LC)x̃(t) + (Ad − LCd)x̃(t − τ) + (∆A(t) − L∆C(t)) x(t)

+ (∆Ad(t) − L∆Cd(t))x(t − τ) + Ḡξ(x(t), x(t − τ), x̂(t), x̂(t − τ))
]

dt

+ [((B − LD) + (∆B(t) − L∆D(t)))x(t)

+ ((Bd − LDd) + (∆Bd(t) − L∆Dd(t)))x(t − τ)] dω(t),

(23)

where Ḡ = [ G −LH ] and

ξ(x(t), x(t − τ), x̂(t), x̂(t − τ)) =

[

g(x(t), x(t − τ)) − g(x̂(t), x̂(t − τ))

h(x(t), x(t − τ)) − h(x̂(t), x̂(t − τ))

]

.

Setting

η(t)T = [ x(t)T x̃(t)T ]
T

and considering (1) – (3) and (18), we have

dη(t) = [(Ac + ∆Ac(t)) η(t) + (Acd + ∆Acd(t)) η(t − τ)

+ Gcξc(x(t), x(t − τ), x̂(t), x̂(t − τ))]dt

+ [(Bc + ∆Bc(t)) η(t) + (Bcd + ∆Bcd(t)) η(t − τ)] dω(t),

(24)

where

Ac =

[

A 0
0 A − LC

]

, ∆Ac(t) =

[

∆A(t) 0
∆A(t) − L∆C(t) 0

]

,

Acd =

[

Ad 0
0 Ad − LCd

]

, ∆Acd(t) =

[

∆Ad(t) 0
∆Ad(t) − L∆Cd(t) 0

]

,

Bc =

[

B 0
B − LD 0

]

, ∆Bc(t) =

[

∆B(t) 0
∆B(t) − L∆D(t) 0

]

,

Bcd =

[

Bd 0
Bd − LDd 0

]

, ∆Bcd(t) =

[

∆Bd(t) 0
∆Bd(t) − L∆Dd(t) 0

]

,

Gc =

[

G 0
0 Ḡ

]

and

ξc(x(t), x(t− τ), x̂(t), x̂(t− τ)) = [ g(x(t), x(t − τ))T ξ(x(t), x(t − τ), x̂(t), x̂(t − τ))T ]T .

Using Assumption 1 yields

‖ξc(x(t), x(t − τ), x̂(t), x̂(t − τ))‖
2
≤ 2

∥

∥

∥
S̃1η(t)

∥

∥

∥

2

+ 2
∥

∥

∥
S̃2η(t − τ)

∥

∥

∥

2

, (25)

where

S̃1 =

[

S1g 0
0 S1

]

, S̃2 =

[

S2g 0
0 S2

]

. (26)
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Noting (5), it can be easily seen that

[ ∆Ac(t) ∆Acd(t) ∆Bc(t) ∆Bcd(t) ] = M1cF (t) [ N1c N2c N3c N4c ] ,

where

M1c =

[

M1

M1 − LM2

]

, N1c = [ N1 0 ] , N2c = [ N2 0 ] ,

N3c = [ N3 0 ] , N4c = [ N4 0 ] .

Define

Pc = diag (P1, P2) ,

Qc = diag (Q1, Q2) ,

Ω1c = AT

c Pc + PcAc + Qc + 2ǫ1S̃
T

1
S̃1 + ǫ2N

T

1cN1c + ǫ3N
T

3cN3c,

Ω2c = 2ǫ1S̃
T

2
S̃2 + ǫ2N

T

2cN2c + ǫ3N
T

4cN4c − Qc,

then by some algebraic manipulations and noting (20), it follows that























Ω1c
PcAcd + ǫ2N

T

1cN2c

+ ǫ3N
T

3cN4c
PcGc PcM1c 0 BT

c Pc

AT

cdPc + ǫ2N
T

2cN1c

+ ǫ3N
T

4cN3c
Ω2c 0 0 0 BT

cdPc

GT

c Pc 0 −ǫ1I 0 0 0
MT

1cPc 0 0 −ǫ2I 0 0
0 0 0 0 −ǫ3I MT

1cPc

PcBc PcBcd 0 0 PcM1c −Pc























=











Ξ1 Λ1 Λ2 0 Λ3

ΛT

1 Ξ2 0 0 Π1

ΛT

2
0 −Υ1 0 0

0 0 0 −Υ2 Π2

ΛT

3
ΠT

1
0 ΠT

2
−Υ3











< 0.

Finally, using this inequality and Theorem 1, the desired result follows immediately.

Remark 2 Theorem 2 provides an LMI method for designing robust observers for
system (Σ). It is worth pointing out that the LMI in (20) can be solved by means of
numerically efficient convex programming algorithms, and no tuning of parameters is
required [2, though there are several parameters and matrices to be determined.

