








Editorial

Stochastic nonlinear differential equations have been widely used to model physical sys-
tems that have abrupt variations in their structures. These abrupt variations may re-
sult from component and interconnection failures or repairs, parameters shifting, sudden
environmental disturbances, abrupt variations of the operating point, etc. Stochastic
nonlinear differential equations typically consist of both continuous and discrete states,
which are, respectively, modelled by nonlinear differential equations and stochastic pro-
cesses. Time-varying engineering systems such as electrical networks, economic systems,
manufacturing systems, communication systems, and so forth have the characteristics of
time-delay. In general, the existence of time delays degrades the control performance
and may make the closed-loop stabilization very difficult.

Over the past two decades, considerable researches have been done on the analysis and
synthesis of time-delay stochastic linear systems (TDSLS). Delay-independent method-
ologies for TDSLS which guarantee stability and prescribed performance level have been
obtained. Recently, delay-dependent methodologies for TDSLS have been developed to
reduce the conservativeness of the delay-independent methodologies. To the best of our
knowledge, stability analysis and synthesis for time-delay stochastic nonlinear systems
(TDSNS) have not been thoroughly invesigated yet. It was an inspiration to organize a
special issue of this journal on:

Stability Analysis and Synthesis

for Time Delay Stochastic Nonlinear Systems

This special issue is composed of the invited papers written by leading researchers in
the field of control systems science and engineering. Various novel methodologies have
been proposed for TDSNS. The stabilization problem for TDSNS is addressed in three
papers. Four papers extend Hinf design methodologies for TDSLS to TDSNS. One paper
generalizes the concept of dissipativeness deloped for non-delay deterministic systems to
TDSNS and one paper studies the problem of adaptive control for a class of TDSNS.

We would like to thank Professor A.A.Martynyuk, Editor-in-Chief of the Journal, for
providing us the opportunity to organize the special issue. Finally, we would like to
sincerely thank the contributors and the referees for all their hard works.

We hope that the Journal readers will share our evaluation and that the issue will be
welcome by a broad scientific community and will become a long-standing reference.
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1 Introduction

The important concept of dissipativity developed by Willems [14, 15], Hill and Moy-
lan [5, 6] and Anderson [1], has been proven very successful in many feedback design syn-
thesis problems [1, 11, 12, 14]. This concept which was originally inspired from electrical
network considerations, in particular passive circuits, generalizes many other important
concepts of physical systems such as positive realness, passivity, and losslessness. As
such, many important mathematical relations of dynamical systems such as the bounded
real lemma, positive real lemma, the existence of spectral factorization, and L2-gain of
linear and nonlinear systems have been shown to be consequences of this important the-
ory. Moreover, there has been renewed interest lately on this important concept as having
been instrumental in the derivation of the solution of the nonlinear H∞ control problem
[12]. It has been shown that a sufficient condition for the solution to this problem is the
existence of a solution to some dissipation inequalities.
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However, the theory of dissipativeness more generally studied by Hill and Moylan [5, 6],
Willems [14, 15] is purely from a deterministic setting. Many physical systems are how-
ever stochastic; for example, a control system is constantly perturbed by unwanted dis-
turbances, a communication system is affected by noise while an aeroplane is frequently
fluttered by air pockets. In addition, many physical systems are subject to random
changes which may result from abrupt phenomenon such as component and interconnec-
tion failures. Hence fault-tolerant systems have been developed to ensure high reliability
and performance in such situations.

Therefore, in this paper, we extend the theory of dissipativity to include stochastic
state-delayed systems or systems that are subject to random disturbances. In particular,
we consider a class of nonlinear stochastic systems with state-delay and random Markov-
ian jump parameters or disturbances. This class of systems belongs to the class of hybrid
systems with continuous state dynamics and discrete parameter variation. The control
and filtering problems for this class of systems has been discussed by many authors
[3, 9, 10]. In particular, Rishel [10] has derived the minimum principle for the general
nonlinear case without state-delay and in which the adjoint equations are deterministic.
While Ji and Chizeck [3, 7] have derived the structural properties, namely, controllability,
observability and stability for the linear case. Furthermore, the problems of controller
design for the linear case using LQ and LQG criteria have been discussed extensively in
Mariton [9].

Thus, in this paper, we discuss additional structural (or internal) properties of this
class of systems which are closely associated with their stability. We discuss the dissipa-
tive properties of this class of systems, which determine whether they absorb energy and
conserve it, or dissipate it; and based on this property, what could we infer about the
stability of such systems? We also give a fresh interpretation of the concept of dissipativ-
ity as both an input/output property and an internal property of a system. The closest
work to the current one in this paper can be found in [4] for systems without state-delay.

The paper is organized as follows. In Section 2, we define the problem and discuss
necessary and sufficient conditions for a nonlinear state-delayed system with Markov
jump disturbances to be dissipative. We continue this discussion in Section 3 for the case
of a quadratic supply rate and discuss the relationship between the dissipativity of the
system and its L2-gain, which leads to the bounded-real lemma for this class of systems.
Finally, in Section 4, we discuss the implications of dissipativity on the stability of the
system. Conclusions are then given in Section 5.

2 Dissipativity of State-Delayed Nonlinear Stochastic Systems with Jumps

In this section, we define the concept of dissipativity of a state-delayed nonlinear system
with jump Markov disturbances. The notation is standard except where specified other-
wise. Moreover, R+ is the positive real-line, R

n is the n-dimensional Euclidean space and
‖ · ‖ represents the Euclidean vector norm. The spaces L1,loc((t0, t1), R), L2([0, T ], Rn)
are the standard Lebesgue spaces of locally integrable on (t0, t1) and square integrable
over [0, T ] vector functions on R

n respectively. While L2([0, T ], (Ω,F , P )) is the corre-
sponding space over the probability space (Ω,F , P ), in which Ω is the sample space, F
is the σ-algebra generated by Ω and P is a probability measure over F . Lastly, E will
denote the mathematical expectation operator.

Let us at the outset consider the following piece-wise autonomous nonlinear state-
delayed system defined over an open subset X × S of R

n × Z+ with X containing the
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origin,

Σ: ẋ(t) = f(x(t), x(t − d), u(t), r(t)),

x(t) = φ(t), t ∈ [−d, 0], x(t0) = x0 = φ(t0), (1)

y(t) = h(x(t), r(t)), (2)

where x(t) ∈ X is the state vector, u(t) ∈ U ⊂ R
p is the input function belonging to

an input space U , d > 0 is the delay, y(t) ∈ Y ⊂ R
m is the output function which

belongs to the output space Y ⊂ R
m, and φ(t) ∈ C[−d, 0] is the initial function.

Besides the dependence on the input and initial conditions, the state of the system is
also a function of the discrete parameter r(t) which is a continuous-time homogeneous

Markov process with finite discrete state-space S , {1, 2, . . . , l}. We assume that the

probabilities Pt , (P1t, . . . , Plt), with Pit , P (r(t) = i), i = 1, . . . , l, satisfy the forward
Kolmogorov equation

∂Pt

∂t
= ΛPt, P0 = P̄ , t ∈ [0, T ],

where Λ = [λij ]i,j∈S is the transition matrix, and λij are real numbers such that for
i 6= j, λij ≥ 0, and for all i ∈ S, λii = −∑

j 6=i λij . In other words, the transition

probabilities are given by

P [r(t + h) = j, r(t) = i] =

{

λijh + o(h) if j 6= i,

1 + λiih + o(h) if j = i,

where o(h) are the remainder terms such that lim
h→0

o(h)

h
= 0.

The functions f : X × X × U × S → X , h : X × S → Y are real smooth functions of
their arguments for each r(t) ∈ S. We also assume the following.

Assumption 2.1 The system Σ is causal, time-invariant and finite-dimensional.
Further, the functions f(·, ·, ·, r(t)), h(·, r(t)) for each value of r(t) ∈ S are smooth
C

∞ functions of x ∈ X and u ∈ U such that the system (1) is well-defined; that is,
for any initial state x(t0) ∈ X , initial mode r(t0) = r0 ∈ S and any admissible input,
u(t) ∈ U , there exists a unique solution x(t, t0, x0, xt0−d, r0, u) to (1) on [t0,∞) which
continuously depends on the initial data.

Alternatively, the following assumptions are also sufficient to guarantee the existence
and uniqueness of solutions to the system Σ [2].

Assumption 2.2 For all t, t1, t2 ∈ [−d,∞), r(t) ∈ S,

(a) (Lipschitz condition)

‖f(x(t2), x(t2 − d), u(t2), r(t))) − f(x(t1), x(t1 − d), u(t1), r(t))‖
≤ K1‖x(t2) − x(t1)‖ + K2‖x(t2 − d) − x(t1 − d)‖ + K3‖u(t2) − u(t1)‖

∀x(t2), x(t1), x(t2 − d), x(t1 − d) ∈ X , u(t1), u(t2) ∈ U ;

(b) (Restriction on Growth)

‖f(x(t), x(t − d), u(t), r(t))‖2
P ≤ K

2

1
(1 + ‖x(t)‖2) + K

2

2
(1 + ‖x(t − d)‖2)

+ K
2

3(1 + ‖u(t)‖2), ∀x(t), x(t − d) ∈ X , u ∈ U
‖h(t, x(t), r(t))‖ ≤ K4(1 + ‖x(t)‖2), ∀x(t) ∈ X ,
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where K1, K2, K3, K4 are positive constants.

Now let Ft be the σ-algebra generated by r(t), t ∈ [0, T ]. Then we take the input
space U and output space Y, to be Ft-measurable, and piecewise continuous. Similarly,
the functions f(·, ·, ·), h(·, ·) are also assumed to be Ft measurable by continuity with
respect to x ∈ X .

If the system Σ is viewed as a black box with only inputs and outputs, then in the above
representation, the system Σ is a map Σ: U × X × S → Y which transforms inputs to
outputs through state functions x(t) ∈ X for each r(t) ∈ S. In view of this, if we assign
an energy measure to both the inputs and outputs of the system, then it is possible
to infer the internal behavior of the system by comparing these two quantities. This
motivates the following definition of a supply rate to the system.

Definition 2.1 A function s(u(t), y(t)) : U × Y → R is a supply rate to the system
Σ if s(·, ·) is piecewise continuous and locally integrable, i.e.,

E

[ t1
∫

t0

|s(u(t), y(t))| dt

]

< ∞ (4)

or s(·, ·) ∈ L1,loc(t0, t1) for any (t0, t1) ∈ R
2
+, for all u(t) ∈ U .

Remark 2.1 The supply rate s(·, ·) is a measure of the instantaneous power into the
system. Part of this power is stored as internal energy and part of it is dissipated.

It follows from the above definition of supply rate that, to infer about the internal
behavior of the system, it is sufficient to evaluate the expected total amount of energy
expended by the system over a finite time interval. This leads us to the following defini-
tion.

Definition 2.2 The system Σ is dissipative with respect to (wrt) the supply rate
s(t) = s(u(t), y(t)) if for all u(t) ∈ U and t0, t1 ∈ R

2
+,

E

[ t1
∫

t0

s(u(t), y(t)) dt

]

≥ 0; ∀ t1 ≥ t0. (5)

when evaluated along any trajectory of the system starting at t0, x(t) = 0.

Remark 2.2 The above definition suggests that, the dissipativity of the system is an
input-output property. This is also the notion put forward in [5]. Furthermore, it also
raises the following question: Can every finite dimensional, time-invariant, causal system
be rendered dissipative by a suitable choice of input? The answer to this question will
be given in due course, but in short it is: yes and no!

The above Definition 2.2 being an inequality postulates the existence of a storage func-
tion and a possible dissipation rate for the system. It follows that if the system is assumed
to have some stored energy which is measured by a function Ψ: R+×X × X × S → R+,
then for the system to be dissipative, it is necessary that in the transition from t0 to t1,
the total amount of energy stored is less than the amount expended. This suggests the
following alternative definition of dissipativity.
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Definition 2.3 The system Σ is said to be dissipative with respect to a supply rate
s(u(t), y(t)) if for all (t0, t1) ∈ R

2
+ there exist positive-semidefinite functions (storage

functions) Ψ: R+ ×X × X × S → R+, such that the inequality

EΨ(t1, x(t1), x(t1−d), r(t1))−Ψ(t0, x(t0), x(t0−d), r(t0)) ≤ E

[ t1
∫

t0

s(u(t), y(t)) dt

]

(6)

is satisfied for all t1 ≥ t0, modes r(t1), r(t2) ∈ S and initial states x(t0−d), x0 ∈ X × X ,
where x(t1) = x(t1, t0, x0, xt0−d, r0, u).

In the sequel we shall also use the following notations x(ti) = xti
= xi, x(ti − d) =

xti−d, r(ti) = ri, i ∈ Z.

Remark 2.3 The system is also said to be lossless if the above inequality (6) is satisfied
as an equality.

The above inequality (6) can be converted to an equality by introducing the dissipation
rate d : M×U × S → R according to the following equation

EΨ(t1, xt1 , xt1−d, r1) − Ψ(t0, x0, xt0−d, r0) = E

[ t1
∫

t0

[s(t) + d(t)] dt

]

,

∀ t1 ≥ t0, ∀ r1, r0 ∈ S.

(7)

Remark 2.4 The dissipation rate is nonnegative if the system is dissipative. Moreover,
the dissipation rate uniquely determines the storage function Ψ(·, ·, ·, r(t)) for each r(t) ∈
S [15].

We now define the concept of available storage, the existence of which determines
whether the system is dissipative or not.

Definition 2.4 The available storage Ψa(t, x, r(t)) for each r(t) ∈ S of the dyna-
mical system Σ is the quantity:

Ψa(t, x(t), x(t − d), r(t)) = sup
x0=x, u∈U , t≥0

−E

[ t
∫

0

s(u(τ), y(τ)) dτ

]

, (8)

where the supremum is taken over all possible inputs, u ∈ U starting at x and time t0 = 0.

It follows that, if the system is dissipative, then the available storage is well-defined
and finite in each state of the system x, and mode r0. Moreover, it determines the
maximum amount of energy which may be extracted from the system Σ. This is stated
in the following theorem.

Theorem 2.1 The available storage, Ψa(·, ·, ·, r(t)) for each r(t) ∈ S, is finite if
and only if (iff) the system is dissipative. Furthermore, any other storage function is
lower bounded by Ψa(·, ·, ·, r(t)) for each r(t) ∈ S, i.e., 0 ≤ Ψa(·, ·, ·, r(t)) ≤ Ψ(·, ·, ·, r(t)),
r(t) ∈ S.

Proof Notice that Ψa(·, ·, ·, ·) ≥ 0 since it is the supremum over a set with the zero
element (at t = 0). Now assume that Ψa(·, ·, ·, ·) < ∞. We have to show that the system
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is dissipative, i.e., for any (t0, t1) ∈ R
2
+

Ψa(t0, x0, x(t0 − d), r0) + E

[ t1
∫

t0

s(u(τ), y(τ)) dτ

]

≥ EΨa(t1, x1, x(t1 − d), r1),

∀x0, x1 ∈ X , r0, r1 ∈ S.

(9)

In this regard, notice that from (8)

EΨa(t1, x1, x(t1 − d), r1) − Ψa(t0, x0, x(t0 − d), r0) = sup
x0,u

E

[

−
t1

∫

t0

s(t) dt

]

,

∀ r0, r1 ∈ S.

(10)

This implies that

EΨa(t1, x1, x(t1 − d), r1) ≥ Ψa(t0, x0, x(t0 − d), r0) + E

[ t1
∫

t0

s(t) dt

]

, (11)

and since all the above quantities are greater or equal to zero, it implies that Ψa(·, ·, ·, r(t))
satisfies the dissipation inequality (6) for each r(t).

Conversely, assume that Σ is dissipative. Then the dissipation inequality (6) implies
that

Ψ(t0, x0, xt0−d, r0) + E

[ t1
∫

t0

s(t) dt

]

≥ EΨ(t1, x1, xt1−d, r1) ≥ 0;

∀x0, x1 ∈ X , r0, r1 ∈ S,

(12)

by definition. Therefore,

Ψ(t0, x0, xt0−d, r0) ≥ −E

[ t1
∫

0

s(t) dt

]

+ E

[ t0
∫

0

s(t) dt

]

(13)

which implies that

Ψ(t0, x0, xt0−d, r0) ≥ sup
x=x0, u∈U , t≥0

E

[

−
t1

∫

0

s(t) dt

]

= Ψa(t0, x0, xt0−d, r0). (14)

Hence Ψa(t, x, x(t − d), r(t)) < ∞ ∀x ∈ X , r(t) ∈ S.

Remark 2.5 The above theorem summarizes the answer to the question we raised
above, that dissipativity is both an input/output property and an internal property. It
suggests that a system that is not dissipative wrt one supply rate may be dissipative wrt
to another. It therefore follows that the system must possess some internal structure
such that, the available storage Ψa(·, ·, ·, r(t)) is well-defined for each r(t) ∈ S and in
each state of the system for a particular supply rate.
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Remark 2.6 The importance of the above theorem in checking dissipativeness of
the nonlinear system Σ cannot be overemphasized. It follows that, if the system is
reachable from the origin {0}, then by an appropriate choice of an input u(t) such
thatΨa(·, ·, ·, r(t)), r(t) ∈ S is finite, it can be rendered dissipative. However, evaluating
Ψa(·, ·, ·, ·) is a difficult task without the output of the system specified a priori or solving
the state equations. This therefore calls for an alternative approach for determining the
dissipativeness of the system. This is discussed in the next section.

3 Relationship with L2-gain

In this section, we discuss the connection between the dissipativity of the nonlinear system
Σ with its L2-gain. In the classical paper by Willems [14], the relationship between
dissipativity and Linear Quadratic (LQ)-control has been shown and this relationship
has been exploited to prove the existence of solutions to certain infinite-horizon LQ-
control problems leading to the Algebraic-Ricatti equation (ARE). Similarly, we also
discuss the relationship between the dissipativity of the nonlinear system with certain
Hamilton-Jacobi equations arising in the L2-gain optimization of the nonlinear system.
To this end and for the purpose of clearity, let us consider an affine representation Σa of
the system Σ defined by:

Σa : ẋ(t) = f(x(t), x(t − d), r(t)) + g(x, r(t))u(t), (15)

x(t) = φ(t), t ∈ [−2d, 0], x(t0) = x0 = φ(t0)

y(t) = h(x(t), r(t)), (16)

where g(·, ·) ∈ C
∞(X × S) ∈ R

n×k. In this case, our existence and uniqueness Assump-
tions 2.2 take the following form:

Assumption 3.1 For all t1, t2 ∈ [−2d,∞), r(t) ∈ S,

(a) (Lipschitz condition)

‖f(x(t2), x(t2 − d), r(t)) − f(x(t1), x(t1 − d), r(t))‖ + ‖g(x(t2), r(t)) − g(x(t1), r(t))‖
≤ K1‖x(t2) − x(t1)‖ + K2‖x(t2 − d) − x(t1 − d)‖ + ‖u(t2) − u(t1)‖,

∀x(t1), x(t2) ∈ X , u(t1), u(t2) ∈ U ;

(b) (Restriction on growth)

‖f(x(t), x(t − d), r(t))‖2 + ‖g(x(t), r(t)‖2 ≤ K
2

1 (1 + ‖x‖2) + K
2

2 (1 + ‖x(t − d)‖2)

+ K
2

3
(1 + ‖u(t)‖2), ∀x(t), x(t − d) ∈ X , u(t) ∈ U ,

where K1, K2, K3 are positive constants and ‖g‖2 = Tr(gg
T ) represents the matrix trace

norm.

The question we wish to answer in this section is the following: If we restrict the
input space U of the system to be the space L2[−2d,∞), then under what conditions is
the system dissipative ? or can be rendered dissipative? To motivate the discussion, we
expand the definition of L2-gain [12] as follows.
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Definition 3.1 The system (15) is said to have L2-gain from u(t) to y(t) less than
or equal to some number γ

′
> 0 if for all (t0, t1) ∈ [−d,∞), initial state vector x0 ∈ X ,

and mode r0 ∈ S, the response of the system y(t) due to any u(t) ∈ L2[0,∞) satisfies

E

[ t1
∫

t0

‖y(t)‖2
dt

]

≤ 1

2
γ

′
2

t1
∫

t0

(‖u(t)‖2 + ‖u(t − d)‖2) dt + β(x0, r0); ∀ t1 ≥ t0 (17)

and some class K functions [13] β : X × S → R+, β(0, r(t)) = 0 ∀ r(t) ∈ S.

Remark 3.1 In the above definition, if d = 0, we recover the usual definition of
L2-gain for non-delay systems. In this regard, right-hand side represents an average.

Moreover, in the sequel we shall let γ = γ
′
/
√

2 and call γ the L2-gain of the system with
a slight abuse of the definition.

Remark 3.2 It is also obvious from the definition of L2-gain and dissipativity of the
nonlinear system (15) wrt to the supply rate s(u(t), y(t)), that, dissipativity of the
system wrt the supply rate s(u(t), y(t)), implies finite L2-gain ≤ γ.

Furthermore, from the definition of dissipativity given in (6), if the function Ψ(t, x(t),
x(t− d), r(t)) belongs to C

1(R+ ×X × X ), it is possible to go from the integral version
of the above dissipation inequality (6) to the differential form. This is stated in the
following lemma. We shall also be particularly interested in the following supply rate
s(u(t), y(t)) = 1

2
γ

2(‖u(t)‖2 + ‖u(t − d)‖2) − 1

2
‖y(t)‖2, γ > 0.

In the sequel, we shall also use the notation r(t) = i and r(t) = j, i, j ∈ S.

Lemma 3.1 The nonlinear system Σa is dissipative wrt the supply rate

s(u(t), y(t)) =
1

2
γ

2(‖u(t)‖2 + ‖u(t − d)‖2) − 1

2
‖y(t)‖2

,

if there exist some C
1 nonnegative functions Ψ: R × X × X × S → R+ such that the

following differential dissipation inequality is satisfied for all x(t) ∈ X , r(t) ∈ S:

Ψt(t, xt, xt−d, r(t)) + Ψxt
(t, xt, xt−d, r(t))[f(xt, xt−d, r(t)) + g(xt, r(t))u]

+ Ψxt−d
[f(xt−d, xt−2d, r(t − d)) + g(xt−d, r(t − d))u(t − d)]

+
∑

r(t)=j∈S

λijΨ(t, xt, xt−d, j) −
1

2
γ

2(‖u(t)‖2 + ‖u(t − d)‖2) +
1

2
‖y(t)‖2 ≤ 0,

Ψ(t, 0, 0, r(t)) = 0 ∀ t ∈ R, r(t) = i, u(t), u(t − d) ∈ L2[−d,∞),

(18)

where Ψt(·, ·, ·, ·), Ψxt
(·, ·, ·, ·) and Ψxt−d

(·, ·, ·) are the row vectors of partial derivatives
of Ψ(·, ·, ·, ·) wrt t, xt and xt−d respectively.

Proof Without any lost of generality, we will take t0 = 0 and t1 = T . Now consider
the following variation of the Dynkin’s formula [8]:

EΨ(T, x(T ), x(T − d), r(T )) − Ψ(0, x0, x−d, r0)

= E

[ T
∫

0

LΨ(t, x(t), x(t − d), r(t)) dt

]

∀T > 0,
(19)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(3) (2004) 243–256 251

where L is the infinitesimal generator of the process (x(t), r(t)), t ≥ 0 [8, 9]. Then using
the above formula (19) in the dissipation inequality (6) and the fact that

LΨ(t, xt, xt−d, r(t)) = Ψt(t, xt, xt−d, r(t))

+ Ψxt
(t, xt, xt−d, r(t))[f(xt, xt−d, r(t)) + g(xt, r(t))u]

+ Ψxt−d
[f(xt−d, xt−2d, r(t − d)) + g(xt−d, r(t − d))u(t − d)]

+
∑

r(t)=j∈S

λijΨ(x, r, j), r(t) ∈ S,

(20)

the result follows.

Remark 3.3 By virtue of the above lemma, we will henceforth consider only C
1 storage

functions in this paper.

Lemma 3.2 For the nonlinear system Σa, we have the following implications: (a) ⇔
(b) → (c)

(a) the system Σa satisfies the dissipation inequality (18);
(b) the system Σa is dissipative wrt to the supply rate s(u(t),y(t));
(c) the system Σa has L2-gain from u(t) to y(t) less than or equal to γ.

Proof (sketch) (a) ⇔ (b) follows from Lemma 3.1 above, while (c) follows from
(6),(17) and the fact that EΨ(·, ·, ·, ·) ≥ 0 by Theorem 2.1.

We now state the main result of this section which is a consequence of Lemmas 3.1
and 3.2 above.

Theorem 3.1 A necessary and sufficient condition for the nonlinear system (15) to
be dissipative wrt the supply rate

s(u(t), y(t)) =
1

2
γ

2(‖u(t)‖2 + ‖u(t − d)‖2) − 1

2
‖y(t)‖2

is that there exist a set of smooth positive-semidefinite solutions of the following stochastic
Hamilton-Jacobi (HJ) inequality for each r(t) ∈ S:

Ψt(t, xt, xt−d, r(t)) + Ψxt
(t, xt, xt−d, r(t))f(xt, xt−d, r(t))

+ Ψxt−d
(t, xt, xt−d, r(t))f(xt−d, xt−2d, r(t)) +

1

2γ2
Ψxt

g(xt, r(t))g
T (xt, r(t))Ψ

T
xt

+
1

2γ2
Ψxt−d

g(xt−d, r(t − d))gT (xt−d, r(t − d))ΨT
xt−d

+
1

2
h

T (xt, i)h(xt, i)

+
∑

r(t)=j∈S

λijΨ(t, xt, xt−d, j) ≤ 0, Ψ(t, 0, 0, i) = 0 ∀x ∈ X , r(t) = i ∈ S.