4 Numerical Example

In this section, we provide an example to demonstrate the effectiveness of the proposed
method.
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Consider the following class of nonlinear stochastic systems with state-delay and pa-
rameter uncertainties:

dx1(t) = [−1.8x1(t) + (0.2 − 0.4f(t))x2(t) − (0.1 + 0.2f(t))x1(t − 1.5) + 0.2x2(t − 1.5)

+ 0.3 sin(−0.2x1(t) + 0.1x2(t) + 0.1x1(t − 0.5) + 0.2x2(t − 1.5))] dt

+ [(0.1 + 0.2f(t))x1(t) + (0.3 + 0.2f(t))x2(t)

+ 0.4f(t)x1(t − 1.5) − 0.2x2(t − 1.5)] dω(t),

dx2(t) = [−0.4x1(t) − (2.5 + 0.2f(t))x2(t) − 0.1f(t)x1(t − 1.5) − 0.1x2(t − 1.5)

+ 0.2 sin(−0.2x1(t) + 0.1x2(t) + 0.1x1(t − 1.5) + 0.2x2(t − 1.5))] dt

+ [(0.1f(t) − 0.4)x1(t) + (1 + 0.1f(t))x2(t)

+ (0.6 + 0.2f(t))x1(t − 1.5) + 0.1x2(t − 1.5)] dω(t),

dy(t) = [0.1x1(t) − (0.4 + 0.2f(t))x2(t) + (0.4 − 0.1f(t))x1(t − 1.5) + 0.6x2(t − 1.5)

+ 0.5 sin(0.2x1(t) − 0.1x2(t) + 0.2x1(t − 1.5))] dt

+ [0.1f(t)x1(t) + (0.1f(t) − 0.2)x2(t)

+ (0.2f(t) − 0.5)x1(t − 1.5) + 0.2x2(t − 1.5)] dω(t),

where f(t) is unknown but satisfies |f(t)| ≤ 1. It is easy to see that the above system
has the form (1) and (2) with parameters as follows

A =

[

−1.8 0.2
−0.4 −2.5

]

, Ad =

[

−0.1 0.2
0 −0.1

]

,

B =

[

0.1 0.3
−0.4 1

]

, Bd =

[

0 −0.2
0.6 0.1

]

,

C = [ 0.1 −0.4 ] , Cd = [ 0.4 0.6 ] ,

D = [ 0 −0.2 ] , Dd = [−0.5 0.2 ] ,

G =

[

0.3
0.2

]

, H = 0.5,

M1 =

[

0.4
0.2

]

, M2 = 0.2,

N1 = [ 0 −1 ] , N2 = [−0.5 0 ] ,

N3 = [ 0.5 0.5 ] , N4 = [ 1 0 ] ,

S1g = [−0.2 0.1 ] , S2g = [ 0.1 0.2 ] ,

S1h = [ 0.2 −0.1 ] , S2h = [ 0.2 0 ] .

Now, using the Matlab LMI Control Toolbox, we obtain the solution to the LMI (20) as
follows:

P1 =

[

5.0934 −0.7812
−0.7812 4.3022

]

, P2 =

[

2.8203 −0.5012
−0.5012 1.6465

]

,

Q1 =

[

10.9532 −0.5227
−0.5227 3.6335

]

, Q2 =

[

4.3914 −0.7795
−0.7795 4.7745

]

,

Z =

[

0.1271
−2.1537

]

,

ǫ1 = 4.8400, ǫ2 = 2.6078, ǫ3 = 2.7588.
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Therefore, by Theorem 2, it follows that the robust observer design problem is solvable,
and the desired nonlinear observer can be chosen by

dx̂(t) =

([

−1.8 0.2
−0.4 −2.5

]

x̂(t) +

[

−0.1 0.2
0 −0.1

]

x̂(t − 1.5)

+

[

0.3
0.2

]

sin([−0.2 0.1 ] x̂(t) + [ 0.1 0.2 ] x̂(t − 1.5))

)

dt

+

[

−0.1981
−1.3684

]

(dy(t) − ([ 0.1 −0.4 ] x̂(t) + [ 0.4 0.6 ] x̂(t − 1.5)

+ 0.5 sin ([−0.2 0.1 ] x̂(t) + [ 0.1 0.2 ] x̂(t − 1.5))) dt) .

5 Conclusions

In this paper, we have studied the robust observer design problem for a class of nonlinear
stochastic systems with state delays and time-varying norm-bounded parameter uncer-
tainties. In terms of an LMI, a nonlinear observer has been developed to guarantee mean
square asymptotic stability of the error dynamics for all admissible uncertainties. A
numerical example has been provided to show the effectiveness of the proposed methods.
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