(21)

Proof (Necessity) Theorem 2.1 has shown that if the system Σa is dissipative, then
there exists at least one set of solutions to the dissipation inequality (6) for each r(t) ∈ S
which is given by the available storage, Ψa(t, xt, xt−d, r(t)), r(t) ∈ S. We now show that
any solution of the dissipation inequality (6) is also a solution to the HJ-inequality (21).
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If the system is dissipative with storage function Ψ(·, ·, ·, ), then along any trajectory
of the system, the differential dissipation inequality (18) is satisfied. The left-hand-side
(LHS) of this inequality is a quadratic function of u with maximum at

u
⋆(t, xt) =

1

γ2
g

T (xt, r(t))Ψ
T
xt

(xt, r(t)). (22)

The maximum value of the function corresponding to this stationary point, is given by

Ψt(t, xt, xt−d, i) + Ψxt
(t, xt, xt−d, i)f(xt, xt−d, i)

+ Ψxt−d
(t, xt, xt−d, r(t))f(xt−d, xt−2d, r(t)) +

1

2γ2
Ψxt

g(xt, i)g
T (xt, i)Ψ

T
xt

+
1

2γ2
Ψxt−d

g(xt−d, r(t − d))gT (xt−d, r(t − d))ΨT
xt−d

+
1

2
h

T (x, i)h(x, i)

+
∑

j∈S

λijΨ(t, xt, xt−d, j) ∀x ∈ X , i ∈ S.

(23)

But the inequality (18) holds for all u(t), u(t− d) ∈ L2[−d,∞). Hence it must also hold
for u

⋆(·), and the result follows. This proves the necessity part of the theorem.

(Sufficiency) To prove sufficiency, we will show that, if there exists a solution to the HJ
inequality (21), then the system is dissipative. Therefore, let Ψ(·, ·, ·) ≥ 0 satisfy (21),
then completing the squares, we get

Ψt(t, xt, xt−d, i) + Ψxt
(t, xt, xt−d, i)[f(xt, xt−d, i) + g(xt, i)u(t)]

+ Ψxt−d
[f(xt−d, xt−2d, r(t − d)) + g(xt−d, i)u(t − d)] +

∑

j∈S

λijΨ(t, xt, xt−d, j)

≤ γ
2

2
‖u(t)‖2 − 1

2
‖y(t)‖2 − γ

2

2
‖u(t) − 1

γ2
g

T (x, i)ΨT
xt

(x, i)‖2 +
γ

2

2
‖u(t − d)‖2

− γ
2

2
‖u(t − d) − 1

γ2
g

T (xt−d, i)ΨT
xt−d

(t − d, xt−d, xt−2d, r(t − d))‖2

∀x(t), x(t − d) ∈ X , i ∈ S,

which implies that

Ψt(t, xt, xt−d, i) + Ψxt
(t, xt, xt−d, i)[f(xt, xt−d, i) + g(xt, i)u(t)]

+ Ψxt−d
[f(xt−d, xt−2d, r(t − d)) + g(xt−d, i)u(t − d)] +

∑

j∈S

λijΨ(t, xt, xt−d, j)

≤ γ
2

2
(‖u(t)‖2 + ‖u(t − d)‖2) − 1

2
‖y(t)‖2 ∀x ∈ X , i ∈ S.

Thus, the dissipation inequality (6) and (18) are satisfied, and hence the system is dissi-
pative wrt to s(u(t), y(t)).

Remark 3.4 The inequality (21) is known as the bounded-real inequality or condition
for the system Σa and Theorem 3.1 is the equivalent of the bounded-real lemma for linear
systems.
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Remark 3.5 The above theorem provides an alternative approach for determining
dissipativeness wrt to the quadratic supply rate. It follows that, if the system possesses
the structure such that there exist smooth solutions to the HJ inequality (21) for each
mode of the system, then it guarantees the dissipativeness of the system.

4 Stability of Stochastic State-Delayed Jump Systems

In the previous two sections we have defined the concept of dissipativity of the state-
delayed nonlinear Markovian jump stochastic system (1), and have derived necessary and
sufficient conditions for the system to be dissipative wrt to any supply rate. We have also
explored the relationship between the dissipativity of the system and its L2-gain which
is expressed in terms of the bounded-real condition or a set of coupled HJ-inequalities.
Finally in this section, we shall relate the three concepts of dissipativity, L2-gain and
stability of the system Σa. The question we would like to answer is the following: under
what conditions relating to the dissipativity of the system Σa is the equilibrium x = {0}
stable, asymptotically stable?

In the deterministic case, if we regard the storage functions Ψ(·, ·, ·, r(t)), r(t) ∈ S as
generalized energy functions similar to Lyapunov functions, then to investigate stability
using these functions, we would require that they be positive-definite and their time
derivatives along trajectories of the system are negative-definite. Such an approach can
also be considered in the stochastic case with stability defined in a stochastic sense.
Therefore, we begin by first considering the conditions under which the storage function
Ψ(·, ·, ·) is positive definite. This leads us to the following definition.

Definition 4.1 The free system (15) (with u(t) ≡ 0) is said to be stochastically
zero-state detectable if for any trajectory of the system such that y(t) ≡ 0 ∀ t ≥ 0 ⇒
lim

t→∞
E{‖x(t, 0, x0, x−d, r0, 0)‖2} = {0}.

We now show that, if Ψ(·, ·, ·, ·) ≥ 0 ∀x ∈ X , r(t) ∈ S, satisfies the HJ-inequality (21)
as in the above Theorem 3.1, and the free system is stochastically zero-state detectable,
then the following lemma guarantees that Ψ(·, ·, ·) > 0 ∀x(t), x(t − d) ∈ X , x(t) 6= 0 or
x(t − d) 6= 0, r(t) ∈ S.

Lemma 4.1 Suppose Ψ(·, ·, ·, ·) ≥ 0 ∀x(t), x(t − d) ∈ X , r(t) ∈ S, satisfies the
HJ-inequality (21) and the system is dissipative as in Theorem 3.1 above, then if the
free system is stochastically zero-state detectable, then Ψ(·, ·, ·, ·) > 0 for all x(t) 6= 0 or
x(t − d) 6= 0, r(t) ∈ S.

Proof The available storages given in equation (8) are strictly convex in u for each
r(t) ∈ S and are the infima of all solutions of the HJ inequality (21). Any other set of
solutions Ψ(t, x(t), x(t − d), r(t)), ∀ r(t) ∈ S of the HJ inequality is lower bounded by
Ψa(·, ·, ·, r(t)), i.e.,

Ψa(t, x(t), x(t − d), r(t)) ≤ Ψ(t, x(t), x(t − d), r(t))

∀x(t), x(t − d) ∈ X , r(t) ∈ S.
(24)

We now show that, if the system (15) is reachable from the origin, then there exists
a choice of input u(x(t), r(t)), such that Ψa(t, x(t), x(t − d), r(t)) > 0 ∀x(t) 6= 0,
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x(t − d) 6= 0, ∀ r(t) ∈ S and for T > 0

Ψa(t, xt, xt−d, r(t)) = sup
u∈U

E

[

− 1

2

{ T
∫

0

(γ2‖u(t)‖2 + ‖u(t − d)‖2) − ‖y(t)‖2

}

dt

]

. (25)

It has been shown (Theorem 3.1) that for any solution Ψ(·, ·, ·, r(t)), r(t) ∈ S, of the
dissipation inequality (18), the control u

⋆(·, ·) attains the above supremum. Therefore,

Ψa(t, xt, xt−d, r(t)) = E

[

− 1

2

{

γ
2

T
∫

0

(‖u⋆(t)‖2 + ‖u⋆(t − d)‖) − ‖y(t)‖2

}

dt

]

. (26)

Now using the HJ-inequality (21) or the dissipation inequality (18), we get

Ψa(t, xt, xt−d, r(t)) ≥ −E

[ T
∫

0

{

Ψt(t, xt, xt−d, i) + Ψxt
(t, xt, xt−d, i)[f(xt, xt−d, i)

+ g(xt, i)u
⋆(t)] + Ψxt−d

[f(xt−d, xt−2d, r(t − d)) + g(xt−d, r(t − d))u⋆(t − d)]

+
∑

j∈S

λijΨ(t, xt, xt−d, j)

}

dt

]

≥ −E

[ T
∫

0

LΨ(t, xt, xt−d, r(t))dt

]

≥ Ψ(0, x0, x−d, r0) − EΨ(T, x(T ), x(T − d), r(T )) ≥ 0, ∀T > 0

by dissipativity and Theorem 2.1. Now, from the above inequality, the condition when
Ψa(·, ·, ·, 0) = 0 corresponds to

Ψ(0, x0, x−d, r0) = EΨ(T, x(T ), x(T − d), r(T )) = 0,

and since this holds for all T > 0, it implies that Ψa(·, ·, ·, ·) ≡ Ψ(0, x0, x−d, r0) ≡
EΨ(T, x(T ), x(T − d), r(T )) = 0. This further implies that y(t) ≡ 0, u(t) ≡ 0, which
by stochastic zero-state detectability implies that x0 = x(T ) = x(T − d) = {0}. Since
T > 0 is arbitrary, the result follows.

We are now in a position to exploit Ψ(·, ·, ·, ·) as a candidate Lyapunov function for
the system Σa since any solution Ψ(·, ·, ·, r(t)), r(t) ∈ S, of the HJ-inequality is positive-
definite and guarantees dissipativity of the system for all r(t) ∈ S. To do this, we first
define the following concept of stochastic stability.

Definition 4.2 The equilibrium point x = 0 of the nonlinear system (15) with
u(t) ≡ 0 is stochastically stable, if for any initial state x0 ∈ X and r0 ∈ S,

∞
∫

0

E{‖x(t, t0, x0, x−d, r0, 0)‖2} dt < ∞. (27)

However, the following definition of stochastic stability will be more appropriate for
our application in this paper.
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Definition 4.3 The equilibrium point x = 0 of the nonlinear system (15) with
u(t) ≡ 0 is locally asymptotically mean-square stable, if for any initial state x0 ∈ X
and r0 ∈ S,

lim
t→∞

E{‖x(t, t0, x0, x−d, r0, 0)‖2} = 0. (28)

Remark 4.1 The above definition also implies that stochastic stability or asymptotic
stability in the mean-square sense implies stochastic L2-stability [13].

Remark 4.2 It is also seen from the definition of L2-gain (Definition 3.1) that, if we
take (t0, t1) = (0,∞), then if the L2-gain of the system is finite, then the system is
stochastically L2-stable.

Furthermore, since the question of stability can only be addressed on the infinite-time
horizon, the HJ-inequality (21) takes the following form:

Ψxt
(xt, xt−d, i)f(xt, xt−d, i) + Ψxt−d

(xt, xt−d, r(t))f(xt−d, xt−2d, r(t))

+
1

2γ2
Ψxt

g(xt, i)g
T (xt, i)Ψ

T
xt

+
1

2γ2
Ψxt−d

g(xt−d, r(t − d))gT (xt−d, r(t − d))ΨT
xt−d

+
1

2
h

T (x, i)h(x, i) +
∑

j∈S

λijΨ(t, xt, xt−d, j) ≤ 0 ∀xt, xt−d ∈ X , i ∈ S.

(29)
We now state our main stability theorem.

Theorem 4.1 Suppose Σa is dissipative wrt to the supply rate

s(u(t), y(t)) =
1

2
γ

2(‖u(t)‖2 + ‖u(t − d)‖2) − 1

2
‖y(t)‖2

,

then Σa satisfies HJ-inequality (23) for each r(t) ∈ S and the system has L2-gain less
than or equal to γ. Moreover, if Σa is stochastically zero-state detectable, then the free
system ẋ(t) = f(x(t), x(t − d), r(t)) is locally mean square asymptotically stable.

Proof The first part of the theorem has already been proved in Lemmas 3.1 and
3.2. For the second part, from Lemma 4.1, Ψ(·, ·, ·, r(t)), ∀ r(t) ∈ S is positive-definite.
Since Σa is dissipative, the free system with u(t) = u(t − d) = 0 satisfies the following
dissipation inequality:

Ψ(x(∞), x(∞), r(∞)) + E

[

1

2

∞
∫

0

‖y(t)‖2
dt

]

≤ Ψ(x0, x−d, r0)

for any initial conditions x0, x−d ∈ X , r0 ∈ S. This implies that

E

[

1

2

∞
∫

0

‖y(t)‖2
dt

]

≤ Ψ(x0, x−d, r0), ∀x0, x−d ∈ X , r0 ∈ S

or y(t) ∈ L2((Ω,F , P )[0,∞)), and therefore, lim
t→∞

E(‖y(t)‖2) = 0. By the assumption

of stochastic zero-state detectability, we also get lim
t→∞

E(‖x(t)‖2) = 0.
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Remark 4.3 Theorem 4.1 above gives the bounded-real [1] conditions for the nonlin-
ear system Σa. In the special case of linear systems, it gives necessary and sufficient
conditions for the L2-gain (or H∞-norm ) of the system to be less than or equal to γ and
to be locally asymptotically stable [1].

Remark 4.4 As a final remark, we mention that, if the jump rates λij , i, j ∈ S, are
very small, then all the results derived in this paper will approach the deterministic case.

5 Conclusion

In this paper, we have extended the theory of dissipative system developed for deter-
ministic systems to the case of stochastic state-delayed systems with jump Markov dis-
turbances. We have derived necessary and sufficient conditions for the system to be
dissipative and to have finite L2-gain or the bounded-real condition, and have given
sufficient conditions for stochastic stability of the system.

This paper has clearly laid down a framework for studying the H∞ control and filtering
problems for such systems and the stability of feedback interconnections. Future work
will concentrate on these issues.
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Abstract: This paper considers the problem of designing a robust H∞ fuzzy
state-feedback controller for a class of time delay nonlinear Markovian jump
systems. The proposed controller guarantees the L2-gain of the mapping
from the exogenous input noise to the regulated output to be less than some
prescribed value. Solutions to the problem are provided in terms of linear
matrix inequalities. To illustrate the effectiveness of the design developed in
this paper, a numerical example is also provided.
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1 Introduction

Markovian jump systems are also called hybrid systems, that is, the state space of a
system contains both continuous (differential equation) and discrete states (Markov pro-
cess). The Markovian jump system has been widely used to describe a physical system
that changes abruptly from one mode to another mode. These abrupt changes may be
caused by environmental disturbances, component and interconnection failures, param-
eters shifting, tracking, and fast variations in the operating point of the system. Over
the past few decades, the Markovian jump system has been extensively studied by many
researchers (see [1 – 7]).

It is a well known fact that engineering processes frequently contain time delays. Sta-
bility and control synthesis for time delay systems have been one of the most significant

c© 2004 Informath Publishing Group. All rights reserved. 257
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issues in control engineering applications. Linear systems with Markovian jumps and
time delays have been addressed by a number of researchers (see, for example, [9 – 11]).
In [11], the delay-dependent robust stability and the H∞ control of time delay linear
Markovian jump systems have been investigated. Although many researchers have stud-
ied the control design for time delay linear Markovian jump systems for many years,
the control design for time delay nonlinear Markovian jump systems remains as an open
area.

In the past two decades, the H∞ control design for a class of nonlinear systems de-
scribed by a Takagi-Sugeno (TS) fuzzy model has been studied by a number of researchers
(see [12 – 25]). In this TS fuzzy model, local dynamics in different state space regions
are represented by local linear systems. The overall model of the system is obtained
by “blending” of these linear models through nonlinear membership functions. In other
words, a TS fuzzy model is essentially a multi-model approach in which simple sub-models
are combined to represent the global behavior of the system. Recently, the design of fuzzy
H∞ control for a class of nonlinear systems without delays has been significantly con-
sidered and many results have been reported (e.g., [12 – 14]). Furthermore, there have
been also some attempts in [18 – 23] in which robust fuzzy control analysis and synthesis
for nonlinear time-delay systems have been examined. To the best of our knowledge, the
global robust H∞ fuzzy state-feedback control problem for a class of uncertain nonlinear
Markovian jump systems with time-varying delay via an LMI approach has not yet been
considered in the literature.

The main contribution of this paper is to design an H∞ fuzzy state-feedback controller
for a class of time delay nonlinear Markovian jump systems described by a Takagi-Sugeno
(TS) fuzzy model. Based on an LMI approach, we develop a state-feedback controller that
guarantees the L2-gain of the mapping from the exogenous input noise to the regulated
output to be less than a prescribed value. The solutions are given in terms of a family
of linear matrix inequalities.

This paper is organized as follows. In Section 2, system description and definition are
presented. In Section 3, based on an LMI approach we develop a technique for designing
a robust H∞ fuzzy state-feedback controller that guarantees the L2-gain of the mapping
from the exogenous input noise to the regulated output to be less than a prescribed
value. The validity of this approach is demonstrated by an example from the literature
in Section 4. Finally in Section 5, the conclusion is given.

2 System Description and Definition

The class of time delay uncertain nonlinear Markovian jump system under consideration
is described by the following TS fuzzy models:

Plant Rule i: If ν1(t) is Mi1 and · · · and νϑ(t) is Miϑ then

ẋ(t) = [Ai(η(t)) + ∆Ai(η(t))]x(t) +Adi
(η(t))x(t − τ(t))

+B1i
(η(t))w(t) + [B2i

(η(t)) + ∆B2i
(η(t))]u(t), x(0) = 0,

z(t) = [C1i
(η(t)) + ∆C1i

(η(t))]x(t) + [D12i
(η(t)) + ∆D12i

(η(t))]u(t)

x(t) = ψ(t), t ∈ [−τ, 0], τ(t) ≤ τ

(2.1)

where Miq (j = 1, 2, . . . , ϑ) is fuzzy sets q for rule i, νi(t) are the premise variables,
x(t) ∈ R

n is the state vector, u(t) ∈ R
m is the input, w(t) ∈ R

p is the disturbance
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which belongs to L2[0,∞), z(t) ∈ R
s is the controlled output, the matrices Ai(η(t)),

Adi
(η(t)), B1i

(η(t)), B2i
(η(t)), C1i

(η(t)) and D12i
(η(t)) are of appropriate dimensions,

r is the number of IF-THEN rules, τ(t) is the bounded time-varying delay in the state
with the following assumption

0 ≤ τ(t) ≤ τ and τ̇(t) ≤ β < 1

and ψ(t) is a vector-valued initial continuous function defined on the interval [−τ, 0].
{η(t)}, t ≥ 0 is a continuous-time discrete-state homogenous Markov process taking
values on a finite set S = {1, 2, . . . , s} with transition probability matrix Pr = {Pık(t)}
given by

Pık(t) = Pr(η(t + ∆) = k | η(t) = ı)

=

{

λık∆ +O(∆) if ı 6= k,

1 + λıı∆ +O(∆) if ı = k,

(2.2)

and
s

∑

k=1

Pık(t) = 1, where ∆ > 0; lim
∆→0

O(∆)

∆
= 0; λık ≥ 0, ı 6= k is the transition rate

from mode ı to mode k; λıı = −
s

∑

k=1, k 6=ı

λık, ı, k ∈ S gives the infinitesimal generator of

the Markov process {η(t), t ≥ 0}.
The matrices ∆Ai(η(t)), ∆B2i

(η(t)), ∆C1i
(η(t)) and ∆D12i

(η(t)) represent the
uncertainties in the system and satisfy the following assumption.

Assumption 2.1 Following equalities take place

∆Ai(η(t)) = E1i
(η(t))F (x(t), η(t), t)H1i

(η(t)),

∆B2i
(η(t)) = E2i

(η(t))F (x(t), η(t), t)H2i
(η(t)),

∆C1i
(η(t)) = E3i

(η(t))F (x(t), η(t), t)H3i
(η(t)),

∆D12i
(η(t)) = E4i

(η(t))F (x(t), η(t), t)H4i
(η(t)),

where Eji
(η(t)) and Hji

(η(t)), j = 1, 2, . . . , 4, are known matrix functions which cha-
racterize the structure of the uncertainties. Furthermore, the following inequality holds:

‖F (x(t), η(t), t)‖ ≤ ρ(η(t)) (2.3)

for any known positive constant ρ(η(t)).

Let

̟i(ν(t)) =

n
∏

q=1

Miq(νq(t)), and µi(ν(t)) =
̟i(ν(t))

r
∑

i=1

̟i(ν(t))
,

where Miq(νq(t)) is the grade of membership of νq(t) in Miq. It is assumed in this paper
that

̟i(ν(t)) ≥ 0, i = 1, 2, . . . , n, and
r

∑

i=1

̟i(ν(t)) > 0,

where r are the number of local plant rules, for all t. Therefore,

µi(ν(t)) ≥ 0, i = 1, 2, . . . , n, and
r

∑

i=1

µi(ν(t)) = 1
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for all t. For the convenience of notations, let ̟i = ̟i(ν(t)), µi = µi(ν(t)), η = η(t)
and any matrix N(µ, η(t) = ı) = N(µ, ı).

The resulting fuzzy system model is inferred as the weighted average of the local
models of the form

ẋ(t) = [A(µ, ı) + ∆A(µ, ı)]x(t) +Ad(µ, ı)x(t− τ(t))

+B1(µ, ı)w(t) + [B2(µ, ı) + ∆B2(µ, ı)]u(t), x(0) = 0,

z(t) = [C1(µ, ı) + ∆C1(µ, ı)]x(t) + [D12(µ, ı) + ∆D12(µ, ı)]u(t),

(2.4)

where

A(µ, ı) =

r
∑

i=1

µiAi(ı), Ad(µ, ı) =

r
∑

i=1

µiAdi
(ı), B1(µ, ı) =

r
∑

i=1

µiB1i
(ı),

B2(µ, ı) =

r
∑

i=1

µiB2i
(ı), C1(µ, ı) =

r
∑

i=1

µiC1i
(ı), D12(µ, ı) =

r
∑

i=1

µiD12i
(ı),

∆A(µ, ı) =
r

∑

i=1

µi∆Ai(ı) = E1(µ, ı)F (x(t), ı, t)H1(µ, ı),

∆B2(µ, ı) =

r
∑

i=1

µi∆B2i
(ı) = E2(µ, ı)F (x(t), ı, t)H2(µ, ı),

∆C1(µ, ı) =
r

∑

i=1

µi∆C1i
(ı) = E3(µ, ı)F (x(t), ı, t)H3(µ, ı),

∆D12(µ, ı) =

r
∑

i=1

µi∆D12i
(ı) = E4(µ, ı)F (x(t), ı, t)H4(µ, ı)

with

E1(µ, ı) =
r

∑

i=1

µiE1i
(ı), E2(µ, ı) =

r
∑

i=1

µiE2i
(ı), E3(µ, ı) =

r
∑

i=1

µiE3i
(ı),

E4(µ, ı) =

r
∑

i=1

µiE4i
(ı), H1(µ, ı) =

r
∑

i=1

µiH1i
(ı), H2(µ, ı) =

r
∑

i=1

µiH2i
(ı),

H3(µ, ı) =

r
∑

i=1

µiH3i
(ı), H4(µ, ı) =

r
∑

i=1

µiH4i
(ı).

Definition 2.1 Suppose γ is a given positive real number. A system of the form
(2.4) is said to have L2[0, Tf ] gain less than or equal to γ if

E

[ Tf
∫

0

{zT(t)z(t) − γw
T(t)w(t)} dt

]

< 0, (2.5)

where E[ · ] denotes as the expectation operator.
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In this paper, we consider the following H∞ fuzzy state-feedback which is inferred as
the weighted average of the local models of the form:

u(t) = K(µ, ı)x(t), (2.6)

where K(µ, ı) =
r

∑

j=1

µjKj(ı). Before ending this section, we describe the problem under

our study as follows.
Problem Formulation Given the system (2.4), design an H∞ fuzzy state-feedback

controller of the form (2.6) such that the L2 gain γ-performance (2.5) is guaranteed.

3 Main Result

First, let us consider the closed-loop state space form of the fuzzy system model (2.4)
with the controller (2.6) which is given by

ẋ(t) = [A(µ, ı) +B2(µ, ı)K(µ, ı)]x(t) +Ad(µ, ı)x(t− τ(t))

+ [∆A(µ, ı) + ∆B2(µ, ı)K(µ, ı)]x(t) +B1(µ, ı)w(t), x(0) = 0,
(3.1)

or in a more compact form

ẋ(t) = [A(µ, ı) +B2(µ, ı)K(µ, ı)]x(t) +Ad(µ, ı)x(t − τ(t)) + ˜B1(µ, ı)w̃(t),

x(0) = 0,
(3.2)

where
˜B1(µ, ı) = [E1(µ, ı) E2(µ, ı) B1(µ, ı) 0 0 ] ,

w̃(t) =













F (x(t), ı, t)H1(µ, ı)x(t)

F (x(t), ı, t)H2(µ, ı)K(µ, ı)x(t)

w(t)

F (x(t), ı, t)H3(µ, ı)x(t)

F (x(t), ı, t)H4(µ, ı)K(µ, ı)x(t)













.

(3.3)

To provide LMI-based solutions to the problem of designing a robust H∞ controller
that guarantees the L2-gain of the mapping from the exogenous input noise to the regu-
lated output to be less than some prescribed value for a class of time delay uncertainty
nonlinear Markovian jump systems, the following theorem is given.

Theorem 3.1 Given the system (2.4), the inequality (2.5) holds if there exist a
prescribed H∞ performance γ > 0, positive definite symmetric matrices P (ı) and W (ı)
for ı = 1, 2, . . . , s, such that the following conditions hold:

Ωii(ı) < 0, i = 1, 2, . . . , r, (3.5)

Ωij(ı) + Ωji(ı) < 0, i < j ≤ r, (3.6)

where

Ωij(ı) =



















Ψij(ı) (∗)T (∗)T (∗)T (∗)T (∗)T (∗)T

Bij(ı) −M + ˜ET
i (ı) ˜Ej(ı) (∗)T (∗)T (∗)T (∗)T (∗)T

W (ı)Adi
(ı) 0 −(1 − β)W (ı) (∗)T (∗)T (∗)T (∗)T

P (ı) 0 0 −W (ı) (∗)T (∗)T (∗)T

Γij(ı) 0 0 0 −I (∗)T (∗)T

Υij(ı) 0 0 0 0 −I (∗)T

ZT(ı) 0 0 0 0 0 −P(ı)



















, (3.7)
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Ψij(ı) = Ai(ı)P (ı) + P (ı)AT

i (ı) +B2i
(ı)Yj(ı) + Y

T

j (ı)BT

2i
(ı)+λııP (ı), (3.8)

Bij(ı) = ˜B
T

1i
(ı) + ˜E

T

i (ı)C1i
(ı)P (ı) + ˜E

T

i (ı)D12i
(ı)Yj(ı), (3.9)

Γij(ı) = C1i
(ı)P (ı) +D12i

(ı)Yj(ı), (3.10)

Υij(ı) = ˜Ci(ı)P (ı) + ˜Di(ı)Yj(ı), (3.11)

M = diag{I, I, γI, I, I}, (3.12)

Z(ı) =
(

√

λı1P (ı) . . .
√

λı(ı−1)P (ı)
√

λı(ı+1)P (ı) . . .
√

λısP (ı)
)

, (3.13)

P(ı) = diag {P (1), . . . , P (ı− 1), P (ı+ 1), . . . , P (s)} , (3.14)

with

˜B1i
(ı) = [E1i

(ı) E2i
(ı) B1i

(ı) 0 0 ] , (3.15)

˜Ci(ı) = [ ρ(ı)HT
1i

(ı) ρ(ı)HT
3i

(ı) 0 0 ]T , (3.16)

˜Di(ı) = [ 0 0 ρ(ı)HT
2i

(ı) ρ(ı)HT
4i

(ı) ]
T
, (3.17)

˜Ei(ı) = [ 0 0 0 E3i
(ı) E4i

(ı) ]]. (3.18)

Furthermore, a suitable choice of the fuzzy controller is

u(t) =

r
∑

j=1

µjKj(ı)x(t) (3.19)

where

Kj(ı) = Yj(ı)(P (ı))−1
. (3.20)

Proof Consider a Lyapunov-Krasovskii functional candidate as follows:

V (x(t), ı) = x
T(t)Q(ı)x(t) +

t
∫

t−τ(t)

x
T(v)G(ı)x(v) dv, ∀ ı ∈ S, (3.21)

where Q(ı) > 0 and G(ı) > 0. Now let us consider the weak infinitesimal operator ˜∆ of
the joint process {(x(t), ı), t ≥ 0}, which is the stochastic analog of the deterministic
derivative [28]. {(x(t), ı), t ≥ 0} is a Markov process with infinitesimal operator given
by [3]

˜∆V (x(t), ı) = x
T(t)[Q(ı)(A(µ, ı) +B2(µ, ı)K(µ, ı)) + (A(µ, ı) +B2(µ, ı)K(µ, ı))TQ(ı)

+G(ı)]x(t) + x
T(t)Q(ı) ˜B1(µ, ı)w̃(t) + w̃

T(t) ˜B
T

1
(µ, ı)Q(ı)x(t)

+ x
T(t)

s
∑

k=1

λıkQ(k)x(t) − (1 − τ̇ )xT(t− τ(t))G(ı)x(t − τ(t)) (3.22)

+ x
T(t)Q(ı)Ad(µ, ı)x(t− τ(t)) + x

T(t− τ(t))AT

d (µ, ı)Q(ı)x(t).
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Using the fact that for any vectors x(t) and x(t− τ(t))

x
T(t)Q(ı)Ad(µ, ı)x(t − τ(t)) + x

T(t− τ(t))AT

d (µ, ı)Q(ı)x(t)

≤ 1

(1 − β)
x

T(t)Q(ı)Ad(µ, ı)G
−1(ı)AT

d (µ, ı)Q(ı)x(t)

+ (1 − β)xT(t− τ(t))G(ı)x(t − τ(t)),

(3.22) becomes

˜∆V (x(t), ı) ≤ x
T(t)

[

Q(ı)(A(µ, ı) +B2(µ, ı)K(µ, ı)) + (A(µ, ı) +B2(µ, ı)K(µ, ı))TQ(ı)

+
1

(1 − β)
Q(ı)Ad(µ, ı)G

−1(ı)AT

d (µ, ı)Q(ı) +G(ı) +

s
∑

k=1

λıkQ(k)

]

x(t)

+ x
T(t)Q(ı) ˜B1(µ, ı)w̃(t) + w̃

T(t) ˜B
T

1
(µ, ı)Q(ı)x(t).

(3.23)
Adding and subtracting −zT(t)z(t) + w̃

T(t)Mw̃(t) to and from (3.23), we get

˜∆V (x(t), ı) ≤ −zT(t)z(t) + w̃
T(t)Mw̃(t) + z

T(t)z(t) +

[

x(t)
w̃(t)

]T

×



















[A(µ, ı) +B2(µ, ı)K(µ, ı)]TQ(ı)
+Q(ı)[A(ı) +B2(µ, ı)K(µ, ı)]

+
s

∑

k=1

λıkQ(k) +G(ı)

+ 1

(1−β)
Q(ı)Ad(µ, ı)G

−1(ı)AT

d (µ, ı)Q(ı)

(∗)T

˜B
T
1

(µ, ı)Q(ı) −M



















[

x(t)
w̃(t)

]

,

(3.24)

where M = diag{I, I, γI, I, I}.
Now let us consider the following terms

w̃
T(t)Mw̃(t) =











F (x(t), ı, t)H1(µ, ı)x(t)

F (x(t), ı, t)H2(µ, ı)K(µ, ı)x(t)

w(t)

F (x(t), ı, t)H3(µ, ı)x(t)

F (x(t), ı, t)H4(µ, ı)K(µ, ı)x(t)











T

M











F (x(t), ı, t)H1(µ, ı)x(t)

F (x(t), ı, t)H2(µ, ı)K(µ, ı)x(t)

w(t)

F (x(t), ı, t)H3(µ, ı)x(t)

F (x(t), ı, t)H4(µ, ı)K(µ, ı)x(t)











≤ ρ
2(ı)xT(t){HT

1 (µ, ı)H1(µ, ı) +K
T(µ, ı)HT

2 (µ, ı)H2(µ, ı)K(µ, ı)

+H
T

3
(µ, ı)H3(µ, ı) +K

T(µ, ı)HT

4
(µ, ı)H4(µ, ı)K(µ, ı)}x(t) + γw

T(t)w(t)

(3.25)

and

z
T(t)z(t) = x

T(t)[C1(µ, ı) + E3(µ, ı)F (x(t), ı, t)H3(µ, ı) +D12(µ, ı)K(µ, ı)

+ E4(µ, ı)F (x(t), ı, t)H4(µ, ı)K(µ, ı)T[C1(µ, ı) + E3(µ, ı)F (x(t), ı, t)H3(µ, ı)

+D12(µ, ı)K(µ, ı) + E4(µ, ı)F (x(t), ı, t)H4(µ, ı)K(µ, ı)]x(t)

=

[

x(t)
w̃(t)

]T





[C1(µ, ı) +D12(µ, ı)K(µ, ı)]T×
[C1(µ, ı) +D12(µ, ı)K(µ, ı)]

(∗)T

˜E
T(µ, ı)[C1(µ, ı) +D12(µ, ı)K(µ, ı)] ˜E

T(µ, ı) ˜E(µ, ı)





[

x(t)
w̃(t)

]

,

(3.26)
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where

˜E(µ, ı) = [ 0 0 0 E3(µ, ı) E4(µ, ı) ] .

Substituting (3.25) and (3.26) into (3.24), we have

˜∆V (x(t), ı) ≤ −zT(t)z(t) + γw
T(t)w(t) +

[

x(t)
w̃(t)

]T

Φ(µ, ı)

[

x(t)
w̃(t)

]

, (3.27)

where

Φ(µ, ı) =







































[A(µ, ı) + B2(µ, ı)K(µ, ı)]TQ(ı)

+ Q(ı)[A(µ, ı) + B2(µ, ı)K(µ, ı)]

+ [C1(µ, ı) + D12(µ, ı)K(µ, ı)]T

× [C1(µ, ı) + D12(µ, ı)K(µ, ı)]

+ [ ˜C(µ, ı) + ˜D(µ, ı)K(µ, ı)]T

× [ ˜C(µ, ı) + ˜D(µ, ı)K(µ, ı)]

+
s

∑

k=1
λıkQ(k) + G(ı)

+ 1
(1−β)

Q(ı)Ad(µ, ı)G−1(ı)AT
d

(µ, ı)Q(ı)

(∗)T

˜BT
1 (µ, ı)Q(ı) +

˜ET(µ, ı)[C1(µ, ı) + D12(µ, ı)K(µ, ı)]
−M + ˜ET(µ, ı) ˜E(µ, ı)







































(3.28)

with

˜C(µ, ı) = [ ρ(ı)HT
1

(µ, ı) ρ(ı)HT
3

(µ, ı) 0 0 ]T ,

˜D(µ, ı) = [ 0 0 ρ(ı)HT
2 (µ, ı) ρ(ı)HT

4 (µ, ı) ]
T
.

Using the fact

r
∑

i=1

r
∑

j=1

r
∑

m=1

r
∑

n=1

µiµjµmµnM
T

ij(ı)Nmn(ı) ≤ 1

2

r
∑

i=1

r
∑

j=1

µiµj [M
T

ij(ı)Mij(ı) +Nij(ı)N
T

ij (ı)],

we can rewrite (3.27) as follows:

˜∆V (x(t), ı) ≤ −zT(t)z(t) + γw
T(t)w(t) +

r
∑

i=1

r
∑

j=1

µiµj

[

x(t)
w̃(t)

]T

Φij(ı)

[

x(t)
w̃(t)

]

= −zT(t)z(t) + γw
T(t)w(t) +

r
∑

i=1

µ
2

i

[

x(t)
w̃(t)

]T

Φii(ı)

[

x(t)
w̃(t)

]

+

r
∑

i=1

r
∑

i<j

µiµj

[

x(t)
w̃(t)

]T

(Φij(ı) + Φji(ı))

[

x(t)
w̃(t)

]

,

(3.29)
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where

Φij(ı) =





































[Ai(ı) + B2i
(ı)Kj(ı)]

TQ(ı)

+ Q(ı)[Ai(ı) + B2i
(ı)Kj(ı)]

+ [C1i
(ı) + D12i

(ı)Kj(ı)]
T

× [C1i
(ı) + D12i

(ı)Kj(ı)]

+ [ ˜Ci(ı) + ˜Di(ı)Kj (ı)]T

× [ ˜Ci(ı) + ˜Di(ı)Kj(ı)

+
s
∑

k=1
λıkQ(k) + G(ı)

+ 1
(1−β)

Q(ı)Adi
(ı)G−1(ı)AT

di
(ı)Q(ı)

(∗)T

˜BT
1i

(ı)Q(ı) + ˜ET
i (ı)[C1i

(ı) + D12i
(ı)Kj (ı)] −M + ˜ET

i (ı) ˜Ej(ı)





































. (3.30)

Using (3.20) and pre and post multiplying (3.30) by

Ξ(ı) =

[

P (ı) 0
0 I

]

,

we obtain

Ξ(ı)Φij(ı)Ξ(ı) =





































P (ı)AT
i (ı) + Y T

j (ı)BT
2i

(ı)

+Ai(ı)P (ı) + B2i
(ı)Yj (ı)

+[C1i
(ı)P (ı) + D12i

(ı)Yj(ı)]
T

×[C1i
(ı)P (ı) + D12i

(ı)Yj (ı)

+[ ˜Ci(ı)P (ı) + ˜Di(ı)Yj (ı)]T

×[ ˜Ci(ı)P (ı) + ˜Di(ı)Yj(ı)]

+
s

∑

k=1
λıkP (ı)P−1(k)P (ı)

+P (ı)G(ı)P (ı) + 1
(1−β)

Adi
(ı)G−1(ı)AT

di
(ı)

(∗)T

˜BT
1i

(ı) + ˜ET
i (ı)C1i

(ı)P (ı) + ˜ET
i (ı)D12i

(ı)Yj (ı) −M + ˜ET
i (ı) ˜Ej(ı)





































. (3.31)

Note that (3.31) is the Schur complement of Ωij(ı) defined in (3.7). Using (3.5), (3.6)
and (3.31), we learn that

Φii(ı) < 0, (3.32)

Φij(ı) + Φji(ı) < 0. (3.33)

Following from (3.29), (3.32) and (3.33), we know that

˜∆V (x(t), ı) < −zT(t)z(t) + γw
T(t)w(t). (3.34)

Applying the operator E

[ Tf
∫

0

(·) dt
]

on both sides of (3.34), we obtain

E

[ Tf
∫

0

˜∆V (x(t), ı) dt

]

< E

[ Tf
∫

0

(−zT(t)z(t) + γw
T(t)w(t)) dt

]

. (3.35)
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From the Dynkin’s formula [29], it follows that

E

[ Tf
∫

0

˜∆V (x(t), ı) dt

]

= E[V (x(Tf ), ı(Tf))] − E[V (x(0), ı(0))]. (3.36)

Substitute (3.36) into (3.35) yields

0 < E

[ Tf
∫

0

(−zT(t)z(t) + γw
T(t)w(t)) dt

]

− E[V (x(Tf ), ı(Tf ))] +E[V (x(0), ı(0))].

Using (3.34) and the fact that V (x(0) = 0, ı(0)) = 0 and V (x(Tf ), ı(Tf )) > 0, we have

E

[ Tf
∫

0

{

z
T(t)z(t) − γw

T(t)w(t)
}

dt

]

< 0. (3.37)

Hence, the inequality (2.5) holds. This completes the proof of Theorem 3.1.

In order to demonstrate the effectiveness and advantages of the proposed design
methodology, an illustrative example is given in next section.

4 An Illustrative Example

Consider an uncertain nonlinear system which is governed by the following state equa-
tion [21]

ẋ1(t) = −0.1c(t)x3

1
(t) − α(η(t))x1(t− τ(t)) − 0.02x2(t) − 0.67x3

2
(t)

− 0.1x3

2(t− τ(t)) − 0.005x2(t− τ(t)) + u(t) + 0.1w1(t),

ẋ2(t) = x1(t) + 0.1w2(t),

z(t) =

[

x1(t)
x2(t)

]

,

(4.1)

where x1(t) and x2(t) are the state vectors, u(t) is the control input, w1(t) and w2(t) are
the disturbance input, z(t) is the regulated output, η(t) is the discrete state of the Markov
process, τ(t) = 4 + 0.5 cos(0.9t) and c(t) is the uncertain term, that is, c(t) ∈ [0 2.25].
It is assumed that

x1(t) ∈ [−1.5 1.5] and x2(t) ∈ [−1.5 1.5].

Using the same procedure as in [14], the nonlinear term can be represented as

−0.67x3

2
(t) = M1 · 0 · x2(t) − (1 −M1) · 1.5075x2(t),

−0.1x3

2(t− τ(t)) = M1 · 0 · x2(t− τ(t)) − (1 −M1) · 0.225x2(t− τ(t)).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(3) (2004) 257–272 267

Figure 4.1. Membership functions for two fuzzy set.

Solving the above equations, M1 is obtained as follows:

M1(x2(t)) = 1 − x
2
2
(t)

2.25
,

M2(x2(t)) = 1 −M1(x2(t)) =
x

2
2
(t)

2.25
.

Note that M1(x2(t)) and M1(x2(t)) can be interpret as the membership functions of
fuzzy set.

Using these two fuzzy set, the uncertain nonlinear Markovian jump system with time-
varying delay can be represented by the following TS fuzzy model:

Plant Rule 1: If x2(t) is M1(x2(t)) then

ẋ(t) = [A1(ı) + ∆A1(ı)]x(t) +Ad1
(ı)x(t − τ(t)) +B1(ı)w(t) +B2(ı)u(t), x(0) = 0,

z(t) = C1(ı)x(t),

Plant Rule 2: If x2(t) is M2(x2(t)) then

ẋ(t) = [A2(ı) + ∆A2(ı)]x(t) +Ad2
(ı)x(t − τ(t)) +B1(ı)w(t) +B2(ı)u(t), x(0) = 0,

z(t) = C1(ı)x(t),

where

A1(ı) =

[

−0.1125 −0.02
1 0

]

, A2(ı) =

[

−0.1125 −1.5275
1 0

]

,

Ad1
(ı) =

[

−α(ı) −0.005
0 0

]

, Ad2
(ı) =

[

−α(ı) −0.23
0 0

]

,

B1(ı) =

[

0.1 0
0 0.1

]

, B2(ı) =

[

1
0

]

, C1(ı) =

[

1 0
0 1

]

,

∆A1(ı) = E11
(ı)F (x(t), ı, t)H11

(ı), ∆A2(ı) = E12
(ı)F (x(t), ı, t)H12

(ı),
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x(t) = [xT

1
(t) x

T

2
(t)]T and w(t) = [wT

1
(t) w

T

2
(t)]T.

Assuming ‖F (x(t), ı, t)‖ ≤ ρ(ı) = 1 and letting

E11
(ı) = E12

(ı) =

[

0.1 0
0 0.1

]

,

we have

H11
(ı) = H12

(ı) =

[

−1.1250 0
0 0

]

.

Assume that the system is a three modes Markov process as shown in Table 4.1.

Table 4.1 Modes of the Markov process.

Mode ı α(ı)

1 0.0120
2 0.0125
3 0.0130

The transition probability matrix that relates the three modes is given as follows:

Pık =





0.67 0.17 0.16
0.30 0.47 0.23
0.26 0.10 0.64



 .

Using the LMI optimization algorithm and Theorem 3.1 with β = 0.6, we obtain
γ = 0.1680

P (1) =

[

2.4912 −0.2673
−0.2673 0.0718

]

, W (1) =

[

1.1072 −0.1535
−0.1535 16.1836

]

,

Y1(1) = [−16.9067 −0.1051 ] , Y2(1) = [−17.2552 −0.0235 ] ,

K1(1) = [−11.5635 −44.5276 ] , K2(1) = [−11.5934 −43.5022 ] ,

P (2) =

[

2.3815 −0.2881
−0.2881 0.0841

]

, W (2) =

[

1.1489 −0.1931
−0.1931 16.4120

]

,

Y1(2) = [−15.9725 0.0589 ] , Y2(2) = [−16.3401 0.1485 ] ,

K1(2) = [−11.3092 −38.0433 ] , K2(2) = [−11.3526 −37.1260 ] ,

P (3) =

[

2.4793 −0.2638
−0.2638 0.0857

]

, W (3) =

[

0.9718 −0.1883
−0.1883 15.8428

]

,

Y1(3) = [−17.0602 −0.0867 ] , Y2(3) = [−17.4006 0.0530 ] ,

K1(3) = [−10.3932 −33.0111 ] , K2(3) = [−10.3394 −31.2150 ] .

The resulting fuzzy controller is

u(t) =

2
∑

j=1

µjKj(ı)x(t) (4.2)
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Figure 4.2. The result of the changing between modes during the simulation with

the initial mode at Mode 2.

Figure 4.3. The histories of the state variables, x1(t) and x2(t).

where
µ1 = M1(x2(t)) and µ2 = M2(x2(t)).

Remark 4.1 Figure 4.2 shows the changing between modes with the initial mode at
Mode 2. The histories of the state variables, x1(t) and x2(t) are given in Figure 4.3. The
disturbance input signal, w(t), which was used during simulation is given in Figure 4.4.
The ratio of the regulated output energy to the disturbance input noise energy obtained
by using the H∞ fuzzy controller (4.2) is depicted in Figure 4.5. After 3 seconds, the ratio
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Figure 4.4. The disturbance input noise, w(t).

Figure 4.5. The ratio of the regulated output energy to the disturbance noise

energy,

(Tf
∫

0

z
T(t)z(t) dt

/Tf
∫

0

w
T(t)w(t) dt

)

.

of the regulated output energy to the disturbance input noise energy tends to a constant
value which is about 0.1680. From Figure 4.5, we can conclude that the inequality (2.5)
is guaranteed by the fuzzy controller (4.2).

5 Conclusion

In this paper, we have developed a technique for designing a robust H∞ fuzzy state-
feedback controller for a class of time delay nonlinear Markovian jump systems that
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guarantees the L2-gain of the mapping from the exogenous input noise to the regulated
output to be less than some prescribed value. In addition, solutions to the problem are
given in terms of linear matrix inequalities which make them more useful. Finally, an
illustrative example is provided to demonstrate the effectiveness and advantages of the
proposed design methodology.
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Abstract: This paper mainly deals with H∞ Controller design for a class
of nonlinear stochastic time-delay systems with state and control-dependent
noise. Some locally (globally) robust H∞ Controllable conditions are given
in terms of matrix inequalities independent of delay length. As applications,
some sufficient conditions for the existence of the static state feedback H∞

control law are presented for linear and special nonlinear stochastic time-delay
systems via linear matrix inequalities, respectively.
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1 Introduction

Since the celebrated paper [6] appeared, H∞ control and filtering problems based on
state-space approach, have attracted much more researchers’ attention. For example,
[1, 11] and [13] treated of the nonlinear uncertain H∞ control and filtering design, while
the H∞ for linear time-delay systems with norm-bounded uncertainties can be found
in [8, 10, 14, 15] and the references therein. The aforementioned works are confined to
deterministic systems. Up to date, there are few results on stochastic H∞ about which
the system equation is governed by Itô-type differential equation. Below, we summarize
the recent development for stochastic H∞ briefly.

It is fair to say that [4] is the first paper which systematically dealt with the linear
stochastic H∞ control for state and output feedback control, in which, a very useful

c© 2004 Informath Publishing Group. All rights reserved. 273
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stochastic bounded real lemma (SBRL) was also derived, which has been applied to H∞

filtering design of the stationary continuous time linear stochastic systems [5]. [2] first
studied linear stochastic H2/H∞ control, in which, necessary and sufficient conditions
were given for both finite and infinite horizon H2/H∞ via coupled Riccati equations; [16]
was on output feedback H∞ control for linear stochastic systems with norm bounded
uncertainty in a state matrix, moreover, an applicable algorithm for designing an H∞

control law was presented based on linear matrix inequalities (LMIs). In [3], we discussed
the general nonlinear stochastic H∞ control based on dissipative system theory and an
associated Hamilton-Jacobi equation, which can be viewed as an extension of the results
of [1] in some sense. In conclusion, we can say that stochastic H∞ has become an
attractive topic in recent years.

In spite of deterministic systems or stochastic systems, time-delay phenomena are
inevitable arising from many physical problems, which often cause instability of the
systems (see [18, 19]). Therefore, the H∞ control of time-delay systems has received
much attention in the past years (e.g. [8, 12]). This paper is on robust H∞ control for a
class of continuous time stochastic time-delay systems with nonlinear perturbation. By
imposing a loose limitation on the nonlinear term, a very general theorem is obtained via
matrix inequalities, from which, for some special case, we derived many useful sufficient
conditions for the existence of a desiredH∞ controller in terms of LMIs. More specifically,
as corollary, we also improve the previous conclusions on stochastic stabilization.

The outline of the current paper is organized as follows. In Section 2, we first present
a general theorem on local and global H∞ control by means of matrix inequalities in-
dependent of the length of delays, respectively. As corollaries, for linear or nonlinearly
perturbed stochastic time-delay systems (D = 0), we are in a position to design an
LMI-based state-feedback H∞ control law, which makes our results more applicable [10].

Section 3 presents two examples to illustrate the effectiveness of our developed theory.
Section 4 concludes this note by some remarks.
For convenience, we adopt the following notations: A′ is the transpose of matrix A;

A ≥ 0 (A > 0) is positive semi-definite (positive definite) matrix A; I is identity matrix;
L2

F (R+, R
l) is the space of non-anticipative stochastic processes y(t) ∈ R

l with respect
to an increasing σ-algebras Ft (t ≥ 0) satisfying

E

∞
∫

0

‖y(t)‖2
dt <∞.

Here ‖ · ‖ denotes the standard Euclidean norm of a vector.

2 Main Results

In this section, we investigate the robust H∞ state feedback control of the following
stochastic time-delay system governed by Itô differential equations of the form

dx(t) = (Ax(t) +Bx(t − τ) +B1u(t) +B2v(t) +H0(x(t), x(t− τ), u(t))) dt

+ (Cx(t) +Dx(t− τ) +D1u(t) +H1(x(t), x(t − τ), u(t)))dw(t),

z(t) = C2x(t) +D2u(t),

x(t) = φ(t) ∈ L
2(Ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0], τ > 0.

(1)
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In the above, x(t) ∈ R
n, u(t) ∈ R

m, v(t) ∈ R
r, and z(t) ∈ R

s are called the sys-
tem state, control input, disturbance input, controlled output, respectively. w(t) is the
standard Wiener process defined on the complete probability space (Ω,F ,Ft,P) with
an increasing filtration Ft satisfying the usual conditions. Without loss of generality, we
can suppose w(t) is one-dimensional, and C

′
2
D2 = 0. Assume u(t) and v(t) to be adapted

and measurable processes with respect to Ft, Hi(0, ·, ·) = 0, i = 0, 1, i.e., x ≡ 0 is an
equilibrium point of (1). A, B, B1, B2, C, C2, D, D1, and D2 are constant matrices,
τ > 0 is an uncertain time-delay, where we refer the reader to [18] for the notion of
L

2(Ω,F0, C([−τ, 0], Rn)). Under very mild conditions on Hi(·, ·, ·), i = 0, 1, (1) exists
a unique global solution on [0, T ] for any T > 0 [18]. It should be pointed out that (1)
can represent a class of more general nonlinear stochastic system via Taylor’s series ex-
pansion at the origin. In what follows, we will show that, for a broader class of nonlinear
functions Hi(·, ·, ·), i = 0, 1, LMI-based algorithms for robust H∞ Control can be given,
which is very efficient in practical computation by means of the existing LMI Toolbox
[7]. Now, we first introduce the following definitions.

Definition 1 Stochastic time-delay differential system (1) with v(t) ≡ 0 is called
locally robustly stabilizable, if there exists a constant state-feedback control law u = Kx,
such that the equilibrium point of the closed-loop system

dx(t) = ((A +B1K)x(t) +Bx(t− τ) +H0(x(t), x(t− τ), Kx(t))) dt

+ ((C +D1K)x(t) +Dx(t− τ) +H1(x(t), x(t− τ), Kx(t))) dw,

x(t) = φ(t) ∈ L
2(Ω, F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(2)

is asymptotically stable in probability [9] for all τ > 0. It is called globally robustly
stabilizable, if the equilibrium point of (2) is asymptotically stable in the large [9] for
all τ > 0.

Definition 2 Stochastic time-delay differential system (1) with φ(t) ≡ 0, u(t) ≡ 0,
is said to have an H∞ performance level γ > 0, if

‖z‖2 < γ‖v‖2, ∀ v 6= 0 ∈ L2

F(R+, R
r) (3)

where

‖z‖2

2 = E

∞
∫

0

z
′(t)z(t) dt.

Definition 3 Stochastic time-delay differential system (1) is called locally (globally)
robustly H∞ controllable, if there exists a constant state-feedback control law u = Kx,
such that system (1) is locally (globally) stabilizable via state-feedback control law u(t) =
Kx, and the corresponding closed-loop system has an H∞ performance level γ > 0.

For robust stabilization of (1) (B2 = 0), a very general result is given as follows, which
can be proved in the same way as Theorem 1 of [17], but for convenience, we would like
to give its detailed proof here.

Lemma 1 Suppose there exists ǫ ≥ 0, such that

sup
y∈Rn

‖Hi(x, y,Kx)‖ ≤ ǫ‖x‖, i = 0, 1, (4)
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for all x ∈ U , where U is a neighborhood of the origin, K ∈ R
m×n, P > 0 and Q > 0

are the solutions of the following matrix inequality

Z + Z1 < 0, (5)

then system (1) can be locally robustly stabilized by u(t) = Kx(t). If U is replaced by
R

n, then system (1) can be globally robustly stabilized by the same controller. In (5), Z
and Z1 are defined by

Z =





{P (A+B1K) + (A+B1K)′P +Q

+(C +D1K)′P (C +D1K)} PB + (C +D1K)′PD

B
′
P +D

′
P (C +D1K) D

′
PD −Q



 ,

Z1 =

[

(2ǫ‖C‖ + 2ǫ‖D1‖ ‖K‖+ ǫ‖D‖ + 2ǫ+ ǫ
2)‖P‖I 0

0 ǫ‖D‖ ‖P‖I

]

.

Proof We construct the Lyapunov–Krasovskii functional as follows:

V (t, x) = x
′
Px+

τ
∫

0

x
′(t− s)Qx(t− s) ds

where P > 0 and Q > 0 are the solutions of (5). Let L1 be the infinitesimal generator
of the closed-loop system (2) with K a solution to (5), then by Itô’s formula, we have

L1V (t, x(t)) = ((C +D1K)x(t) +Dx(t− τ) +H1(x(t), x(t− τ), Kx(t)))′P

× ((C +D1K)x(t) +Dx(t− τ) +H1(x(t), x(t − τ),Kx(t))

+ 2[(A+B1K)x(t) +Bx(t − τ) +H0(x(t), x(t − τ),Kx(t))]′Px(t)

+ x
′(t)Qx(t) − x

′(t− τ)Qx(t − τ).

(6)

Rearranging (6) yields

L1V (t, x(t)) = x
′(t)(P (A+B1K) + (A+B1K)′P +Q+ (C +D1K)′P (C +D1K))x(t)

+ 2x′(t)(PB + (C +D1K)′PD)x(t − τ) + x
′(t− τ)(D′

PD −Q)x(t− τ)

+ 2H ′
0
(x(t), x(t − τ),Kx(t))Px(t) + 2H ′

1
(x(t), x(t − τ),Kx(t))PDx(t − τ)

+ 2H ′
1(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+H
′
1(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t))

=

[

x(t)
x(t− τ)

]′

Z

[

x(t)
x(t− τ)

]

+ 2H ′
0
(x(t), x(t − τ),Kx(t))Px(t) (7)

+ 2H ′
1(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+ 2H ′
1(x(t), x(t − τ),Kx(t))PDx(t − τ)

+H
′
1(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t)).
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In addition, by (4), we have

2H ′
0
(x(t), x(t− τ),Kx(t))Px(t) + 2H ′

1
(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+ 2H ′
1(x(t), x(t − τ),Kx(t))PDx(t − τ)

+H
′
1(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t))

≤ 2ǫ‖P‖(‖C‖+ ‖D1‖ ‖K‖)‖x(t)‖2 + 2ǫ‖D‖ ‖P‖ ‖x(t)‖ ‖x(t− τ)‖
+ ǫ

2‖P‖ ‖x(t)‖2 + 2ǫ‖P‖ ‖x(t)‖2).

(8)

for (t, x) ∈ {t > 0} × U . By inequality |ab| ≤ 1

2
(a2 + b

2), (8) follows

2H ′
0(x(t), x(t − τ),Kx(t))Px + 2H ′

1(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+ 2H ′
1(x(t), x(t − τ),Kx(t))PDx(t − τ)

+H
′
1
(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t))

≤ (2ǫ‖C‖ + 2ǫ‖D1‖ ‖K‖+ ǫ‖D‖ + 2ǫ+ ǫ
2)‖P‖ ‖x(t)‖2

+ ǫ‖D‖‖P‖ ‖x(t− τ)‖2

=

[

x(t)
x(t− τ)

]′

Z1

[

x(t)
x(t− τ)

]

.

(9)

Substituting (9) into (7), it follows

L1V (t, x(t)) ≤
[

x(t)
x(t− τ)

]′

(Z + Z1)

[

x(t)
x(t− τ)

]

< 0

due to (5). That is, L1V (t, x(t)) < 0 in the domain {t > 0} × U for x 6= 0. So the
locally robust stabilization is obtained by Corollary 1 of [9] (page 168). By the same
discussion, the globally robust stabilization can also be shown by Theorem 4.4 of [9].

Using Lemma 1, a sufficient condition for robust H∞ control is obtained as follows.

Theorem 1 Suppose there exists ǫ ≥ 0, such that (4) holds for all x ∈ U with U

a neighborhood of the origin, K ∈ R
m×n, P > 0 and Q > 0 are the solutions to the

following matrix inequality

Σ =





Z11 + C
′
2
C2 +K

′
D

′
2
D2K Z12 PB2

Z
′
12 Z22 0

B
′
2
P 0 −γ2

I



 < 0 (10)

where
[

Z11 Z12

Z
′
12 Z22

]

= Z + Z1.

Then system (1) is locally robustly H∞ controlled by u(t) = Kx(t). If U is replaced by
R

n, then system (1) is globally robustly H∞ controlled by the same controller.

Proof It is obvious that (5) can be derived from (10), i.e. system (1) is robustly stable.
Therefore we only need to prove that the closed-loop system has H∞ performance level
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γ. For any T > 0, by (10), it follows

‖z‖2

2,[0,T ]
− γ

2‖v‖2

2,[0,T ]
= E

T
∫

0

[(z′(t)z(t) − γ
2
v
′(t)v(t)) dt

= E

T
∫

0

[(x′(t)C′
2
C2x(t) + x

′(t)K ′
D

′
2
D2Kx(t) − γ

2
v
′(t)v(t)) dt + d(V (x(t))] − EV (x(T ))

≤ E

T
∫

0

[(x′(t)C′
2C2x(t) + x

′(t)K ′
D

′
2D2Kx(t) − γ

2
v
′(t)v(t)) dt + d(V (x(t))] (11)

≤ E

T
∫

0

ψ
′(t)Σψ(t) < 0

for ψ 6= 0, where ψ = [x′(t) x′(t− τ)) v
′(t)]′. Let T → ∞ in (11), (3) is immediately

obtained. Theorem 1 is proved.

Generally speaking, Theorem 1 cannot be directly used in practice, because the ele-
ments of Z1 contain the norm of an unknown matrix P . However, from Theorem 1, we
can derive some useful results, which can be expressed in terms of LMIs.

Corollary 1 If the matrix inequality




Z11 + C
′
2C2 +K

′
D

′
2D2K Z12 PB2

Z
′

12 Z22 0
B

′
2
P 0 −γ2

I



 < 0 (12)

has solutions P > 0, Q > 0 and K ∈ R
m×n, and

lim
‖x‖→0

sup
y∈Rn

‖Hi(x, y,Kx)‖/‖x‖ = 0, i = 0, 1, (13)

where
[

Z11 Z12

Z
′

12
Z22

]

= Z,

then system (1) can be locally robustly H∞ controlled by u(t) = Kx(t).

Corollary 2 If Hi ≡ 0, i = 0, 1, and the matrix inequality (12) has solutions P > 0,
Q > 0, and K ∈ R

m×n, then the linear stochastic time-delay system

dx(t) = (Ax(t) +Bx(t− τ) +B1u(t) +B2v(t)) dt

+ (Cx(t) +Dx(t− τ) +D1u(t)) dw(t),

z(t) = C2x(t) +D2u(t),

x(t) = φ(t) ∈ L
2(Ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(14)

is globally robustly H∞ controllable. Especially, if D = 0, and the following LMI












A ̂P + ̂PA′ + B1Y + Y ′B′

1 + B ̂QB′
̂PC′ + Y ′D′

1
̂P ̂PC′

2 Y ′D2 B2

C ̂P + D1Y − ̂P 0 0 0 0
̂P 0 − ̂Q 0 0 0

C2
̂P 0 0 −I 0 0

D2Y 0 0 0 −I 0

B′

2 0 0 0 0 −γ2I













< 0 (15)
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admits solutions ̂P > 0, ̂Q > 0 and Y ∈ R
m×n, then system (14) with D = 0 is

globally robustly H∞ controllable. In this case, the state feedback control law u(t) =

Kx(t) = Y ̂P
−1
x(t).

Proof If Hi(·, ·, ·) ≡ 0, i = 0, 1, we can take ǫ = 0 in (4), then L1V (t, x(t)) < 0
for (t, x) ∈ {t > 0} × R

n, except possibly at x = 0, and Σ < 0. Thus, the first part of
Corollary 2 is proved.

Furthermore, if D = 0, (10) degenerates into







{P (A+B1K) + (A+B1K)′P +Q+
(C +D1K)′P (C +D1K) + C

′
2
C2 +K

′
D

′
2
D2K} PB PB2

B
′
P −Q 0

B
′
2
P 0 −γ2

I






< 0. (16)

Pre- and postmultiply the above matrix inequality by diag(P−1
, I, I), and set ̂P = P

−1
,

Y = KP
−1 = K ̂P , ̂Q = Q

−1. Then by Schur’s complement again, (16) is equivalent to
(15). Thus the second part of Corollary 2 is also proved.

Corollary 3 The unforced system

dx(t) = (Ax(t) +Bx(t− τ) +B2v(t)) dt + (Cx(t) +Dx(t− τ)) dw(t),

z(t) = C2x(t),

x(t) = φ(t) ∈ L
2(Ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(17)

is robustly stable and has H∞ performance level γ, if the following LMI





PA+ A
′
P + C

′
PC +Q+ C

′
2
C2 PB + C

′
PD PB2

B
′
P +D

′
PC D

′
PD −Q 0

B
′
2
P 0 −γ2

I



 < 0 (18)

has solutions P > 0, Q > 0.

Corollary 4 The stochastic linear time-delay controlled system

dx(t) = (Ax(t) +Bx(t − τ) +B1u(t)) +B2v(t)) dt + (Cx(t) +Dx(t− τ)) dw(t),

z(t) = C2x(t),

x(t) = φ(t) ∈ L
2(Ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(19)

is globally robustly H∞ controlled, if the following LMI









PA+A
′
P + C

′
PC + C

′
2
C2 +Q

√
2PB1 PB + C

′
PD PB2√

2B′
1
P −Q 0 0

B
′
P +D

′
PC 0 D

′
PD −Q 0

B
′
2
P 0 0 −γ2

I









< 0 (20)

admitting solutions P > 0 and Q > 0. Moreover, the feedback control law u(t) =
Q

−1
B

′
1
Px(t).

Proof Applying Theorem 1, this corollary is easily obtained.
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Below, for D = 0, we give another sufficient condition for the local (global)H∞ control
of system (1) in terms of LMIs. Applying the well known inequality

X
′
Y + Y

′
X ≤ εX

′
X + ε

−1
Y

′
Y, ∀ ε > 0, (21)

with ε = 1 for simplicity, we have (if 0 < P ≤ 1

α
I for some α > 0)

2H ′
0(x(t), x(t − τ),Kx(t))Px(t) + 2H ′

1(x(t), x(t − τ),Kx(t))P (C +D1K)x(t)

+H
′
1(x(t), x(t − τ),Kx(t))PH1(x(t), x(t − τ),Kx(t))

≤ 3ǫ2

α
‖x(t)‖2 + x

′(t)Px(t) + x
′(t)(C +D1K)′P (C +D1K)x(t).

(22)

Substituting (22) into (7), it follows

L1V (t, x(t)) ≤
[

x(t)
x(t− τ)

]′

̂Z

[

x(t)
x(t− τ)

]

where

̂Z =





{P (A+B1K) + (A+B1K)′P +Q+ P+
3ǫ2

α
I + 2(C +D1K)′P (C +D1K)} PB

B
′
P −Q



 .

So if (4) holds for all x ∈ U (x ∈ R
n), and ̂Z < 0, then system (1) can be locally

(globally) robustly stabilized by u(t) = Kx(t). Accordingly, (12) is equivalent to




̂Z11 + C
′
2
C2 +K

′
D

′
2
D2K

̂Z12 PB2

̂Z
′
12

̂Z22 0

B
′
2
P 0 −γ2

I



 < 0, (23)

admitting solutions 0 < P ≤ 1

α
I, Q > 0 and K, where

[

̂Z11
̂Z12

̂Z
′
12

̂Z22

]

= ̂Z.

In analogy with the proof of Corollary 2, it is easy to show that (23) is equivalent to that
the following LMIs



























A ̂P + ̂PA′ + B1Y

+Y ′B′

1 + B ̂QB′ + ̂P

√
2( ̂PC′ + Y ′D′

1)
̂P ̂P ̂PC′

2 Y ′D2 B2

√
2(C ̂P + D1Y ) − ̂P 0 0 0 0 0

̂P 0 − ̂Q 0 0 0 0

̂P 0 0 −
α

3ǫ2
I 0 0 0

C2
̂P 0 0 0 −I 0 0

D2Y 0 0 0 0 −I 0

B′

2 0 0 0 0 0 −I



























< 0 (24)

and
̂P ≥ αI (25)

exist solutions ̂P > 0, α > 0, ̂Q > 0 and Y = KP
−1 ∈ R

m×n, where ̂P = P
−1,

Y = KP
−1 = K ̂P , and ̂Q = Q

−1.
Summarize the above discussion, we have the following result.
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Theorem 2 For D = 0 in (1), suppose (4) holds for all x ∈ U (x ∈ R
n). If LMIs

(24) and (25) exist solutions ̂P > 0, α > 0, ̂Q > 0 and Y ∈ R
m×n, simultaneously,

then system (1) can be locally (globally) robustly H∞ controlled by u(t) = Y ̂P
−1
x(t).

Remark 1 All results obtained in this section can be extended without difficulty to
systems with multiple delays and independent stochastic perturbations.

Remark 2 Following the same line adopted above, there is no any difficulty to gen-
eralize what we have obtained to delay-dependent results with time-varying delay. For
instance, if we take τ(t) to be a time-varying bounded delay satisfying

0 < τ(t) ≤ h, τ̇(t) ≤ d < 1

and take the Lyapunov–Krasovskii functional

V (x) = x
′(t)Px(t) +

t
∫

t−τ(t)

x
′(θ)Rx(θ) dθ +

0
∫

−τ(t)

t
∫

t+β

x
′(s)Qx(s) ds dβ,

P > 0, R > 0, Q > 0,

correspondingly, then the delay-dependent consequences can be obtained.
In (1), if we take τ = 0, B = D = B2 = D2 = C2 = 0, φ(0) = x(0), then for the

system
dx(t) = (Ax(t) +B1u(t) +H0(x(t), u(t))) dt

+ (Cx(t) +D1u(t) +H1(x(t), u(t))) dw(t)
(26)

a locally stabilizable condition is concluded by Theorem 2.

Corollary 5 If for some ̂R > 0, ̂Q > 0, the following generalized algebraic Riccati
equation (GARE)

̂PA+A
′
̂P + C

′
̂PC − ( ̂PB1 + C

′
̂PD1)( ̂R +D

′
1
̂PD1)

−1(B′
1
̂P +D

′
1
̂PC) + ̂Q = 0 (27)

has a positive definite solution ̂P > 0, and

lim
‖x‖→0

‖Hi(x, ̂Kx)‖/‖x‖ = 0, i = 0, 1, (28)

holds for ̂K = −( ̂R+D
′
1
̂PD1)

−1(B′
1
̂P +D

′
1
̂PC), then system (27) is locally asymptoti-

cally stabilizable. In this case, u(t) = ̂Kx(t) = −( ̂R +D
′
1
̂PD1)

−1(B′
1
̂P +D

′
1
̂PC)x(t) is

a stabilizing control law.

It can be seen that Corollary 5 generalizes and improves Proposition 1 of [20].

Remark 3 There is something wrong in Proposition 1 of [20]. By checking its proof

therein, we can find that the smallest eigenvalue of ̂Q ≥ 0 must be larger than zero, i.e.,
̂Q > 0. In other words, ( ̂Q

1/2
, A) being observable should be replaced by ̂Q > 0.

3 Numerical Examples

Now, we present two examples to illustrate the validity of our developed theory in de-
signing the H∞ controller for nonlinear time-delay system (1).
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Example 1 In (1), take D = 0, and

A =

[

−4.12 1.23
−0.36 1.15

]

, B =

[

−0.13 −0.91
0.22 −0.76

]

, B1 =

[

−1.25
3.48

]

, B2 =

[

−0.2
0.3

]

,

C =

[

−0.02 −0.09
0.09 −0.08

]

, D1 =

[

0.16
0.23

]

, C2 = [ 0.1 0.02 ] , D2 = [ 0.1 ] ,

H0(x(t), x(t− τ), u(t)) =

[

sin(u(t)x2(t− τ))x1(t)

cos(u(t)x1(t− τ))x2(t)

]

,

H1(x(t), x(t− τ), u(t)) =

[

e
−(u(t)+x1(t−τ)+x2(t−τ))

2

x2(t)

e
[−u2

(t)x2

1
(t−τ)]

x1(t)

]

, ∀ τ > 0.

Obviously, (4) holds for all x ∈ R
n with ǫ = 1. Substituting all the above data into (24),

and then solving the LMIs (24) and (25) by LMI Toolbox [7], we can obtain solutions,
when γ = 1,

̂P =

[

0.3539 −0.0042
−0.0042 0.1263

]

> 0, ̂Q =

[

1.1197 0.0008
0.0008 1.0076

]

> 0,

Y = [−0.2930 −1.3061 ] , α = 1.1255 > 0.

So by Theorem 2, system (1) can be globally robustly H∞ controlled by u(t) =

Y ̂P
−1
x(t) = −0.8566x1(t) − 2.4518x2(t).

Example 2 In Example 1, we take

H0(x(t), x(t− τ), u(t)) =

[

(ex1(t) − 1) sinu(t)

sinx2(t) cosu(t)

]

,

H1(x(t), x(t− τ), u(t)) =

[

(cosx1(t) − 1)e−x2

2
(t−τ)

x2(t) sin u(t)

]

, ∀ τ > 0.

Obviously, we have

‖H0(·, ·, ·)‖ ≤
√

(ex1(t) − 1)2 + sin2
x2(t) ,

‖H1(·, ·, ·)‖ ≤
√

(cosx1(t) − 1)2 + x
2
2
(t) ,

and

lim
x1→0

(ex1 − 1)

x1

= 1, lim
x2→0

sinx2

x2

= 1, lim
x1→0

(cos x1 − 1)

x1

= 0.

So there exists a sufficient small neighborhood U of the origin, such that for all x ∈ U ,
(4) holds with ǫ = 1.05. Substituting all coefficient matrices of Example 1 into (24) with
ǫ = 1.05, when γ = 1, via solving the LMIs (24) and (25), one has

̂P =

[

0.3527 −0.0060
−0.0060 0.1371

]

> 0, ̂Q =

[

1.1064 −0.0018
−0.0018 1.0000

]

> 0,

Y = [−0.2993− 0.3101 ] , α = 1.0995 > 0.
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So by Theorem 2, system (1) can be locally robustly H∞ controlled by u(t) =

Y ̂P
−1
x(t) = −0.8875x1(t) − 2.3013x2(t).

4 Conclusions

In the above sections, we have discussed the state feedback H∞ control for a class of
stochastic time-delay systems with nonlinear perturbations. By means of LMIs, some
sufficient conditions are given for the existence of an H∞ control law. Theorem 1 is a
very general consequence, from which we derive some useful results for linear time-delay
systems, delay-free systems or special nonlinearly perturbed time-delay systems. All
consequences except Theorem 1 and Corollary 1 are expressed in terms of LMIs, which
makes them more readily applied.
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and reduced-order filters guaranteeing a prescribed noise attenuation level in
an H∞ sense with respect to all energy-bounded noise inputs for all admissible
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1 Introduction

During the past decades, stochastic modelling has played an important role in many
branches of science such as biology, economics and engineering applications. Therefore,
much attention has been drawn to systems with stochastic perturbations from researchers
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working in related areas. By stochastic systems, we generally refer to systems whose pa-
rameter uncertainties are modelled as white noise processes. The appearance of these
parameter uncertainties are usually due to the random changes of the environment under
which the systems are operated, and thus it is a natural way to represent them in the
model by stochastic parameters fluctuating around some deterministic nominal values.
This kind of systems has been called systems with random parametric excitation [1], sto-
chastic bilinear systems [20, 30] and linear stochastic systems with multiplicative noise
[15, 17, 31]. Analysis and synthesis of stochastic systems have been investigated exten-
sively and many fundamental results for deterministic systems have been extended to
stochastic cases. To mention a few, the analysis of asymptotic behaviour can be found
in [21]; the optimal control problems were reported in [17, 31]; and recently with the
development of H∞ control theory, the robust control and filtering results have also been
extended to stochastic systems through Ricatti-like and linear matrix inequality (LMI)
approaches [8, 18].

On the other hand, since time delay exists commonly in dynamic systems and is
frequently a source of instability and poor performance, much theoretical work has been
produced for time-delay systems. The most powerful approach for solving problems
arising in time-delay systems so far has been the so-called Lyapunov-Krasovskii approach,
in which the asymptotic stability as well as performances can be established by employing
appropriate Lyapunov-Krasovskii functionals. Within this framework, a great number
of results have been reported, including stability analysis [26], state-feedback control
[5, 23, 28], output-feedback control [9, 10], filter design [12, 13] and model reduction [34],
etc.

The simultaneous presence of stochastic uncertainty and time delays results in sto-
chastic time-delay systems (STDS) have attracted much attention in recent years, and
some useful research results related to STDS have been reported in the literature. Among
these results, the exponential stability and asymptotic stability of stochastic differential
delay equations are investigated in [22, 24]; the problems of stabilization and H∞ con-
trol via a memoryless state-feedback are considered in [32]; and the filtering problems
have also been addressed in [2, 19] for different classes of STDS. These useful results
have greatly advanced the analysis and synthesis of stochastic systems. However, it is
worth noting that most of the aforementioned results are developed for continuous-time
systems, while few results are available for discrete time-delay systems with stochastic
perturbations which are also important in practical applications.

In this paper, we are interested in the problem of robust H∞ filtering for discrete sto-
chastic time-delay systems with parameter uncertainties and nonlinear disturbances. The
parameter uncertainty is assumed to be of polytopic-type, and the nonlinearity satisfies
global Lipschitz conditions, entering into both state and measurement equations. Atten-
tion is focused on the design of robust full-order and reduced-order filters guaranteeing
a prescribed noise attenuation level in an H∞ sense with respect to all energy-bounded
noise inputs for all admissible uncertainties and time delays. Sufficient conditions for
the existence of such filters are formulated in terms of a set of linear matrix inequalities,
upon which admissible filters can be obtained from the solution of a convex optimization
problem. A numerical example is provided to illustrate the applicability of the developed
filter design procedure.

Notations The notations used throughout the paper are fairly standard. The su-
perscript “T” stands for matrix transposition; R

n denotes the n-dimensional Euclidean
space and R

m×n is the set of all real matrices of dimension m × n; the notation P > 0
means that P is real symmetric and positive definite; I and 0 represent identity matrix
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and zero matrices; the notation | · | refers to the Euclidean vector norm; λmin(·), λmax(·)
denote the minimum and the maximum eigenvalue of the corresponding matrix respec-
tively. In symmetric block matrices or long matrix expressions, we use an asterisk (∗) to
represent a term that is induced by symmetry and diag{. . . } stands for a block-diagonal
matrix. In addition, E{x} and E{x| y} will, respectively, mean expectation of x and
expectation of x conditional on y. Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations. The space of square summable
infinite sequence is denoted by l2[0,∞).

2 Problem Formulation

Consider the following discrete stochastic time-delay system with nonlinear disturbance:

S : xt+1 = [Axt + Adxt−d + Ff(xt, xt−d) + Bωt] + [Mxt + Mdxt−d]vt,

yt = [Cxt + Cdxt−d + Gg(xt, xt−d) + Dωt] + [Nxt + Ndxt−d]vt,

zt = Lxt,

xt = φt, t = −d, −d + 1, . . . , 0,

(1)

where xt ∈ R
n is the state vector; yt ∈ R

m is the measured output; zt ∈ R
p is the

signal to be estimated; ωt ∈ R
l is the disturbance input which belongs to l2[0,∞); vt

is a zero mean white noise sequence with covariance I; A, Ad, F , B, M , Md, C, Cd,
G, D, N , Nd, L are system matrices with appropriate dimensions; d > 0 is a constant
time delay; {φt : t = −d,−d + 1, . . . , 0} is a given initial condition sequence; f(xt, xt−d),
g(xt, xt−d) are known nonlinear functions. Throughout the paper, we make the following
assumptions.

Assumption 1 The nonlinear functions satisfy

(1) f(0, 0) = 0, g(0, 0) = 0;

(2) (Lipschitz conditions) there exist known real appropriately dimensioned matrices
S1, S2, T1, T2 such that for all x1, x2, y1, y2 satisfying

‖f(x1, x2) − f(y1, y2)‖ ≤ ‖S1(x1 − y1)‖ + ‖S2(x2 − y2)‖ ,

‖g(x1, x2) − g(y1, y2)‖ ≤ ‖T1(x1 − y1)‖ + ‖T2(x2 − y2)‖ .

Assumption 2 The system matrices are appropriately dimensioned with partially
unknown parameters. We assume that

Ω , (A, Ad, F, B, M, Md, C, Cd, G, D, N, Nd, L) ∈ R

where R is a given convex bounded polyhedral domain described by s vertices

R ,

{

Ω(λ) : Ω(λ) =

s
∑

i=1

λiΩi;

s
∑

i=1

λi = 1, λi ≥ 0

}

and Ωi , (Ai, Adi, Fi, Bi, Mi, Mdi, Ci, Cdi, Gi, Di, Ni, Ndi, Li) denotes the vertices of the
polytope R.
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Remark 1 The system under investigation in this paper contains both parameter and
nonlinear uncertainties. As can be seen in Assumption 2, the parameter uncertainties
are assumed to be of polytopic-type, entering into all the matrices of the system model.
The polytopic uncertainty has been widely used in the problems of robust control and
filtering for uncertain systems, see, e.g., [3, 7, 14] and the references therein and many
practical systems possess parameter uncertainties which can be either exactly modeled or
over-bounded by the polytope R. In addition, the nonlinear uncertainty in Assumption 1
has also been widely used in the literature, see, e.g., [16, 29, 33].

Remark 2 Although there is only a single delay taken into consideration in system S,
the results developed in this paper can be easily extended to systems with multiple state
delays. The reason why we consider single delay systems is to make our derivation more
lucid and to avoid complicated notations. It is also worth mentioning that the results
obtained in this paper can be readily extended to the case where vt enters system S in a
summation form, that is, the dynamic and measurement equations in system S have the
following form

xt+1 = [Axt + Adxt−d + Ff(xt, xt−d) + Bωt] +
r

∑

i=1

[Mixt + Mdixt−d] vti,

yt = [Cxt + Cdxt−d + Gg(xt, xt−d) + Dωt] +

r
∑

i=1

[Nixt + Ndixt−d] vti.

Here we are interested in estimating the signal zt by a linear dynamic filter of general
structure described by

F : x̂t+1 = AF x̂t + BF yt,

ẑt = CF x̂t,

x̂t = ϕt, t = −d,−d + 1, . . . , 0,

(2)

where x̂t ∈ R
k is the filter state vector and (AF , BF , CF ) are appropriately dimensioned

filter matrices to be determined. It should be pointed out that here we are interested
not only in the full-order filtering problem (when k = n), but also in the reduced-order
filtering problem (when 1 ≤ k < n). As can be seen in the following, these two filtering
problems are solved in a unified framework.

Augmenting the model of S to include the states of the filter F , we obtain the filtering
error system E :

E : ξt+1 =
[

Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt

]

+
[

Mξt + MdKξt−d

]

vt,

et = Cξt,

ξt = [ φT
t ϕ

T
t ]

T
, t ∈ [−d, 0],

(3)

where ξt = [ xT
t x̂

T
t ]T , η(xt, xt−d) = [ fT(xt, xt−d) g

T(xt, xt−d) ]T , et = zt − ẑt and

Ā =

[

A 0
BF C AF

]

, Ād =

[

Ad

BF Cd

]

, F =

[

F 0
0 BF G

]

, B =

[

B

BF D

]

,

M =

[

M 0
BF N 0

]

, Md =

[

Md

BF Nd

]

, C = [ L −CF ] , K = [ I 0 ] .

(4)

We first introduce the following definitions.
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Definition 1 The filtering error system E in (3) with ωt = 0 is said to be mean-
square stable if for any ǫ > 0, there is a δ(ǫ) > 0 such that E{|ξt|2} < ǫ, t > 0 when

sup
−d≤s≤0

E{|ξs|2} < δ(ǫ). In addition, if lim
t→∞

E{|ξt|2} = 0 for any initial conditions, then

it is said to be mean-square asymptotically stable.

Definition 2 The filtering error system E in (3) is said to be mean-square asymptoti-
cally stable with an H∞ disturbance attenuation level γ if it is mean-square asymptotically
stable and under zero-initial conditions E{‖e‖2} < γ‖ω‖2 for all nonzero disturbances
ωt ∈ l2[0,∞), where

E{‖e‖2} , E

{( ∞
∑

t=0

e
T

t et

)1/2}

, ‖ω‖2 ,

( ∞
∑

t=0

ω
T

t ωt

)1/2

.

Throughout the paper, we make the following assumption.

Assumption 3 System S in (2) is mean-square asymptotically stable.

Remark 3 Assumption 3 is made based on the fact that there is no control in the
system model S in (1), therefore the original system S in (1) to be estimated has to be
mean-square asymptotically stable, which is a prerequisite for the filtering error system
E in (3) to be mean-square asymptotically stable.

Then the filtering problem to be addressed in this paper is expressed as follows.

Problem RHF (Robust H∞ Filtering): Given system S in (1), develop full-order
and reduced-order robust H∞ filters of the form F in (2) such that for all admissible
uncertainties, disturbances and time delays the filtering error system E in (3) is robustly
mean-square asymptotically stable with an H∞ disturbance attenuation level γ. Filters
satisfying this requirement are called robust H∞ filters.

Throughout the paper, (Āi, Ādi, F i, Bi, M i, Mdi, Ci) denotes matrices evaluated at
each of the vertices of the polytope R. The following lemma will be useful in our deriva-
tion.

Lemma 1 Let Φ1, Φ2, Φ3 and Π > 0 be given constant matrices with appropriate
dimensions. Then, for any scalar ǫ > 0 satisfying ǫI − ΦT

2
ΠΦ2 > 0 we have

[Φ1 + Φ2Φ3]
TΠ[Φ1 + Φ2Φ3] ≤ ΦT

1 [Π−1 − ǫ
−1Φ2Φ

T

2 ]−1Φ1 + ǫΦT

3 Φ3

3 Filtering Analysis

This section is concerned with the filtering analysis problem. More specifically, assuming
that the matrices (AF , BF , CF ) of the filter F in (2) are already known, we shall study
the conditions under which the filtering error system E in (3) is mean-square asymptot-
ically stable with an H∞ disturbance attenuation level γ. To ease the exposition of our
results, we first consider the stationary case, i.e. Ω ∈ R is fixed. The following theorem
shows that the H∞ performance of the filtering error system can be guaranteed if there
exist some positive definite matrices satisfying certain LMIs. This theorem will play an
instrumental role in the filter design problems.
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Theorem 1 Consider system S in (1) with Ω ∈ R fixed, and suppose the filter
matrices (AF , BF , CF ) of F in (2) are given. Then the filtering error system E in (3) is
mean-square asymptotically stable with an H∞ disturbance attenuation level bound γ if
there exist matrices P > 0, Q > 0 and a scalar ǫ > 0 satisfying



















−P 0 0 PĀ PĀd PB PF

∗ −P 0 PM PMd 0 0
∗ ∗ −I C 0 0 0
∗ ∗ ∗ Θ1 0 0 0
∗ ∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ ∗ −γ

2
I 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫI



















< 0, (5)

where

Θ1 , −P + K
T
QK + 2ǫK

T
(

S
T

1
S1 + T

T

1
T1

)

K,

Θ2 , −Q + 2ǫ
(

S
T

2 S2 + T
T

2 T2

)

.

Proof Let Xt , {ξt−d, ξt−d+1, . . . , ξt}, choose a Lyapunov functional candidate for
the filtering error system E

Wt(Xt) , W1 + W2,

W1 = ξ
T

t Pξt, W2 =

t−1
∑

i=t−d

ξ
T

i K
T
QKξi,

(6)

where P , Q are real symmetric positive definite matrices to be determined. Then, along
the solution of the filtering error system E we have

J , E{Wt+1(Xt+1) | Xt} − Wt(Xt) = E{[Wt+1(Xt+1) − Wt(Xt)] | Xt}
= E{∆W1 | Xt} + E{∆W2 | Xt}

(7)

where

E {∆W1 |Xt } = E
{(

ξ
T

t+1
Pξt+1 − ξ

T

t Pξt

)∣

∣Xt

}

= E

{(

[

Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt

]T

P

×
[

Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt

]

+ 2
{[

Mξt + MdKξt−d

]

vt

}T

P
[

Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt

]

+
{[

Mξt + MdKξt−d

]

vt

}T

P
{[

Mξt + MdKξt−d

]

vt

}

− ξ
T

t Pξt

) ∣

∣

∣
Xt

}

,

(8)

E {∆W2 |Xt } = E

{( t
∑

i=t+1−d

ξ
T

i K
T
QKξi −

t−1
∑

i=t−d

ξ
T

i K
T
QKξi

) ∣

∣

∣

∣

Xt

}

= E
{(

ξ
T

t K
T
QKξt − ξ

T

t−dK
T
QKξt−d

) ∣

∣Xt

}

.

(9)
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Then from (7)–(9), we obtain

J = [Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt]
T
P [Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt]

+ [Mξt + MdKξt−d]
T
P [Mξt + MdKξt−d] − ξ

T

t Pξt

+ ξ
T

t K
T
QKξt − ξ

T

t−dK
T
QKξt−d. (10)

In addition, using Assumption 1, we have

‖f(xt, xt−d)‖ ≤ ‖S1xt‖ + ‖S2xt−d‖ ,

‖g(xt, xt−d)‖ ≤ ‖T1xt‖ + ‖T2xt−d‖ ,

which yields

‖f(xt, xt−d)‖2 ≤ 2(‖S1xt‖2 + ‖S2xt−d‖2),

‖g(xt, xt−d)‖2 ≤ 2(‖T1xt‖2
+ ‖T2xt−d‖2

).

Then

η
T(xt, xt−d)η(xt, xt−d) = f

T(xt, xt−d)f(xt, xt−d) + g
T(xt, xt−d)g(xt, xt−d)

≤ 2
(

‖S1xt‖2
+ ‖S2xt−d‖2

+ ‖T1xt‖2
+ ‖T2xt−d‖2

)

= 2ξ
T

t K
T

(

S
T

1
S1 + T

T

1
T1

)

Kξt + 2ξ
T

t−dK
T

(

S
T

2
S2 + T

T

2
T2

)

Kξt−d.

(11)

Since (5) implies ǫ > 0 and ǫI−F
T

PF > 0, by identifying Φ1 = Āξt+ĀdKξt−d+Bωt,

Φ2 = F , Φ3 = η(xt, xt−d) and Π = P in Lemma 1 , we have an upper bound for the
first term of J in (10)

[Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt]
T
P [Āξt + ĀdKξt−d + Fη(xt, xt−d) + Bωt]

≤ [Āξt + ĀdKξt−d + Bωt]
TΨ[Āξt + ĀdKξt−d + Bωt] + ǫη

T(xt, xt−d)η(xt, xt−d),
(12)

where Ψ =
[

P
−1 − ǫ

−1
FF

T
]−1

.

Then from (10)–(12) we have

J ≤
[

Āξt + ĀdKξt−d + Bωt

]T

Ψ
[

Āξt + ĀdKξt−d + Bωt

]

+ 2ǫξ
T

t K
T

(

S
T

1 S1 + T
T

1 T1

)

Kξt + 2ǫξ
T

t−dK
T

(

S
T

2 S2 + T
T

2 T2

)

Kξt−d

+
[

Mξt + MdKξt−d

]T

P
[

Mξt + MdKξt−d

]

− ξ
T

t Pξt

+ ξ
T

t K
T
QKξt − ξ

T

t−dK
T
QKξt−d

= σ
T

t Ξσt,

(13)

where

σt = [ ξT
t ξ

T

t−dK
T

ω
T
t ]

T
,

Ξ =













(

Ā
TΨĀ − P + K

T
QK + M

T

PM

+2ǫK
T

(

S
T
1 S1 + T

T
1 T1

)

K

)

Ā
TΨĀd + M

T

PMd Ā
TΨB

∗
(

−Q + Ā
T

d ΨĀd + M
T

d PMd

+2ǫ
(

S
T
2

S2 + T
T
2

T2

)

)

Ā
T

d ΨB

∗ ∗ B
T

ΨB













.
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Therefore, when assuming zero disturbance input ωt = 0, it follows that

J ≤ [ ξT
t ξ

T

t−dK
T ] Ξ̄ [ ξT

t ξ
T

t−dK
T ]

T

where

Ξ̄ =









(

Ā
TΨĀ − P + K

T
QK+

2ǫK
T

(

S
T
1

S1 + T
T
1

T1

)

K + M
T

PM

)

Ā
TΨĀd + M

T

PMd

∗
(−Q + Ā

T

d ΨĀd + 2ǫ
(

S
T
2 S2 + T

T
2 T2

)

+M
T

d PMd

)









.

By Schur complement [4], LMI (5) implies the negative definiteness of Ξ̄, therefore, for
Xt 6= 0 we have J < 0, that is,

E {Wt+1(Xt+1) | Xt} < Wt(Xt)

which means that there exists 0 < βt < 1 satisfying

E {Wt+1(Xt+1)| Xt} < βtWt(Xt).

It is easy to obtain by using this relationship recursively that

E {Wt(Xt)| X0} <

t−1
∏

i=0

βiW0(X0) ≤ α
t
W0(X0)

where α = max
t

βt. Thus 0 < α < 1 and we have

E

{ N
∑

t=0

[Wt(Xt)| X0]

}

< (1 + α + · · · + α
N )W0(X0) =

1 − α
N+1

1 − α
W0(X0).

Since Q > 0, then

lim
N→∞

E

{ N
∑

t=0

[

x
T

t Pxt

∣

∣

∣
X0

]

}

<
1

1 − α
W0(X0).

Using the Rayleigh quotient inequality, we have

lim
N→∞

E

{ N
∑

t=0

[

x
T

t xt

∣

∣X0

]

}

<
1

(1 − α)λmin(P )
W0(X0)

which means E{|xt|2} → 0 as t → ∞, then from Definition 1, we know that the filtering
error system E in (3) with ωt = 0 is mean-square asymptotically stable.

To establish the H∞ performance, assume zero initial condition, we have W0(X0) = 0.
Now consider the following index

I , E

{ ∞
∑

t=0

(

e
T

t et − γ
2
ω

T

t ωt

)

}

. (14)
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Then, with (13) for all nonzero ωt we have

I = E

{ ∞
∑

t=0

(

e
T

t et − γ
2
ω

T

t ωt + E {Wt+1(Xt+1)| Xt} − Wt(Xt)
)

}

− E {W∞(X∞)}

≤ E

{ ∞
∑

t=0

(

e
T

t et − γ
2
ω

T

t ωt + J
)

}

= E

{ ∞
∑

t=0

σ
T

t Ξ̃σt

}

where

Ξ̃ =





















Ā
TΨĀ − P + K

T
QK

+M
T

PM + C
T

C

+2ǫK
T

(

S
T
1

S1 + T
T
1

T1

)

K



 Ā
TΨĀd + M

T

PMd Ā
TΨB

∗
(

−Q + Ā
T

d ΨĀd + M
T

d PMd

+2ǫ
(

S
T
2 S2 + T

T
2 T2

)

)

Ā
T

d ΨB

∗ ∗ −γ
2
I + B

T

ΨB

















.

Then, by Schur complement, (5) guarantees Ξ̃ < 0, which further implies I < 0 and
E{‖e‖2} < γ‖ω‖2, then the filtering error system E in (3) is mean-square asymptotically
stable with an H∞ noise attenuation level bound γ, and the proof is completed.

Remark 4 Theorem 1 presents a sufficient condition for the H∞ performance of
discrete-time stochastic time-delay systems with nonlinear disturbances. It is worth
pointing out that the condition presented in Theorem 1 is an LMI condition and there-
fore can be easily tested by standard numerical software [11]. In the case when we assume
vt = 0, that is, no stochastic uncertainty is present in system S, LMI (5) becomes















−P 0 PĀ PĀd PB PF

∗ −I C 0 0 0
∗ ∗ Θ1 0 0 0
∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ −γ

2
I 0

∗ ∗ ∗ ∗ ∗ −ǫI















< 0. (15)

LMI (15) is an H∞ performance condition for linear discrete time-delay systems with non-
linear disturbances. In addition, if we further assume f(xt, xt−d) = 0 and g(xt, xt−d) =
0, then LMI (5) becomes











−P 0 PĀ PĀd PB

∗ −I C 0 0
∗ ∗ −P + K

T
QK 0 0

∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −γ

2
I











< 0. (16)

LMI (16) is an H∞ performance condition for linear discrete time-delay systems.

Then, the following theorem provides a sufficient condition of robust H∞ performance
for the filtering error system E in (3).
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Theorem 2 Consider system S in (1) with Ω ∈ R representing uncertain matrices,
and suppose the filter matrices (AF , BF , CF ) of F in (2) are given. Then the filtering
error system E in (3) is robustly mean-square asymptotically stable with an H∞ distur-
bance attenuation level bound γ if there exist matrices Pi > 0, Qi > 0, V and scalars
ǫi > 0 satisfying



















Pi − V − V
T 0 0 V

T
Āi V

T
Ādi V

T
Bi V

T
F i

∗ Pi − V − V
T 0 V

T
M i V

T
Mdi 0 0

∗ ∗ −I Ci 0 0 0
∗ ∗ ∗ Π1 0 0 0
∗ ∗ ∗ ∗ Π2 0 0
∗ ∗ ∗ ∗ ∗ −γ

2
I 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫiI



















< 0

∀ i = 1, . . . , s,

(17)

where

Π1 = −Pi + K
T
QiK + 2ǫiK

T
(

S
T

1 S1 + T
T

1 T1

)

K,

Π2 = −Qi + 2ǫi

(

S
T

2
S2 + T

T

2
T2

)

.

Proof LMIs (17) guarantee that for any fixed Ω ∈ R, there exist matrices P > 0,
Q > 0, V and a scalar ǫ > 0 satisfying



















P − V − V
T 0 0 V

T
Ā V

T
Ād V

T
B V

T
F

∗ P − V − V
T 0 V

T
M V

T
Md 0 0

∗ ∗ −I C 0 0 0
∗ ∗ ∗ Θ1 0 0 0
∗ ∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ ∗ −γ

2
I 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫI



















< 0. (18)

In the following we will show that (18) is equivalent to (5). On one hand, if (5) holds,
(18) is readily established by choosing V = V

T = P . On the other hand, if (18) holds, we

can explore the fact that V is nonsingular. In addition, we have (P − V )
T

P
−1 (P − V ) ≥

0, which implies that −V
T
P

−1
V ≤ P − V

T − V . Therefore we can conclude from (18)
that



















−V
T
P

−1
V 0 0 V

T
Ā V

T
Ād V

T
B V

T
F

∗ −V
T
P

−1
V 0 V

T
M V

T
Md 0 0

∗ ∗ −I C 0 0 0
∗ ∗ ∗ Θ1 0 0 0
∗ ∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ ∗ −γ

2
I 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫI



















< 0. (19)

Performing a congruence transformation to (19) by diag
{

I, V
−1

P, V
−1

P, I, I, I, I
}

yields (5), then the proof is completed.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(3) (2004) 285–301 295

Remark 5 Instead of directly extending Theorem 1 to polytopic uncertain systems
based on the notion of quadratic stability, here we incorporate a new result of parameter-
dependent stability [6] to reduce the conservatism of filter designs in the quadratic frame-
work. Through the introduction of the slack variable V, the sufficient robust H∞ per-
formance condition resulting from Theorem 2 entails different positive definite matrices
Pi and Qi for each vertex of the polytope R, thus enabling us to obtain a parameter-
dependent performance criteria. To illustrate the benefit of such performance conditions,
let Ω̄(λ) denotes any given point of the polytope R. If we can find feasible solutions in
the light of (17), then it is not difficult to show that the Lyapunov matrices defined in
(6) for any fixed point Ω̄(λ) can be recovered by

P (λ) =

s
∑

i=1

λiPi, Q(λ) =

s
∑

i=1

λiQi,

which implies that there are different Lyapunov functionals for different points in the
polytope. Then, the Lyapunov functional defined in (6) for the whole uncertainty domain
R can be expressed as

Wt(Xt, λ) = ξ
T

t P (λ)ξt +
t−1
∑

i=t−d

ξ
T

i K
T
Q(λ)Kξi (20)

which is dependent of the parameter λ.

4 Filter Design

In this section we will focus on the design of full-order and reduced-order H∞ filters of
the form F based on Theorem 2. That is, to determine the filter matrices (AF , BF , CF )
which will guarantee the filtering error system E to be mean-square asymptotically stable
with an H∞ performance. The following theorem provides sufficient conditions for the
existence of such H∞ filters for system S.

Theorem 3 Consider system S in (1) with Ω ∈ R representing uncertain matrices.
Then an admissible robust H∞ filter of the form F in (2) exists if there exist matrices

X, Y , Z, ĀF , BF , CF , P1i, P2i, P3i, Qi and scalar ǫi > 0 for i = 1, . . . , s satisfying



















Υ2 0 0 Υ4 Υ8 Υ10 Υ1

∗ Υ2 0 Υ5 Υ9 0 0
∗ ∗ −I Υ6 0 0 0
∗ ∗ ∗ Υ7 0 0 0
∗ ∗ ∗ ∗ Π2 0 0
∗ ∗ ∗ ∗ ∗ −γ

2
I 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫiI



















< 0, (21)

[

P1i P2i

∗ P3i

]

> 0, (22)

where

Υ1 =

[

XFi E
T
BF Gi

Y
T
Fi BF Gi

]

,
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Υ2 =

[

P1i − X − X
T

P2i − Y − E
T
Z

∗ P3i − Z
T − Z

]

,

Υ4 =

[

X
T
Ai + E

T
BF Ci E

T
ĀF

Y
T
Ai + BF Ci ĀF

]

,

Υ5 =

[

X
T
Mi + E

T
BF Ni 0

Y
T
Mi + BF Ni 0

]

,

Υ6 = [Li −CF ] ,

Υ7 =

[−P1i + Qi + 2ǫi

(

S
T
1 S1 + T

T
1 T1

)

−P2i

−P
T
2i −P3i

]

,

Υ8 =

[

X
T
Adi + E

T
BF Cdi

Y
T
Adi + BF Cdi

]

,

Υ9 =

[

X
T
Mdi + E

T
BF Ndi

Y
T
Mdi + BF Ndi

]

,

Υ10 =

[

X
T
Bi + E

T
BF Di

Y
T
Bi + BF Di

]

,

E = [ Ik×k 0k×(n−k) ] .

Moreover, if the above condition has a set of feasible solution (X, Y, Z, ĀF , BF , CF , P1i,
P2i, P3i, Qi, ǫi), the matrices for an admissible robust H∞ filter in the form of F in (2)

can be calculated by the following steps:

(1) find square and nonsingular matrices S ∈ R
k×k and T ∈ R

k×k satisfying Z =
S

T
T

−1
S;

(2) calculate the matrices for desired filter matrices by

[

AF BF

CF 0

]

=

[

S
−T 0
0 I

] [

ĀF BF

CF 0

] [

S
−1

T 0
0 I

]

. (23)

Proof Since LMIs (21) and (22) implies P3i − Z − Z
T

< 0 and P3i > 0, we can
infer that Z + Z

T
> 0, therefore Z is nonsingular. Then we can always find square and

nonsingular k × k matrices S and T satisfying Z = S
T
T

−1
S. Therefore, the matrices

(AF , BF , CF ) are uniquely defined in (23). Now introduce the following matrix variables:

J =

[

I 0
0 T

−1
S

]

, V =

[

X Y S
−1

T

SE T

]

, Pi = J
−T

[

P1i P2i

P
T
2i P3i

]

J
−1

. (24)

Then, it is easy to see that the matrix J defined above is nonsingular and we have
Pi > 0. In the following we will prove that the filter F in (2) with state-space realization
(AF , BF , CF ) defined in (23) is an admissible robust H∞ filter such that the filtering error

system E in (3) is mean-square asymptotically stable with a guaranteed H∞ performance.

Now, by some algebraic matrix manipulations, it can be established that (21) is equiv-
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alent to


























J
T(Pi −

V − V
T)J

0 0 J
T
V

T
ĀiJ J

T
V

T
Ādi J

T
V

T
Bi J

T
V

T
F i

∗ J
T(Pi −

V − V
T)J

0 J
T
V

T
M iJ J

T
V

T
Mdi 0 0

∗ ∗ −I CiJ 0 0 0
∗ ∗ ∗ J

TΠ1J 0 0 0
∗ ∗ ∗ ∗ Π2 0 0
∗ ∗ ∗ ∗ ∗ −γ

2
I 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫiI



























< 0.

(25)
The equivalence between (21) and (25) can be verified in a reverse order by the follow-
ing steps. First, by substituting (AF , BF , CF ) defined in (23) into (4), the matrices
(

Ā, Ād, F , B, M, Md, C
)

of the filtering error system E in (3) can be obtained as

Ā =

[

A 0

S
−T

BF C S
−T

ĀF S
−1

T

]

, Ād =

[

Ad

S
−T

BF Cd

]

,

F =

[

F 0

0 S
−T

BF G

]

, B =

[

B

S
−T

BF D

]

, M =

[

M 0

S
−T

BF N 0

]

,

Md =

[

Md

S
−T

BF Nd

]

, C = [ L −CF S
−1

T ] .

(26)

Then by substituting the matrices J , Pi, V defined in (24) and the matrices (Ā, Ād, F ,

B, M, Md, C) given by (26) into (25), and by considering the relationship Z = S
T
T

−1
S,

we obtain inequality (21) after some straightforward matrix manipulations.
Now, performing a congruence transformation to (25) by diag{J−1

, J
−1

, I, J
−1

, I, I, I}
yields (17). Therefore, we conclude from Theorem 2 that the filter F in (2) with state-
space realization (AF , BF , CF ) defined in (24) is an admissible robust H∞ filter such that
the filtering error system E in (3) is mean-square asymptotically stable with a guaranteed
H∞ performance, and the proof is completed.

Remark 6 To obtain certain LMI conditions for the existence of desired filters, usually
linearization procedures have to be adopted. Since the standard linearization methods
adopted in [25, 27] assume the off-diagonal entry of certain matrix (the matrix to be
partitioned, in this paper it is V in Theorem 2) to be square and nonsingular, they can
only be used to deal with the full-order filtering problem. To keep the reduced-order filter
design tractable, here we have sought a different linearization procedure, which solves
both the full-order and reduced-order filtering synthesis problems in a unified framework.
It is worth noting that the matrix E defined in Theorem 3 plays an instrumental role.
For the full-order filtering, the matrix E becomes an identity matrix of dimension n, and
for the reduced-order case, we have imposed certain structural restriction on the (2, 1)
block entry of the matrix V , which introduces some overdesign into the filter design.

Remark 7 Theorem 3 casts the robust H∞ filtering problem into an LMI feasibility
test, and any feasible solution to the conditions presented in Theorem 3 will yield a
suitable filter, which can be obtained by following the two steps presented in Theorem 3.
Another formulation of suitable filters upon these feasible solution can be given by

[

AF BF

CF 0

]

=

[

Z
−1 0
0 I

] [

ĀF BF

CF 0

]

. (27)
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To prove (27), let us denote the filter z transfer function from y(t) to ẑ(t) by Tẑy(z) =
CF (zI −AF )−1

BF . By substituting the filter matrices with (23) and by considering the
relationship Z = S

T
T

−1
S, we have

Tẑy(s) = CF S
−1

T (zI − S
−T

ĀF S
−1

T )−1
S
−T

BF

= CF (zI − Z
−1

ĀF )−1
Z

−1
BF .

Therefore, an admissible filter can also be given by (27).

Remark 8 Note that (21) and (22) are LMIs not only over the matrix variables, but
also over the scalar γ

2. This implies that the scalar γ
2 can be included as an optimization

variable to obtain the minimum noise attenuation level bound. Then the minimum (in
terms of the feasibility of (21) and (22)) guaranteed cost of robust H∞ filters can be
readily found by solving the following convex optimization problems

Problem RHFD (Robust H∞ filter design): Minimize γ subject to (21) and (22)

over (X, Y, Z, ĀF , BF , CF , P1i, P2i, P3i, Qi, ǫi).

Remark 9 Theorem 3 presents a sufficient condition for the existence of robust H∞

filters for discrete-time stochastic time-delay systems with nonlinear disturbance. In the
case when we assume vt = 0, that is, no stochastic uncertainty is present in system S,
LMI (21) becomes















Υ2 0 Υ4 Υ8 Υ10 Υ1

∗ −I Υ6 0 0 0
∗ ∗ Υ7 0 0 0
∗ ∗ ∗ Θ2 0 0
∗ ∗ ∗ ∗ −γ

2
I 0

∗ ∗ ∗ ∗ ∗ −ǫiI















< 0.

In addition, if we further assume f(xt, xt−d) = 0 and g(xt, xt−d) = 0, then LMI (21)
becomes















Υ2 0 Υ4 Υ8 Υ10

∗ −I Υ6 0 0

∗ ∗
[

−P1i + Qi −P2i

−P
T

2i −P3i

]

0 0

∗ ∗ ∗ −Qi 0
∗ ∗ ∗ ∗ −γ

2
I















< 0.

5 Illustrative Example

In this section, we will provide an example to illustrate the applicability of the above
filter design method. Consider the following system:

xt+1 =





0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747 + 0.01α

0 0.8187 0



xt +





0
0

0.1



ωt

+





0.01 0 0
0 0.03 0
0 0 0.02



xtvt,

yt = [ 0.2 0.1 0.1 + 0.01α ] xt + [ 0.1 0.1 + 0.01α 0 ] xt−d

+ 0.2 sin ([ 0 0 0.2 ] xt + [ 0 0.1 0 ] xt−d) + 0.1ωt,

zt = [ 0 0.1 0.2 ]xt,

(28)
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where α is an unknown parameter satisfying −1 ≤ α ≤ 1. It is easy to see that system
(28) has the structure of system S in (1) with the following parameters:

A =





0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747 + 0.01α

0 0.8187 0



 ,

M =





0.1 0 0.2
0 0.03 0
0 0 0.02



 , B =





0
0

0.1



 ,

Ad = 03×3, F = 03×1, Md = 03×3,

C = [ 0.2 0.1 0.1 + 0.01α ] ,

Cd = [ 0.1 0.1 + 0.01α 0 ] ,

G = 0.2, D = 0.1, N = 01×3, Nd = 01×3,

L = [ 0 0.1 0.2 ] ,

f(xt, xt−d) = 0

g(xt, xt−d) = 0.2 sin ([ 0 0 0.2 ] xt + [ 0 0.1 0 ] xt−d) .

In addition, the nonlinear functions f(xt, xt−d) and g(xt, xt−d) satisfy Assumption 1
with

S1 = S2 = 01×3, T1 = [ 0 0 0.2 ] , T2 = [ 0 0.1 0 ] .

By solving Problem RHFD, the obtained minimum feasible γ
∗ and the associated

matrices for different cases are as follows:

Third-order Filtering: (γ∗ = 0.0200)

[

AF BF

CF 0

]

=



















0.1864 1.3287 0.1981
... −3.5599

−0.0268 0.9945 0.0077
... −0.1232

−0.0132 0.2543 0.0391
... −0.1472

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.0001 −0.0999 −0.2048
... 0



















. (29)

Second-order Filtering: (γ∗ = 0.0226)

[

AF BF

CF 0

]

=













0.9669 0.1947
... −0.0624

0.0002 0.9353
... −0.0084

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.0011 −0.1400
... 0













. (30)

First-order Filtering: (γ∗ = 0.0228)

[

AF BF

CF 0

]

=







0.9589
... −0.1801

. . . . . . . . . . . . . . . . . . . . .

−0.0031
... 0






. (40)
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6 Concluding Remarks

The problem of robust H∞ filtering for a class of stochastic nonlinear time-delay systems
in discrete time has been investigated in this paper. Sufficient conditions are obtained in
terms of linear matrix inequality for the existence of desired filters which guarantee the
filtering error system to be mean-square asymptotically stable with an H∞ disturbance
attenuation level. A parametrization of the filter matrices can be readily obtained if
these conditions have feasible solutions. A numerical example is provided to show the
applicability of the developed filter design methods.
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Abstract: The adaptive control problem of a class of stochastic time-delay
systems is investigated. Firstly we consider a simple class of stochastic sys-
tems with time-varying delays and design the corresponding adaptive con-
troller based on the solution of linear matrix inequalities (LMIs), which can
render the closed-loop asymptotically stable in probability. Then we apply
the adaptive idea to the interconnected system case. Under the condition that
interconnections satisfy the matching condition, we propose a class of decen-
tralized feedback controllers and the corresponding closed-loop systems are
also asymptotically stable in probability. Numerical examples on controlling
the two classes of stochastic systems are given to show the validity of obtained
theoretical results.
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1 Introduction

Time-delay is often encountered in various engineering systems, such as electrical net-
works, turbojet engines, microwave oscillators, nuclear reactors, rolling mills, chemical
processes, manual control, long transmission lines in pneumatic, and hydraulic systems,
etc. Its existence is often a source of instability and poor performance. Therefore, the
problem of stability analysis and robust control for dynamic time-delay systems has at-
tracted considerable attention of a number of researchers over the past years, see for
example, [1 – 4] and the references therein.
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In this paper we will focus on controlling stochastic time-delay systems. In the existing
literature, some work has been done on stability analysis and control for stochastic time-
delay systems. The robust stability problem of linear stochastic time-delay systems
was studied in [5], while robust stability analysis for stochastic delay interval systems is
considered in [6]. In [7], the problem of control for uncertain stochastic time-delay systems
was considered, and the results were given in the form of LMIs. Filtering problem for
uncertain stochastic systems was considered in [8 – 10]. In the meantime, the problem of
control for interconnected stochastic time-delay systems was tackled in [11].

Unlike the existing results in literature, in this paper, we investigate the adaptive con-
trol problem of stochastic time-delay systems, whose bounds of uncertainties in matching
parts are not required to be known. Firstly we consider a simple class of stochastic sys-
tems with time-varying delays. Corresponding adaptive controller is designed based on
the solution of LMI. Then we apply the adaptive idea to the interconnected system case.
Under the condition that interconnections satisfy the matching condition, we propose
a class of decentralized feedback controllers, which can render the closed-loop systems
asymptotically stable.

2 Problem Formulation

Consider the following time delay system

dx = (Ax+ f(x, x(t− d(t)) +Bu) dt+ g(x, x(t − h(t))) dw,

x(t) = ϕ(t), t ∈ [−d, 0].
(1)

where x ∈ R
n and u ∈ R

m are the state and control input respectively, d(t) and h(t) are
time-varying delay parameters, A and B are known constant matrices with appropriate
dimensions. w is a zero-mean Wiener process. f(·) and g(·) are uncertain nonlinear
function vectors.

For system (1), we introduce the following standard assumptions.

Assumption 2.1 The time-varying time delays d(t) satisfies

ḋ(t) ≤ τ < 1, ḣ(t) ≤ k < 1. (2)

Assumption 2.2 The nonlinear function f (·) can be decomposed into the matched
form and the unmatched form

f(x, x(t− d(t))) = Bξ(x, x(t − d(t))) + ζ(x, x(t − d(t))), (3)

where ξ(x, x(t − d(t))) and ζ(x, x(t − d(t))) satisfy

‖ξ (x, x (t− d (t)))‖ ≤ β1 ‖x‖ + β2 ‖x (t− d (t))‖ , (4)

‖ζ (x, x (t− d (t)))‖ ≤ γ1 ‖x‖ + γ2 ‖x (t− d (t))‖ , (5)

where γ1 and γ2 are known positive scalars, β1 and β2 are unknown positive scalars.
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Assumption 2.3 There exist matrix Y , positive matrix X and positive scalars ε1
and ε2 such that the following LMI holds





AX +XA
T +BY + Y

T
B

T + ε1γ
2
1I + ε2

1−τ
γ

2
2I X X

X −ε1I 0
X 0 −ε2I



 < 0. (6)

Assumption 2.4 The nonlinear function g satisfies

g
T
Pg ≤ α2

∥

∥B
T
Px

∥

∥ ‖x (t− h (t))‖ + α3

∥

∥B
T
Px (t− h (t))

∥

∥ ‖x‖
+ α1

∥

∥B
T
Px

∥

∥ ‖x‖ + α4

∥

∥B
T
Px (t− h (t))

∥

∥ ‖x (t− h (t))‖ ,
(7)

where matrix P = X
−1, X satisfies LMI (6), αi (i = 1, 2, 3, 4) are unknown positive

scalars.

Remark 1 Assumption 2.1 is often needed on investigating time-delay systems by em-
ploying Lyapunov-Krasovskii method. Different from the existing literatures on control of
stochastic time-delay systems, we divide the uncertainties into matched and unmatched
parts and the bounds of matched parts are not needed to be known in Assumption 2.2.
Assumption 2.3 is to guarantee that the system is asymptotically stable without the
matching parts and the stochastic parts. In practical systems we may also not know the
function g exactly, so Assumption 2.4 is imposed.

Before giving the problem statement in this paper, we first introduce the following
definition of stability in probability.

Consider the nonlinear stochastic system

dx = f(x, x(t − d))dt+ g(x, x(t− d))dw, (8)

where x ∈ R
n is the state, w is an r-dimensional standard Wiener process, and functions

f and g are locally Lipschitz and satisfy f(0, 0) = 0 and g(0, 0) = 0.

Definition 2.1 [7] The equilibrium x = 0 of the system (8) is said to be globally
asymptotically stable in probability for given x(t) if for any s ≥ 0 and ε > 0

lim
x→0

P

{

sup
s<t

|xs,x
t | > ε

}

= 0, P

{

lim
t→+∞

|xs,x
t | = 0

}

= 1,

where xs,x
t denotes the solution at time t of a stochastic differential equation starting

from the state x at time s for s ≤ t.

Lemma 2.1 [12] Consider system (8) and suppose there exists a positive definite, ra-
dially unbounded, twice continuously differentiable function V (x) such that the following
inequality holds

LV (x) =
∂V (x)

∂x
f(x) +

1

2
tr

[

g(x)T
∂

2
V

∂x2
g(x)

]

< 0,

then system (8) is globally asymptotically stable in probability.

In this paper, we will firstly consider designing controller to render system (1) globally
asymptotically stable in probability under the above assumptions, then further apply
the design idea to interconnected stochastic system case and design the corresponding
controller.

3 Robust Controller Design

In this section we will investigate designing adaptive state feedback controller to stabilize
uncertain stochastic system (1).
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Theorem 3.1 For system (1), the following adaptive state feedback controller

u = Kx− 1

2
θ(t)BT

Px, (9)

where K = Y X
−1
, and matrices P , Y and X satisfy (6), θ(t) is adaptive parameter

whose adaptive law is
dθ(t)

dt
= a‖BT

Px‖2
, (10)

where a is an arbitrary positive scalar, can render the closed-loop system robustly stable
in probability.

Proof Substituting (9) into (1), we can obtain

dx =

(

Ax+ f(x, x(t − d(t)) +BK − 1

2
Bθ(t)BT

Px)

)

dt+ g(x, x(t − h(t)))dw. (11)

Choose the following Lyapunov–Krasovskii function

V = x
T
Px+

1

2
a
−1

˜θ
T

˜θ +
(

δ6 + ε
−1

2

)

t
∫

t−d(t)

‖x(ξ)‖2
dξ

+

(

δ2

1 − k
+

δ4

1 − k

)

t
∫

t−h(t)

‖x(ξ)‖2
dξ

+

(

α
2
3

4δ3(1 − k)
+

α
2
4

4δ4(1 − k)

)

t
∫

t−h(t)

‖BT
Px(ξ)‖2

dξ,

(12)

where δi, (i = 1, 2, . . . , 6) are positive scalars, θ̃ = θ − θ̂(t), θ̂ is a positive scalar defined
in (18).

Taking the time derivative of above Lyapunov function, one can get

LV ≤ 2xT
P (Ax+ f (x, x (t− d)) +BK) − x

T
PBθ (t)BT

Px

+ g (x, x (t− h))
T
Pg (x, x (t− h)) + a

−1
θ̃
˙̃
θ

+
(

δ6 + ε
−1

2

)

[

‖x‖2 − (1 − τ) ‖x (t− d (t))‖2
]

+
1

1 − k
(δ2 + δ4)

(

‖x‖2 − (1 − k) ‖x(t − h(t))‖2
)

+
1

(1 − k)

(

α
2
3

4δ3
+
α

2
4

4δ4

)

(

∥

∥B
T
Px (t)

∥

∥

2 − (1 − k)
∥

∥B
T
Px (t− h (t))

∥

∥

2
)

.

(13)

From Assumption 2.4, we obtain that

g
T
Pg ≤ α2

∥

∥B
T
Px

∥

∥ ‖x (t− h (t))‖ + α3

∥

∥B
T
Px (t− h (t))

∥

∥ ‖x‖
+ α1

∥

∥B
T
Px

∥

∥ ‖x‖ + α4

∥

∥B
T
Px (t− h (t))

∥

∥ ‖x (t− h (t))‖

≤ α
2
1

4δ1

∥

∥B
T
Px

∥

∥

2

+ δ1 ‖x‖2
+
α

2
2

4δ2

∥

∥B
T
Px

∥

∥

2

+ δ2 ‖x (t− h (t))‖2

+
α

2
3

4δ3

∥

∥B
T
Px (t− h (t))

∥

∥

2

+ δ3 ‖x‖2

+
α

2
4

4δ4

∥

∥B
T
Px (t− h (t))

∥

∥

2

+ δ4 ‖x (t− h (t))‖2
.

(14)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(3) (2004) 303–316 307

We know

2xT
P (A+ f (x, x(t− d)) +BK)

= x
T

(

PA+A
T
P + PBK +K

T
B

T
P

)

x+ 2xT
PBξ (x, x (t− d (t)))

+ 2xT
Pζ (x, x (t− d)t))

≤ x
T

(

PA+A
T
P + PBK +K

T
B

T
P

)

x+
β

2
1

δ5
x

T
PBB

T
Px+ δ5 ‖x‖2

+
β

2
2

(1 − τ) δ6
x

T
PBB

T
Px+ (1 − τ) δ6 ‖x (t− d (t))‖2

+ ε1γ
2

1x
T
PPx

+ ε
−1

1
‖x‖2

+
ε2

(1 − τ)
γ

2

2x
T
PPx+ (1 − τ) ε−1

2
‖x (t− d (t))‖2

.

(15)

Substituting (14), (15) into (13), we can further obtain that

LV ≤ −xTΦx+
(

̂θ − θ

)

∥

∥B
T
Px

∥

∥

2

+ a
−1
θ̃
˙̃
θ, (16)

where

−Φ = PA+A
T
P + PBK +K

T
B

T
P + ε1γ

2

1PP + ε
−1

1
I +

ε2

(1 − τ)
γ

2

2PP

+ ε
−1

2
I + δ1 +

1

1 − k
δ2 + δ3 +

1

1 − k
δ4 + δ5 + δ6,

(17)

̂θ =
β

2
1

δ5
+

β
2
2

δ6 (1 − τ)
+
α

2
1

4δ1
+
α

2
2

4δ2
+

α
2
3

4δ3 (1 − k)
+

α
2
4

4δ4 (1 − k)
. (18)

As we know if LMI (6) holds, the following inequality stands

AX +XA
T +BY + Y

T
B

T + ε1γ
2

1
I +

ε2

1 − τ
γ

2

2
I + ε

−1

1
X

T
X + ε

−1

2
X

T
X < 0. (19)

Further, the following inequality holds (by multiply P on both sides of (19)
with P = X

−1)

PA+A
T
P + PBK +K

T
B

T
P +

(

ε1γ
2

1
+

ε2

1 − τ
γ

2

2

)

PP + ε
−1

1
I + ε

−1

2
I < 0. (20)

Therefore, from (17) and (20) we know there always exist sufficiently small positive
scalars δi ( i = 1, 2, . . . , 6) such that

Φ > 0. (21)

Substituting (10) into (16), we can obtain

LV ≤ −xTΦx (22)

which implies that the closed-loop system is robustly stable in probability.
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Corollary 3.1 If Assumptions 2.1, 2.4 and Assumption 2.2 with ζ(·) = 0 are satis-
fied, and the pair (A, B) is completely controllable, the following controller

u = −1

2
θ(t)BT

Px (23)

with adaptive law
dθ(t)

dt
= a‖BT

Px‖2
, (24)

where a is a positive scalar, will render the closed-loop system (1) robustly stable in
probability.

Proof If (A, B) are completely controllable, for a given positive matrix Ω there always
exist positive scalar µ such that the following Riccati equality

PA+A
T
P − µPBB

T
P = −Ω (25)

has positive matrix solution P . From the above proof, we can design the following
controller

u = −1

2
µB

T
Px− 1

2
Θ(t)BT

Px (26)

with adaptive law
dΘ(t)

dt
= a‖BT

Px‖2
. (27)

Further we let θ(t) = Θ(t) + µ, where µ is a positive scalar. Thus the controller (26),
(27) will give us the desired result.

Corollary 3.2 If B = I (I is an identity matrix) and Assumption 2.1 holds, the
following controller

ui = −1

2
Θ(t)x

with adaptive law
dΘ(t)

dt
= a‖x‖2

will render the closed-loop system (1) robustly stable in probability.

Proof If B = I, it is easy to see (A, B) are completely controllable and Assump-
tion 2.4 is satisfied. Therefore, we can design the required adaptive controller to achieve
our goal.

Remark 3.1 In the designed controller, we adopt the adaptive law (10). In fact, we
can also use the σ-modification adaptive law, that is (10) can be changed into

dθ(t)

dt
= a‖BT

Px‖2 − σθ(t), (28)

where σ is an adjustable parameter. Compared with the adaptive law (10), the modified
adaptive control law (28) can improve the robust performance for the closed-loop systems.
Similar to the proof of above, we can also obtain the closed-loop system (1) and (28) is
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uniformly ultimately bounded stable, and the bounds of the steady-state can be adjusted
to be sufficiently small by selecting small parameter σ [4].

4 Control of Interconnected Time Delay Systems

In this section, we investigate a class of interconnected stochastic time-delay systems. A
controller is designed to stabilize the underlying system. Different from the literature,
instead of using bounds of uncertainties to design the controller, we assume all the
bounds unknown. Therefore, the proposed adaptive decentralized feedback controller
can be applied to stabilization of a large class of interconnected time-delay systems.

Consider the following interconnected systems whose i-th subsystem is described by

dxi = (Aixi +Biui) dt+ fi(xi, x1, x2, . . . , xn, x1(t− di1(t), . . . , xn(t− din(t)))) dt

+ gi(xi, x1, x2, . . . , xn, x1(t− hi1(t), . . . , xn(t− hin(t)))) dw,

i = 1, 2, . . . , N.

(29)

We impose the following assumptions on system (29).

Assumption 4.1 For i, j = 1, 2, ..., N , the time-varying time delays satisfy

ḋij(t) ≤ τj < 1, ḣij(t) ≤ kj < 1. (30)

Assumption 4.2 For i, j = 1, 2, ..., N and given Qi > 0, there exist matrix Pi > 0
and scalar σi > 0 such that the following equality holds

PiAi +AiPi − σiPiBiB
T

i Pi = −Qi. (31)

Assumption 4.3 For i = 1, 2, ..., N , the nonlinear functions fi(·) satisfy matching
condition

fi (·) = Biξi (·) , (32)

where ξi (·) satisfies

‖ξi (·)‖ ≤
N

∑

j=1

(ρij ‖xj‖ + ϕij ‖xj (t− dij (t))‖) . (33)

Here ρij and ϕij are unknown positive scalars, i, j = 1, 2, ..., N .

Assumption 4.4 The following inequalities hold

gi (·)T Pigi (·) ≤
N

∑

j=1

∥

∥B
T

i Pixi

∥

∥

(

φij ‖xj‖ + φij ‖xj (t− hij (t))‖
)

+

N
∑

j=1

∥

∥B
T

i Pixi (t− hij)
∥

∥

(

ψij ‖xj‖ + ψij ‖xj (t− hij (t))‖
)

,

(34)

where φij , φij , ψij and ψij are positive scalars, i, j = 1, 2, ..., N .

Now we are ready to present our main result in this paper.
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Theorem 4.1 For interconnected stochastic systems (29) under Assumptions 4.1 –
4.4, the following decentralized feedback controller, for i = 1, 2, ..., N ,

ui = −1

2
Θi (t)BT

i Pixi (35)

with adaptive law
dΘi (t)

dt
= ai

∥

∥B
T

i Pixi

∥

∥

2

(36)

will render the closed-loop system robustly stable in probability, where ai is a positive
scalar.

Proof Choose the following Lyapunov function

V =
N

∑

i=1

Vi +
N

∑

i=1

N
∑

j=1

1

1 − τj
δ2j

t
∫

t−dij

‖xj(ζ)‖2
dζ +

N
∑

i=1

1

2
a
−1

i Θi(t)
2

+

N
∑

i=1

N
∑

j=1

1

1 − kj

(δ4j + δ6j)

t
∫

t−hij

‖xj(ζ)‖2
dζ

+

N
∑

i=1

N
∑

j=1

1

1 − kj

(δ−1

5j ψ
2

ij + δ
−1

6j ψ
2

ij)

t
∫

t−hij

‖BT

i Pixi(ξ)‖2
dξ,

(37)

where δsj (s ∈ [1, 6], j ∈ [1, N ]) are positive scalars and

Vi = x
T

i Pixi,

Θi (t) = ̂Θi − Θi (t) ,
(38)

̂Θi is defined in (44) (below).
Taking the derivative of V with respect to time t, along the closed-loop system, we

obtain

LV =
N

∑

i=1

LVi +
N

∑

i=1

aiΘi (t) Θ̇i (t)

+

N
∑

i=1

N
∑

j=1

1

1 − τj
δ2j

(

‖xj (t)‖2 − (1 − τj) ‖xj (t− dij (t))‖2
)

+

N
∑

i=1

N
∑

j=1

1

1 − kj

(δ4j + δ6j)
(

‖xj (t)‖2 − (1 − τj) ‖xj (t− hij (t))‖2
)

+
N

∑

i=1

N
∑

j=1

1

1 − kj

(

δ
−1

5j ψ
2

ij + δ
−1

6j ψ
2

ij

)

×
(

∥

∥B
T

i Pixi

∥

∥

2 − (1 − kj)
∥

∥B
T

i Pixi (t− hij (t))
∥

∥

2
)

.

(39)
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We know
LVi = 2xT

i Pi (Aixi +Biui + fi) + g
T

i Pigi (40)

and
2xT

i Pifi = 2xT

i PiBiξi (·)

≤
N

∑

j=1

[

2
∥

∥x
T

i PiBi

∥

∥ ρij ‖xj‖ + 2
∥

∥x
T

i PiBi

∥

∥ϕij ‖xj (t− dij (t))‖
]

≤
N

∑

j=1

[

δ
−1

1j ρ
2

ij

∥

∥x
T

i PiBi

∥

∥

2

+ δ1j ‖xj‖2
]

+

N
∑

j=1

[

δ
−1

2j ϕ
2

2j

∥

∥x
T

i PiBi

∥

∥

2

+ δ2j ‖xj (t− dij (t))‖2
]

.

(41)

From Assumption 4.3 one can get

g
T

i Pigi ≤
N

∑

j=1

‖BT

i Pixi‖(φij‖xj‖ + φij‖xj(t− hij(t))‖)

+
N

∑

j=1

‖BT

i Pixi(t− hij(t))‖(ψij‖xj‖ + ψij‖xj(t− hij(t))‖)

≤
N

∑

j=1

[

δ
−1

3j φ
2

ij

∥

∥B
T

i Pixi

∥

∥

2

+ δ3j ‖xj‖2
]

(42)

+
N

∑

j=1

[

δ
−1

4j φ
2

ij

∥

∥B
T

i Pixi

∥

∥

2

+ δ4j ‖xj (t− hij (t))‖2
]

+
N

∑

j=1

[

δ
−1

5j ψ
2

ij

∥

∥B
T

i Pixi (t− hij (t))
∥

∥

2

+ δ5j ‖xj‖2
]

+
N

∑

j=1

[

δ
−1

6j ψ
2

ij

∥

∥B
T

i Pixi (t− hij (t))
∥

∥

2

+ δ6j ‖xj (t− hij (t))‖2
]

.

Substituting (40) – (42) into (39), we obtain

LV ≤
N

∑

i=1

[

x
T

i

(

PiAi +A
T

i Pi − σiPiBiB
T

i Pi

)

xi + σi

∥

∥B
T

i Pixi

∥

∥

2
]

+

N
∑

i=1

(

a
−1

i Θi (t) Θ̇i (t) − Θi (t)
∥

∥x
T

i PiBi

∥

∥

2
)

+

N
∑

i=1

N
∑

j=1

(

δ
−1

1j ρ
2

ij + δ
−1

2j ϕ
2

ij + δ
−1

3j φ
2

ij + δ
−1

4j φ
2

ij

+
1

1 − kj

(

δ
−1

5j ψ
2

ij + δ
−1

6j ψ
2

ij

)

)

∥

∥B
T

i Pixi

∥

∥

2

+

N
∑

i=1

N
∑

j=1

[

δ1j +
1

1 − τj
δ2j + δ3j +

1

1 − kj

(δ4j + δ6j) + δ5j

]

‖xj‖2
.

(43)
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Let

̂Θi =

N
∑

j=1

(

δ
−1

1j ρ
2

ij + δ
−1

2j ρ
2

ij + δ
−1

3j φ
2

ij + δ
−1

4j φ
2

ij +
1

1 − kj

(

δ
−1

5j ψ
2

ij + δ
−1

6j ψ
2

ij

)

)

+ σi,

λi = N

[

δ1i +
1

1 − τi
δ2i + δ3i +

1

1 − ki

(δ4i + δ6i) + δ5i

]

. (44)

Further, we obtain

LV ≤ −
N

∑

i=1

[

x
T

i (Qi − λiI)xi + (̂Θi − Θi(t))‖BT

i Pixi‖2 +

N
∑

i=1

a
−1

i Θi(t)Θ̇i(t)

]

. (45)

Substituting (36) into (45), we obtain that

LV = −
N

∑

i=1

x
T

i (Qi − λiI)xi. (46)

From (46), by selecting sufficiently small parameters δli (l ∈ [1, 6]) we know parameters
λi can be small enough to ensure

Qi − λiI > 0.

It is readily to see that the closed-loop interconnected time-delay systems are robustly
asymptotically stable in probability.

5 Numerical Examples

In this section, simulation examples on time-delay stochastic systems and interconnected
stochastic systems are given to demonstrate the validness and feasibility of the obtained
theoretic results in previous sections.

Example 1 Consider the following stochastic time-delay system

dx =

{[

−3 1
1 2

]

x+

[

x1 (t− 0.5 (1 + sin t)) sin t
δ1x2 (t) cos t

]

+

[

0
1

]

u

}

dt

+

[

δ2 (|x2| |x1|)1/2

δ3x2 (t− 0.3 (1 + sin (t))) cos t

]

dw,

(47)

where δ1, δ2 and δ3 are arbitrary scalars. We know the above system satisfying Assump-
tions 2.1 and 2.2, and when X = I, Y = 0, ε1 = ε2 = 1, Assumption 2.3 is also satisfied.
Further we can verify that Assumption 2.4 also holds.

Therefore, based on Theorem 2.1 we can obtain the following controller

u = −1

2
θ(t)BT

Px
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Figure 5.1. The states response curves with δi = 1.

Figure 5.2. The states response curves with δi = 5.

with adaptive law
dθ(t)

dt
= ‖x‖2

.

The initial values are chosen as

x1(0) = 2, x2(0) = −1, θ(0) = 2

and the sample time is 0.01s. The simulation results are shown in Figure 5.1 and Fig-
ure 5.2. In Figure 5.1, it shows the response curves with above adaptive controller when
δ1 = δ2 = δ3 = 1. With the same controller, the response curves are shown in Figure 5.2
when δi = 5. From the figures, we can see that the designed controller can render the
closed-loop system stable.
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Example 2 Consider the following stochastic interconnected time-delay system

dx1 =

([

−4 1
1 1

] [

x11

x12

]

+

[

0
1

]

u

)

dt+

[

δ3 (|x11x21|)1/2

δ4x12 (t− 0.3(1 + sin t)) cos t

]

dw

+

[

0
δ1x21 (t− 0.6 (1 + sin t)) + δ2x11 (t− 0.5 (1 + cos (t)))

]

dt,

dx2 =

{[

2 1
1 −4

] [

x21

x22

]

+

[

1
0

]

u+

[

δ5 (|x21 (t− 0.6 (1 + sin (t)))x12|)1/2

0

]}

dt

+

[

δ6x21

δ7 (|x12 (t− 0.3 (1 + cos (t))) x21|)1/2

]

dw.

We can verify that Assumptions 4.1 – 4.4 hold with Pi = I. Therefore the following
decentralized feedback controllers can be constructed.

ui = −1

2
̂Θi(t)B

T

i Pixi (48)

with adaptive law

d̂Θi(t)

dt
= ‖BT

i Pixi‖2
. (49)

The initial values are chosen as

x11(0) = 2, x12(0) = 1, x21(0) = −1, x22(0) = −2, Θi(0) = 2.

When the parameters δi = 1, the states response curves are shown in Figure 5.3, while
Figure 5.4 depicts the curves when δi = 5. From the two figures, the proposed decentral-
ized feedback controllers guarantee the closed-loop system stable.

Figure 5.3. The states response curves of interconnected systems with δi = 1.
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Figure 5.4. The states response curves of interconnected systems with δi = 5.

6 Conclusion

In this paper, the robust control problem for uncertain stochastic time-delay systems is
investigated. First we considered a simple class of systems and designed the correspond-
ing adaptive feedback controller. Based on L-K method, we proved that the resulting
closed-loop system is asymptotically stable. Next, we studied the problem of adaptive
control of a class of time-delay interconnected stochastic systems. Sufficient conditions
to construct a desired controller are derived. Simulations on controlling the uncertain
systems are conducted and the results showed the potential of the proposed techniques.
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Abstract: This paper presents the fuzzy linear control design method for a
class of stochastic nonlinear time-delay systems with state feedback. First, the
Takagi and Sugeno fuzzy linear model is employed to approximate a nonlinear
system. Next, based on the fuzzy linear model, a fuzzy linear controller is
developed to stabilize the nonlinear system. The control law is obtained to
ensure stochastical exponential stability in the mean-square, independent of
the time-delay. The sufficient conditions for the existence of such a control are
proposed in terms of a certain linear matrix inequality. Finally, a simulation
example is given to illustrate the applicability of the proposed design method.

Keywords: Fuzzy linear control; linear matrix inequality; time-delay systems; sto-
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1 Introduction

Most of the systems, which are encountered in control engineering, contain various non-
linearities and are affected by random disturbance signals. Nonlinear systems with time-
delay constitute basic mathematical models of real phenomena, for instance in biology,
mechanics and economics, see e.g. [8, 18]. Control of time-delay systems has been a sub-
ject of great practical importance, which has attracted a great deal of interest for several
decades. On the other hand, it turns out that the delayed state is very often the cause
for instability and poor performance of systems. Moreover, considerable attention has
been given to both the problems of robust stabilization and robust control for linear sys-
tems with unavoidable time-varying parameter uncertainties in modelling of dynamical
systems and certain types of time-delays [14].

c© 2004 Informath Publishing Group. All rights reserved. 317
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Since the introduction of fuzzy set theory by Zadeh in [30], many people have devoted
a great deal of time and effort to both theoretical research and implementation technique
for fuzzy logic controllers [15, 22]. With the development of fuzzy systems, it is known
that the qualitative knowledge of a system can also be represented in nonlinear functional
form. On the basis of this idea, some fuzzy models based control system design methods
have appeared in the fuzzy control field [3, 22, 23]. These methods are conceptually simple
and straightforward. Fuzzy controllers are usually characterized using Mamdani and T-
S type. In general, Mamdani type fuzzy controllers are designed empirically. However,
T-S controllers can be designed using the information of several local linearized models
of a given system via the so-called parallel-distributed compensation scheme. Various
stability conditions of fuzzy systems have been obtained by employing Lyapunov stability
theory [4, 9, 10], passivity theory [20], and other methods [5, 12, 22]. Problem of control
design based on the state feedback for T-S fuzzy systems using LMI approach has been
studied in [28] and the delay-independent stability of T-S fuzzy model for a class of
nonlinear time-delay systems was investigated in [7]. Extension of the T-S fuzzy model
approach to the stability analysis and control design for both continuous and discrete-
time nonlinear systems with time-varying delay has been considered in [2] and also Lee,
et al. [11] presented design of an output feedback robust H∞ controller based on T-S
fuzzy model for uncertain fuzzy dynamic systems with time-varying delayed state.

Recently, several criteria of input-to-bounded state (IBS) stabilization and bounded-
input-bounded-output (BIBO) stabilization in mean-square for nonlinear and quasi-linear
stochastic control systems with time-varying uncertainties has been investigated in [6],
also, another stability concepts in the mean-square sense such as mean-square stability
(MSS) and the internal mean-square stability (IMSS) have been studied in [13]. The
stabilization of stochastic systems with multiplicative noise has been studied since the late
sixties, particularly in the context of linear quadratic optimal control, see e.g., [17, 24].
Also, a stochastic fuzzy control has been proposed by applying the stochastic control
theory, instead of using a traditional fuzzy reasoning in [25] and a class of fuzzy stochastic
control systems with random delays investigated in [19].

The main contribution of this paper is to investigate the fuzzy linear control problem
for a class of stochastic nonlinear time-delay systems. The attention was focused on the
design of state feedback controller which ensures stochastical exponential stability in the
mean-square, independent of the time-delay. Finally, the simulation results show that
fuzzy linear state feedback controller can achieve the robust stability in the mean-square
independent of the time-delay.

Notation The following notations will be used throughout the paper. R
m denotes the

m-dimensional Euclidean space and R
n×m denotes the set of all real n×m matrices. The

superscript “T” denotes the transpose and the notation X ≥ Y (respectively, X > Y ),
where X and Y are symmetric matrices, means that X − Y is positive semi-definite
(respectively, positive definite). I is the identity matrix with compatible dimension.
C([−h, 0]; R

n) denote the family of continuous functions ϕ from [−h, 0] to R
n with the

norm ‖ϕ‖ = sup
−h≤θ≤0

|ϕ(θ)|, where | · | is the Euclidean norm in R
n. If A is a matrix,

denote by ‖A‖ its operator norm, i.e., ‖A‖ = sup {|Ax| : |x| = 1} =
√

λmax(ATA),
where λmax(A) means the largest eigenvalue of A. L2[0,∞] is the space of the square
integrable vector. Moreover, let (Ω, F, {Ft}t≥0, P ) be a complete probability space and

L
P
F0

([−h, 0]; R
n) denote the family of all F0-measurable C([−h, 0]; R

n)–valued random

variables ζ = {ζ(θ) : − h ≤ θ ≤ 0} such that sup
−h≤θ≤0

E|ζ(θ)|P < ∞ where E(·)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(3) (2004) 317–332 319

stands for the mathematical expectation operator with respect to the given probability
measure P .

2 Preliminaries and Problem Formulation

Consider a class of nonlinear continuous-time state delayed stochastic systems described
by

dx(t) = [A(x(t))x(t) + Ad(x(t))x(t − h) + B(x(t))u(t)] dt + E1 dw(t), (1)

x(t) = ϕ(t), t ∈ [−h, 0], (2)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the state vector, u(t) = [u1(t), u2(t), . . . ,

um(t)]T ∈ R
m is the control input, h is the unknown state delay, ϕ(t) is the continuous

vector valued initial function and w(t) = [w1(t), w2(t), . . . , wn(t)]T ∈ R
n is a scalar

Brownian motion defined on the probability space (Ω, F, {Ft}t≥0, P ).
A fuzzy dynamic model has been proposed by Takagi and Sugeno [21] to represent local

linear input-output relations of nonlinear systems. This fuzzy linear model is described
by fuzzy If-Then rules and will be employed here to deal with the control design problem
of the nonlinear system (1) – (2). The i-th rule of this fuzzy model for the nonlinear
system (1) – (2) is of the following form [9, 21, 23]:

Plant Rule i:

If z1(t) is Fi1 and . . . and zg(t) is Fig,

then dx(t) = [Aix(t) + Aidx(t − h) + Biu(t)] dt + E1 dw(t)
(3)

for i = 1, 2, . . . , L, where Fij is the fuzzy set, Ai ∈ R
n×n, Aid ∈ R

n×n, Bi ∈ R
n×m, L

is the number of If-Then rules, and z1(t), z2(t), . . . , zg(t) are the premise variables.
The overall fuzzy system is inferred as follows [9, 21, 23]:

dx(t) =

[

L
∑

i=1

µi(z(t))(Aix(t) + Aidx(t − h) + Biu(t))

]

L
∑

i=1

µi(z(t))

dt + E1 dw(t)

=

L
∑

i=1

hi(z(t))(Aix(t) + Aidx(t − h) + Biu(t)) dt + E1 dw(t)

(4)

where

z(t) = [z1(t), z2(t), . . . , zg(t)]
T
, (5)

µi(z(t)) =

g
∏

j=1

Fij(zj(t)), (6)

hi(z(t)) =
µi(z(t))

L
∑

j=1

µj(z(t))

, (7)
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and Fij(zj(t)) is the grade of membership of zj(t) in Fij .

Remark 1 In order to consider parametric uncertainties in the T-S fuzzy system (3),
we formulate the i-th rule of the fuzzy model as

Plant Rule i:

If z1(t) is Fi1 and . . . and zg(t) is Fig ,

then dx(t) = [(Ai + ∆A
p
i )x(t) + Aidx(t − h) + (Bi + ∆B

p
i )u(t)] dt + E1 dw(t)

where ∆A
p
i and ∆B

p
i are assumed norm-bounded matrices with appropriate dimensions,

which represent parametric uncertainties in the plant model with the following structure

[∆A
p
i ∆B

p
i ] = DiΓi(t) [F1i F2i],

where Di, F1i and F2i are known real constant matrices of appropriate dimensions, and
Γi(t) is an unknown matrix function and satisfies ΓT

i (t)Γi(t) ≤ I [12].

Assumption 1 We assume µi(z(t)) ≥ 0 for i = 1, 2, . . . , L and
L
∑

i=1

µi(z(t)) > 0 for

all t.

Therefore, we get [9, 23]
hi(z(t)) ≥ 0 (8)

for i = 1, 2, . . . , L and
L

∑

i=1

hi(z(t)) = 1. (9)

Therefore, from (1) we get [4]

dx(t) = [A(x(t))x(t) + Ad(x(t))x(t − h) + B(x(t))u(t)] dt + E1 dw(t)

=

[ L
∑

i=1

hi(z(t))(Aix(t) + Aidx(t − h) + Biu(t))

+

{(

A(x) −
L

∑

i=1

hi(z(t))Ai

)

x(t) +

(

Ad(x) −
L

∑

i=1

hi(z(t))Aid

)

x(t − h)

+

(

B(x) −
L

∑

i=1

hi(z(t))Biu(t)

)}]

dt + E1dw(t)

(10)

where

{(

A(x) −
L

∑

i=1

hi(z(t))Ai

)

x(t) +

(

Ad(x) −
L

∑

i=1

hi(z(t))Aid

)

x(t − h)

+

(

B(x) −
L

∑

i=1

hi(z(t))Biu(t)

)}

(11)
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denotes the approximation error between the nonlinear system (1) and the fuzzy mo-
del (4).

Suppose the following fuzzy controller is employed to deal with the above control
system design:

Control Rule j:
If z1(t) is Fj1 and . . . and zg(t) is Fjg,

then u(t) = Kjx(t)
(12)

for j = 1, 2, . . . , L. Hence, the overall fuzzy controller is given by

u(t) =

L
∑

j=1

µj(z(t)) (Kjx(t))

L
∑

j=1

µj(z(t))

=
L

∑

j=1

hj(z(t))Kjx(t) (13)

where hj(z(t)) is defined in (8) and (9) and Kj are the control parameters.
Substituting (13) into (10) yields the closed-loop nonlinear control system as follows:

dx(t) = [A(x(t))x(t) + Ad(x(t))x(t − h) + B(x(t))u(t)] dt + E1 dw(t)

=

[{ L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)x(t) + Aidx(t − h)

}

+ ∆A + ∆Ad + ∆B

]

dt + E1 dw(t)

(14)

where

∆A =

(

A(x(t)) −
L

∑

i=1

hi(z(t))Ai

)

x(t), (15)

∆Ad =

(

Ad(x(t)) −
L

∑

i=1

hi(z(t))Aid

)

x(t − h), (16)

∆B =
L

∑

i=1

hi(z(t))
L

∑

j=1

hj(z(t))(B(x(t)) − Bi)Kjx(t). (17)

Assumption 2 There exist bounding matrices ∆Ai, ∆Aid and ∆Bi such that for
all trajectory x(t)

‖∆A‖ ≤
∥

∥

∥

∥

L
∑

i=1

hi(z(t))∆Aix(t)

∥

∥

∥

∥

, (18)

‖∆Ad‖ ≤
∥

∥

∥

∥

L
∑

i=1

hi(z(t))∆Aidx(t − h)

∥

∥

∥

∥

, (19)

‖∆B‖ ≤
∥

∥

∥

∥

L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))∆Bi Kjx(t)

∥

∥

∥

∥

(20)
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and the bounding matrices ∆Ai, ∆Aid and ∆Bi can be described by





∆Ai

∆Aid

∆Bi



 =





δiAp

δidApd

ηiBp



 , (21)

where ‖δi‖ ≤ 1, ‖δid‖ ≤ 1 and ‖ηi‖ ≤ 1, for i = 1, 2, . . . , L [1].

According to Assumption 2, we get

(∆A)T(∆A) =

((

A(x(t)) −
L

∑

i=1

hi(z(t))Ai

)

x(t)

)T

×
((

A(x(t)) −
L

∑

i=1

hi(z(t))Ai

)

x(t)

)

≤
( L

∑

i=1

hi(z(t))∆Aix(t)

)T( L
∑

i=1

hi(z(t))∆Aix(t)

)

=

( L
∑

i=1

hi(z(t)) δiApx(t)

)T( L
∑

i=1

hi(z(t)) δiApx(t)

)

≤ (Apx(t))T(Apx(t)),

(22)

(∆Ad)
T(∆Ad) =

((

Ad(x(t)) −
L

∑

i=1

hi(z(t))Aid

)

x(t − h)

)T

×
((

Ad(x(t)) −
L

∑

i=1

hi(z(t))Aid

)

x(t − h)

)

≤
( L

∑

i=1

hi(z(t))∆Aidx(t − h)

)T( L
∑

i=1

hi(z(t))∆Aidx(t − h)

)

=

( L
∑

i=1

hi(z(t)) δidApdx(t − h)

)T( L
∑

i=1

hi(z(t)) δidApdx(t − h)

)

≤ (Apdx(t − h))T(Apdx(t − h))

(23)

and

(∆B)T(∆B) =

( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))(B(x(t)) − Bi)Kjx(t)

)T

×
( L

∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))(B(x(t)) − Bi)Kjx(t)

)

(24)

≤
( L

∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))∆BiKjx(t)

)T( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t))∆BiKjx(t)

)
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=

( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t)) ηiBp Kjx(t)

)T( L
∑

i=1

hi(z(t))

L
∑

j=1

hj(z(t)) ηiBp Kjx(t)

)

≤
( L

∑

j=1

hj(z(t))BpKjx(t)

)T( L
∑

j=1

hj(z(t))BpKjx(t)

)

,

i.e. the approximation error in the closed-loop nonlinear system is bounded by the spec-
ified structured bounding matrices Ap, Apd and Bp.

Next, observe the closed-loop system (14) and let x(t, ζ) denote the state trajectory
from the initial data x(θ) = ζ(θ) on −h ≤ θ ≤ 0 in L

2

F0
([−h, 0]; R

2n). Clearly, the

system (14) admits a trivial solution x(t; 0) ≡ 0 corresponding to the initial data ζ = 0.
We introduce the following stability and stabilizability concepts.

Definition 1 [27] For the system (14) and every ζ ∈ L
2

F0
([−h, 0] ; R

2n), the trivial
solution is asymptotically stable in the mean square if

lim
t→∞

E |x(t; ζ)|2 = 0, (25)

and is exponentially stable in the mean-square if there exist constants α > 0 and β > 0
such that

E |x(t; ζ)|2 ≤ αe
−βt sup

−h≤θ≤0

E |ζ(θ)|2 . (26)

Definition 2 [27] We say that the system (1) – (2) is exponentially stabilizable in
mean-square if, for every ζ ∈ L

2

F0
([−h, 0]; R

2n), there exists a fuzzy linear control law

(13) such that the resulting closed-loop system is exponentially stable in mean-square.

The objective of this paper is to design a fuzzy linear control for the stochastic non-
linear time-delay system (1) – (2). More specifically, we are interested in seeking the
control parameters Kj , for j = 1, 2, . . . , L, such that the closed-loop system (14) is
exponentially stable in mean-square, independent of the unknown time-delay h.

3 Main Results and Proofs

We first give the following lemma, which will be used in the proof of our main results.

Lemma 1 [31] For any matrices X and Y with appropriate dimensions and for any
constant η > 0, we have:

X
T
Y + Y

T
X ≤ ηX

T
X +

1

η
Y

T
Y. (27)

3.1 Stochastic stability analysis

In this section, assuming that the fuzzy linear control is known and we will study the
conditions under which the closed-loop system is stochastically exponentially stable in
the mean-square. The following theorem will play a key role in the stability analysis of
closed-loop system and design of the expected fuzzy linear control.
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Theorem 1 Let the control parameters Kj, for j = 1, 2, . . . , L, be given. If the fuzzy
controller (13) is employed in the nonlinear system (1) – (2) and there exists positive
scalars ε1, ε2, ε3, ε4 and a positive definite matrix P = P

T such that the following
matrix inequalities

(Ai + BiKj)
T
P + P (Ai + BiKj) + (ε1 + ε2 + ε3 + ε4)P

2

+ ε
−1

1
A

T

idAid + ε
−1

2
A

T

p Ap + ε
−1

3
A

T

pdApd + ε
−1

4
(BpKj)

T(BpKj) < 0
(28)

are satisfied for all i, j = 1, 2, ..., L, then the closed-loop nonlinear system (14) is expo-
nentially stable in the mean-square and independent of the unknown time-delay h.

Proof Fix ζ ∈ L
2

F0
([−h, 0]; R

2n) arbitrarily, and write x(t, ζ) = x(t). We define the
Lyapunov function candidate

Υ(x(t), t) = x
T(t)Px(t) +

t
∫

t−h

x
T(s)Qx(s) ds (29)

where P = P
T is the positive definite solution to the matrix inequality (28) and Q =

Q
T

> 0 is defined by

Q = ε
−1

1

( L
∑

i=1

hi(z(t))Aid

)T( L
∑

i=1

hi(z(t))Aid

)

+ ε
−1

3
A

T

pdApd. (30)

The stochastic differential of Υ along a given trajectory is obtained as

dΥ(x(t), t) =

{

x
T(t)

({ L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)

}T

P + Q

)

x(t)

+ x
T(t − h)

( L
∑

i=1

hi(z(t))Aid

)T

Px(t) + x
T(t)P

( L
∑

i=1

hi(z(t))Aid

)

x(t − h)

+ x
T(t)P

( L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)

)

x(t)

+ (∆A + ∆Ad + ∆B)TPx(t) + x
T(t)P (∆A + ∆Ad + ∆B)

− x
T(t − h)Qx(t − h)

}

dt + 2x
T(t)PE1 dw(t).

(31)

Now, by Lemma 1, it is trivial to show that for any positive scalars of ε1, ε2, ε3, ε4

the following matrix inequalities hold:

(( L
∑

i=1

hi(z(t))Aid

)

x(t − h)

)T

Px(t) + x
T(t)P

(( L
∑

i=1

hi(z(t))Aid

)

x(t − h)

)

≤ ε1x
T(t)P 2

x(t) + ε
−1

1
x

T(t − h)

( L
∑

i=1

hi(z(t))Aid

)T( L
∑

i=1

hi(z(t))Aid

)

x(t − h),

(32)
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(∆A)TPx(t) + x
T(t)P (∆A) ≤ ε2x

T(t)P 2
x(t) + ε

−1

2
(∆A)T(∆A)

≤ ε2x
T(t)P 2

x(t) + ε
−1

2
(Apx(t))T(Apx(t))

= x
T(t)(ε2P

2 + ε
−1

2
A

T

p Ap)x(t),

(33)

(∆Ad)TPx(t) + x
T(t)P (∆Ad) ≤ ε3x

T(t)P 2
x(t) + ε

−1

3
(∆Ad)

T(∆Ad)

≤ ε3x
T(t)P 2

x(t) + ε
−1

3
(Apdx(t − h))T(Apdx(t − h))

= ε3x
T(t)P 2

x(t) + ε
−1

3
x(t − h)TA

T

pdApdx(t − h)

(34)

and

(∆B)TPx(t) + x
T(t)P (∆B) ≤ ε4x

T(t)P 2
x(t) + ε

−1

4
(∆B)T(∆B)

≤ ε4x
T(t)P 2

x(t) + ε
−1

4

( L
∑

j=1

hj(z(t))BpKjx(t)

)T( L
∑

j=1

hj(z(t))BpKjx(t)

)

= x
T(t)

(

ε4P
2 + ε

−1

4

( L
∑

j=1

hj(z(t))BpKj

)T( L
∑

j=1

hj(z(t))BpKj

))

x(t).

(35)

Then, noticing the definition (30), substituting (32) – (35) into (31) result in

dΥ(x(t), t) ≤ x
T(t)

{( L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)

)T

P

+ P

( L
∑

i=1

L
∑

j=1

hi(z(t))hj(z(t))(Ai + BiKj)

)

+ (ε1 + ε2 + ε3 + ε4)P
2

+ ε
−1

1

( L
∑

i=1

hi(z(t))Aid

)T( L
∑

i=1

hi(z(t))Aid

)

+ ε
−1

2
A

T

p Ap + ε
−1

3
A

T

pdApd

+ ε
−1

4

( L
∑

j=1

hj(z(t))BpKj

)T( L
∑

j=1

hj(z(t))BpKj

)}

x(t)dt + 2x
T(t)PE1 dw(t)

≤
L

∑

i=1

L
∑

j=1

hi(z(t))hj(z(t)){xT(t)[(Ai + BiKj)
T
P + P (Ai + BiKj)

+ (ε1 + ε2 + ε3 + ε4)P
2 + ε

−1

1
A

T

idAid + ε
−1

2
A

T

p Ap + ε
−1

3
A

T

pdApd

+ ε
−1

4
(BpKj)

T(BpKj)]x(t)} dt + 2x
T(t)PE1 dw(t)

≤ −
L

∑

i=1

L
∑

j=1

λmin(−Πij)x
T(t)x(t) dt + 2x

T(t)PE1 dw(t),

(36)

where
Πij = (Ai + BiKj)

T
P + P (Ai + BiKj) + (ε1 + ε2 + ε3 + ε4)P

2

+ ε
−1

1
A

T

idAid + ε
−1

2
A

T

p Ap + ε
−1

3
A

T

pdApd + ε
−1

4
(BpKj)

T(BpKj).
(37)
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Then, according to the inequality (28), we find

Πij < 0, for i, j = 1, 2, . . . , L. (38)

Consequently, the inequalities (36) and (38) mean that the nonlinear stochastic time-
delay closed-loop system (14) is asymptotically stable (in the mean-square) by the fuzzy
control law (13).

The expected exponential stability (in the mean-square) of the closed-loop system (14)
can be proved by making some standard manipulation on (36), see [16]. Let βij be the
unique root of the equation

λmin(−Πij) − βijλmax(P ) − βijhλmax(Q)eβijh = 0, (39)

where Πij and Q are defined, respectively, in (37) and (30) and P is the positive definite
solution to (28) and h is the unknown time-delay. Then, by [26], we have

E|x(t)|2 ≤ λ
−1

min
(P )

(

[λmax(P ) + hλmax(Q)]

+ βijλmax(q)h
2
e

βijh
)

sup
−h≤θ≤0

E|ζ(θ)|2e−βijt
.

(40)

Notice that, according to (40), the definition of exponential stable in Definition 1 is
satisfied and this complete the proof of Theorem 1.

The result of Theorem 1 may be conservative due to the use of inequalities (32) – (35).
However, such conservativeness can be significantly reduced by appropriate choices of
the parameters ε1 ε2, ε3, ε4 in a matrix norm sense.

Remark 2 The result of Theorem 1 can be easily extended to the multiple state
time-delay case. Consider the following nonlinear continuous-time multidelay stochastic
system

dx(t) =

[

A(x(t))x(t) +

r
∑

i=1

Ad(x(t))x(t − hi) + B(x(t))u(t)

]

dt +

r
∑

i=1

Ei dwi(t),

x(t) = ϕ(t), t ∈ [−h, 0], 0 < h = max
i

(hi),

(41)

where (w1, w2, . . . , wm) is an m-dimensional Brownian motion, instead of a scalar one
in system (1) – (2). Also, instead of (29), we define the Lyapunov function

Υ(x(t), t) = x
T(t)Px(t) +

r
∑

i=1

t
∫

t−hi

x
T(s)Qi x(s) ds. (42)

Remark 3 We can conclude the following matrix inequality, similar to matrix inequal-
ity (28) in Theorem 1, for the T-S fuzzy systems with norm-bounded and structured
parametric uncertainties introduced in Remark 1 as

(Ai + BiKj)
T
P + P (Ai + BiKj) + P

(

(η1 + η2)DiD
T

i + (ε1 + ε2 + ε3 + ε4)I
)

P

+ ε
−1

1
A

T

idAid + ε
−1

2
A

T

p Ap + ε
−1

3
A

T

pdApd

+ η
−1

1
F

T

1iF1i + ε
−1

4
(BpKj)

T(BpKj) + η
−1

2
(F2iKj)

T
F2iKj < 0,
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where according to Lemma 1 the following matrix inequalities are satisfied for ∀ η1, η2 > 0

(∆A
p
i )

T
P + P∆A

p
i ≤ η1PDiD

T

i P + η
−1

1
F

T

1iF1i,

(∆B
p
i Kj)

T
P + P∆B

p
i Kj ≤ η2PDiD

T

i P + η
−1

2
(F2iKj)

T
F2iKj .

3.2 Fuzzy control design

This subsection is devoted to the design of control parameters Kj, for j = 1, 2, . . . , L,
by using the result in Theorem 1. We will show that the design of control parameters
problem can be solved via the resolution of matrix inequalities. Our approach follows
the one developed by Gahinet for the deterministic case [6]. The key tool, which makes
this possible, is the stochastic version of the Bounded Real Lemma. From deterministic
H∞ control theory we will need the following lemma, so-called, Projection Lemma.

Lemma 2 [29] Given a symmetric matrix H ∈ R
m×m and two matrices N ∈ R

l×m

and M ∈ R
n×m, consider the problem of finding some matrix X such that

H + N
T
X

T
M + M

T
XN < 0. (43)

Then, (43) is solvable for X if and only if

N
T⊥

H N
T⊥T

< 0, M
T⊥

H M
T⊥T

< 0. (44)

Here, if Σ ∈ R
n×m and rankΣ = r, the orthogonal complement Σ⊥ is defined as a

possibly nonunique (n − r) × n matrix with rank n − r, such that Σ⊥Σ = 0.

By using the Schur complement formula, inequality (28) is equivalent to





(Ai + BiKj)
T
P + P (Ai + BiKj) + ΨT

i Ψi (BpKj)
T

P

BpKj −ε4I 0
P 0 −(ε1 + ε2 + ε3 + ε4)

−1
I



 < 0,

(45)
where

Ψi =







ε
−1/2

1
Aid

ε
−1/2

2
Ap

ε
−1/2

3
Apd






. (46)

The inequality (45) has the form

Γi + N
T

i ΩM + M
TΩT

Ni < 0, (47)

where

Ω = Kj , M = [ I 0 0 ], N
T

i =





PBi

Bp

0



 =





P 0 0
0 I 0
0 0 I









Bi

Bp

0



 ,

Γi =





A
T

i P + PAi + ΨT

i Ψi 0 P

0 −ε4I 0
P 0 −(ε1 + ε2 + ε3 + ε4)

−1
I



 .

(48)

Then, we have the following result.
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Theorem 2 The closed-loop fuzzy system (14) is exponentially stable in the mean-
square and independent of the unknown time-delay h, if the following conditions are
satisfied, for i = 1, 2, . . . , L,

N
T⊥
i ΓiN

T⊥T
i < 0,

M
T⊥ΓiM

T⊥T
< 0,

P = P
T

> 0,

(49)

where M , Ni and Γi are defined in (48).

Proof The proof follows directly from Theorem 1 and Projection lemma.

Let [ V1i V2 ] = [ Bi Bp ]T⊥ and, by some calculation, we have

N
T⊥
i =

[

V1i V2 0
0 0 I

]





P
−1 0 0
0 I 0
0 0 I



 , (50)

and

M
T⊥ =

[

0 I 0
0 0 I

]

. (51)

Then, it follows from (49) that we have:

M
T⊥ΓiM

T⊥T =

[

−ε4I 0
0 −(ε1 + ε2 + ε3 + ε4)

−1
I

]

< 0. (52)

This further implies that M
T⊥ΓiM

T⊥T
< 0 is satisfied for i = 1, 2, . . . , L and

N
T⊥
i ΓiN

T⊥T
i =









W [ V1i V2 ]

[

I

0

]

[ I 0 ]

[

V
T

1i

V
T
2

]

−(ε1 + ε2 + ε3 + ε4)
−1

I









< 0, (53)

where

W = [ V1i V2 ]

[

P
−1(AT

i P + PAi + ΨT

i Ψi)P
−1 0

0 −ε4I

] [

V
T

1i

V
T
2

]

.

Using the Schur complement formula, it is easy to see that (53) is equivalent to

A
T

i P + PAi + (ε1 + ε2 + ε3 + ε4)P
2 + ΨT

i Ψi < 0. (54)

If the LMI in (54) have a positive-definite solution for P , then the closed-loop system
(14) is exponentially stable in the mean-square and independent of the unknown time-
delay h. Moreover, in this case, a set of particular solutions of control parameters Kj ,
for j = 1, 2, . . . , L, corresponding to a feasible solution P can be obtained by using the
result of matrix inequality (54). Then, we obtain the following result.
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Theorem 3 If there exist positive scalars ε1, ε2, ε3, ε4 such that the linear matrix
inequality (54) has positive definite solution P , then, the fuzzy control with parameters
Ω = Kj for j = 1, 2, . . . , L can be easily obtained by solving (47) and will be such that
the closed-loop system (14) is exponentially stable in the mean-square and independent
of the unknown time-delay h.

Remark 4 In the case when E1 = 0, that is, the stochastic system (1) – (2) is spe-
cialized to a deterministic system. Therefore, Theorems 1, 2 and 3 can be viewed as
extensions of existing results from deterministic systems to stochastic systems.

4 Simulation Results

In this section, to illustrate the effectiveness of the proposed method, we will design a
fuzzy linear controller for the following stochastic nonlinear time-delay system

dx(t) = [−0.06 x(t)3 + x(t − h) + u(t)] dt + dw(t) (55)

x(t) = 1, t ∈ [−h, 0]. (56)

Consider h = 1 second as the time-delay parameter. To use the fuzzy linear controller
design, we consider a fuzzy model, which represents the dynamics of the nonlinear plant.
Therefore, we represent the system (55) – (56) by the following T-S fuzzy model

Plant Rule 1:

If x(t) is F11,

then dx(t) = [−3 x(t) + 0.5 x(t − h) + 2 u(t)] dt + dw(t).

Plant Rule 2:

If x(t) is F21,

then dx(t) = [−2 x(t) + 0.1 x(t − h) + u(t)] dt + dw(t).

where the membership functions of F11 and F21 are given as follows:

F11 = 1 − 1

1 + e−x2
, F21 = 1 − F11 =

1

1 + e−x2
,

and the bounding matrices are chosen as Ap = 0.5, Apd = 0.5 and Bp = 1.

Substituting the above parameters into Theorem 3, using the LMI toolbox in MAT-
LAB the solutions of (47), i.e., state feedback gains, can be obtained as K1 = 0.1 and
K2 = 0.1709 and the positive scalars ε1, ε2, ε3, ε4 found as ε1 = ε2 = ε3 = ε4 = 0.1.

Robust stability of the state of system (55) in the presence of disturbance, i.e. Brownian
motions has been depicted in Figure 4.1 and it is seen that due to Brownian motion as
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Figure 4.1. Time behavior of the state of system.

Figure 4.2. Control input.

the external disturbance, state still is bounded. The overall fuzzy controller is shown in
Figure 4.2.

5 Conclusions

In this paper, the fuzzy linear control design method for a class of stochastic nonlinear
time-delay systems with state feedback was developed. First, the Takagi and Sugeno
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fuzzy linear model was employed to approximate a nonlinear system. Next, based on
the fuzzy linear model, a fuzzy linear controller was developed to stabilize the non-linear
system. The control law has been obtained to ensure stochastical exponential stability
in the mean-square, independent of the time-delay and the sufficient conditions for the
existence of such a control were proposed in terms of certain linear matrix inequality.
A simulation example was given to illustrate the applicability of the proposed design
method.
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1 Introduction

It becomes increasingly apparent that delays occur in industrial and engineering systems
due to various reasons including finite capabilities of information processing among dif-
ferent parts of the system, inherent phenomena like mass transport flow and recycling
and/or by product of computational delays [12]. Considerable discussions on delays and
their stabilization/destabilization effects in control systems have commanded the inter-
ests of numerous investigators in recent years, see [1, 6, 13] and their references. In the
course of control design, it turns out that the design goals have to incorporate the impact
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of parameter shifting, component and interconnection failures which are frequently oc-
curring in practical situations. It is thus appropriate to investigate control processes with
the aid of stochastic models. One direction of investigation has been through piecewise
deterministic systems or Markovian jump dynamical systems [2] in which the underlying
dynamics are governed by different forms depending on the value of an associated finite-
state Markov process thus offer a base model of combined continuous and discrete states.
Research into this class of systems and their applications span several decades [5, 15].
When the plant modelling uncertainty or external disturbance uncertainty is of major
concern in control systems, robust control theory provides tractable design tools using
the time domain and the frequency domain. For Markov jumping linear continuous-time
systems, the issue of robust stability and H∞-control has been investigated in [4, 17]
and their references. The class of time- delay systems with jump parameters have been
recently considered in [1, 13] and for a modest coverage on the subject, see [2, 14].

The purpose of this paper is to extend the results of [1, 2, 13] further by developing
new transformation methods that will help much in the study of stochastic stability
and stabilization of a class of uncertain systems with Markovian jump parameters and
distributed delays. In these systems, the jumping parameters are treated as continuous-
time, discrete-state Markov process and the parametric uncertainties are assumed to be
real, time-varying and norm-bounded. The time-delay factor is treated as a constant
within a prespecified range. Complete results of delay-dependent stochastic stability
criteria are developed for both the nominal and uncertain jumping distributed delay
systems with H∞ performance measure. Then we move to consider the H∞ stabilization
problem with instantaneous and delayed state feedback. Finally, we investigate the design
of an H∞ dynamic output feedback controller that ensures the close-loop stochastic
stability. We establish that the H∞ stability analysis and synthesis problems for the
distributed-delay Markovian jump systems with and without uncertain parameters can
be essentially solved in terms of the solutions of a finite set of coupled linear matrix
inequalities. Several examples are presented to illustrate the theoretical analysis.

Notations and Facts: In the sequel, the Euclidean norm is used for vectors. We use
W

t, W
−1, λ(W ) and ‖W‖ to denote, respectively, the transpose of, the inverse of, the

eigenvalues of and the induced norm of any square matrix W . We use W > 0 (≥, <

,≤ 0) to denote a symmetric positive definite (positive semidefinite, negative, negative
semidefinite matrix W with λm(W ) and λM (W ) being the minimum and maximum
eigenvalues of W and I to denote the n×n identity matrix. The Lebesgue space L2[0, T ]
consists of square-integrable functions on the interval [0, T ] equipped with the norm ‖·‖2.
IE[·] stands for mathematical expectation. Let S = {1, 2, ..., s} be a finite set, C[−τj, 0] be

the space of continuous functions on the interval [−τj , 0] and define C̄ △
=

⋃

j∈S

C[−τj , 0]×

{j}. Sometimes, the arguments of a function will be omitted in the analysis when no
confusion can arise.

Fact 1: For any real vectors β, ρ and any matrix Q
t = Q > 0 with appropriate dimen-

sions, it follows that
−2ρ

t
β ≤ ρ

t
Qρ + β

t
Q

−1
β.

Fact 2: For any real matrices Σ1, Σ2 and Σ3 with appropriate dimensions and Σt
3Σ3 ≤ I,

it follows that

Σ1Σ3Σ2 + Σt
2Σ

t
3Σ

t
1 ≤ α

−1Σ1Σ
t
1 + αΣt

2Σ2, ∀α > 0.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 4(3) (2004) 333–356 335

Fact 3: Let Σ1, Σ2, Σ3 and 0 < R = R
t be real constant matrices of compatible

dimensions and H(t) be a real matrix function satisfying H
t(t)H(t) ≤ I. Then for any

ρ > 0 satisfying ρΣt
2Σ2 < R, the following matrix inequality holds:

(Σ3 + Σ1H(t)Σ2)R
−1(Σt

3
+ Σt

2
H

t(t)Σt
1
) ≤ ρ

−1Σ1Σ
t
1

+ Σ3(R − ρΣt
2
Σ2)

−1Σt
3
.

Fact 4 (Schur Complement): Given constant matrices Ω1, Ω2, Ω3, where Ω1 = Ωt
1

and 0 < Ω2 = Ωt
2 then Ω1 + Ωt

3Ω
−1

2
Ω3 < 0 if and only if

[

Ω1 Ωt
3

Ω3 −Ω2

]

< 0 or

[

−Ω2 Ω3

Ωt
3

Ω1

]

.

2 Problem Statement

2.1 System description

Given a probability space (Ω,F ,P), where Ω is the sample space, F is the algebra of
events and P is the probability measure defined on F . Let the random form process
{ηt, t ∈ [0, T ]} be a homogeneous, finite-state Markovian process with right continuous
trajectories and taking values in a finite set S = {1, 2, ..., s} with generator ℑ = (αij)
and transition probability from mode i at time t to mode j at time t + δ, i, j ∈ S:

pij = Pr(ηt+δ = j | ηt = i) =

{

αijδ + o(δ), if i 6= j,

1 + αijδ + o(δ), if i = j
, (2.1)

with transition probability rates αij ≥ 0 for i, j ∈ S, i 6= j and

αii = −
s

∑

m=1, m 6=i

αim, (2.2)

where δ > 0 and lim
δ↓0

o(δ)/δ = 0. The set S comprises the various operational modes of

the system under study. We consider a class of stochastic uncertain time-delay systems
with Markovian jump parameters described over the space (Ω,F ,P) by:

(ΣJ) : ẋ(t) = [Ao(ηt) + ∆Ao(t, ηt)]x(t) + [Ad(ηt) + ∆Ad(t, ηt)]x(t − τ) + Γ(ηt)w(t),

= A∆o(t, ηt)x(t) + A∆d(t, ηt)x(t − τ) + Γ(ηt)w(t) t ≥ 0,

x(t) = φ(t), t ∈ [−τ, 0], ηo = i, (2.3)

z(t) = G(ηt)x(t) + Φ(ηt)w(t), (2.4)

where x(t) ∈ ℜn is the state vector; w(t) ∈ ℜq is the disturbance input which belongs
to L2[0, T ]; y(t) ∈ ℜp is the measured output; z(t) ∈ ℜr is the controlled output which
belongs to L2

[

(Ω,F ,P), [0, T ]
]

and τ ∈ [0, τ
∗] is a constant delay factor. For each

possible value ηt = i, i ∈ S, we will denote the system matrices of (ΣJ ) associated with
mode i by

Ao(ηt)
△
= Ao(i), Γ(ηt)

△
= Γ(i), G(ηt)

△
= G(i),

Ad(ηt)
△
= Ad(i), Φ(ηt)

△
= Φ(i),

(2.5)
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where Ao(i), Ad(i), G(i), Γ(i) and Φ(i) are known real constant matrices of appropri-
ate dimensions which describe the nominal system of (ΣJ ). The matrices ∆Ao(t, ηt)
and ∆Ad(t, ηt) are real, time-varying matrix functions representing the norm-bounded
parameter uncertainties. For ηt = i, the admissible uncertainties are assumed to be
modeled in the form:

[∆Ao(t, i) ∆Ad(t, i)] = Ma(i)∆(t, i)[Na(i) Nd(i)], ‖∆(t, i)‖2 ≤ 1, (2.6)

where Ma(i) ∈ ℜn×α, Na(i) ∈ ℜβ×n and Nd(i) ∈ ℜβ×n are known real constant matrices,
with ∆(t, i) ∈ ℜα×β being unknown, time-varying matrix function whose elements are
Lebesgue measurable for any i ∈ S.

Our purpose in this paper is to develop criteria for H∞ analysis and synthesis for
system (2.3) – (2.4). Initially, we focus on stochastic stability and L2-gain criterion and
examine their robustness using the performance measure

J (x)
△
= IE

{

∞
∫

0

[zt(t)z(t) − γ
2
w

t(t)w(t)] dt

}

, (2.7)

where γ > 0 is a desired level of disturbance attenuation.

2.2 Model transformation

For each possible value ηt = i, i ∈ S, we introduce the following state transformation

σ(t) = x(t) +

t
∫

t−τ

A∆d(t, i)x(s) ds (2.8)

into (2.3) to yield

σ̇(t) = [A∆o(t, i) + A∆d(t, i)]x(t) + Γ(i)w(t). (2.9)

Given a sufficiently small scalar ε, we define the augmented state-vector

ζ(t) =

[

σ(t)
εx(t)

]

∈ ℜ2n
. (2.10)

By combining (2.3) and (2.8) – (2.10) and taking the limit ε → 0, we obtain the trans-
formed system

(ΣT ) : ζ̇(t) = Λ∆(i)ζ(t) +

t
∫

t−τ

Υ(i)ζ(s) ds + Γ̄(i)w(t),

ζ(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (2.11)

z(t) = Ḡ(i)ζ(t) + Φ(i)w(t), (2.12)
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where

Γ̄(i) =

[

Γ(i)
0

]

, Ḡ(i) = [0 G(i)], Aod(i) = Ao(i) + Ad(i),

Λ∆(i) =

[

0 A∆o(t, i) + A∆d(t, i)
−I I

]

, Υ(i) =

[

0 0
0 A∆d(t, i)

]

.

(2.13)

For convenience, we introduce the matrices for i ∈ S

Λo(i) =

[

0 Aod(i)
−I I

]

, M̄(i) =

[

Ma

0

]

, IP(i) =

[

Pσ(i) 0
Pd(i) Px(i)

]

,

Nad(i) = Na(i) + Nd(i), N̄ad(i) = [0 Nad(i)], P̄ (i) = U IP(i),

U =

[

I 0
0 0

]

, E1 =

[

I

0

]

, E2 =

[

0
I

]

.

(2.14)

Remark 2.1 Some discussions on the model transformation are in order. On one
hand, the σ-variable recovers the delay-dependent dynamics of system (ΣJ ). On the
other hand, the use of small scalar ε is meant to capture the slow-modes of the system.
It is readily seen for absolutely continuous initial functions that systems (ΣJ ) and (ΣT )
are equivalent. For single-mode systems s = 1, a different approach was developed in
[6] based on description-type transformation. In the sequel, it will be shown that our
transformation is more flexible.

For system (2.11) – (2.14), we provide the following definition.

Definition 2.1 System (ΣT ) is said to be delay dependent robustly stochastically
stable (DDRSS) with disturbance attenuation γ > 0 if for zero initial vector function
φ ≡ 0 defined on the interval [−τ, 0] and initial mode ηo ∈ S

‖z(t)‖E2
:= IE

[

∞
∫

0

z
t(t)z(t) dt

]1/2

< γ‖w(t)‖2

for all 0 6= w(t) ∈ L2[0,∞) and for all admissible uncertainties satisfying (2.6).

3 L2-Gain Analysis

The theorem and corollaries established in the sequel show that the stability behavior of
system ΣT (or equivalently ΣJ) is related to the existence of a positive definite solution
of a family of linear matrix inequalities (LMIs) thereby providing a clear key to designing
the feedback controller.

Theorem 3.1 System ΣT is DDRSS with disturbance attenuation γ > 0 if given
matrix sequence Qx(i) = Q

t
x(i) > 0, i ∈ S , there exist matrices 0 < Pσ(i), Pd(i), Px(i),

i ∈ S and scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0, γ > 0, i ∈ S, satisfying the system of
LMIs









Π2(i) Π21(i) Π22(i) Π23(i) Π24(i)

Πt
21(i) −ε1(i)I 0 0 0

Πt
22(i) 0 −τε2(i)I 0 0

Πt
23(i) 0 0 −τQx(i) + τε2(i)Nd(i)Nt

d
(i) 0

Πt
24(i) 0 0 0 −γ2I + Φt(i)Φ(i)









< 0,

[

−Qx(i) Nd(i)
N

t
d(i) −ε2(i)I

]

< 0,

[

−γ
2
I Φt(i)

Φ(i) −I

]

< 0, i ∈ S,

(3.1)
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where

Π2(i) =













−Pd(i) − P t
d
(i) +

s
∑

m=1
αimPσ(m) −Px(i) + P t

d
(i) + P t

σ(i)Aod(i)

Px(i) + P t
x(i) + τQx(i)

−P t
x(i) + Pd(i) + At

od
(i)Pσ(i) +Gt(i)G(i) + ρ(i)τ2

s
∑

m=1
αimQx(m)

+ε1(i)N̄
t
ad

(i)N̄ad(i)













, (3.2)

Π21(i) =

[

P
t
σ(i)E1Ma(i)

0

]

, Π22(i) =

[

τP
t
σ(i)E1Ma(i) τP

t
d(i)E1Ma(i)

0 τP
t
x(i)E1Ma(i)

]

, (3.3)

Π23(i) =

[

τP
t
d(i)

τP
t
x(i)

]

, Π24(i) =

[

P
t
σ(i)Γ(i)

G
t(i)Φ(i)

]

. (3.4)

Proof Let xs(t)
△
= x(s + t), t − τ ≤ s ≤ t and define the process {(x(t), ηt), t ≥ 0}

over the state space C̄. It should be observed that {(x(t), ηt), t ≥ 0} is strong Markovian
[9] so is the process {(ζ(t), ηt), t ≥ 0}. Now for ηt = i ∈ S, and given Q(i) = Q

t(i) > 0,
let the Lyapunov functional V (·) : ℜn × ℜ+ × S → ℜ+ of the transformed system be
selected as

V (t, ζ, i) = ζ
t(t)P̄ (i)ζ(t) +

t
∫

t−τ

t
∫

θ

ζ
t(s)E2Qx(i)Et

2
ζ(s) dsdθ. (3.5)

The weak infinitesimal operator ℑζ
1
[·] of the process {ζ(t), i, t ≥ 0} for system (2.11) –

(2.14) at the point {t, x, i} is given by [5, 9]:

ℑζ
1
[V ] =

∂V

∂t
+

∂V

∂ζ
ζ̇(t)

∣

∣

∣

∣

ηt=i

+

s
∑

m=1

αimV (t, ζ, i, m). (3.6)

Using (2.9) – (2.14) we get:

∂V

∂ζ
ζ̇(t) = 2ζ

t(t)U IPt(i)ζ̇(t) = 2σ
t(t)P t

σ(i)σ̇(t) = 2ζ
t(t)IPt(i)

[

σ̇(t)
0

]

= 2ζ
t(t)IPt(i)





A∆o(t, i) + A∆d(t, i)]x(t) + Γ(i)w(t)

−σ(t) + x(t) +
t
∫

t−τ

A∆d(t, i)x(s) ds





= 2ζ
t(t)IPt(i)Λ∆(i)ζ(t) + 2ζ

t(t)IPt(i)Γ̄(i)w(t)

+ 2

t
∫

t−τ

ζ
t(t)IPt(i)Υ(i)ζ(θ) dθ.

(3.7)
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Hence, it follows from (3.6) – (3.7) that

ℑζ
1
[V ] = ζ

t(t)

[

Λt
∆(i)IP(i) + IPt(i)Λ∆(i) +

s
∑

m=1

αimIP(m)

]

ζ(t)

+ 2ζ
t(t)IPt(i)Γ̄(i)w(t) + 2

t
∫

t−τ

ζ
t(t)IPt(i)Υ(i)ζ(θ) dθ +

t
∫

t−τ

ζ
t(t)E2Qx(i)Et

2ζ(t) dθ

−
t

∫

t−τ

ζ
t(θ)E2Qx(i)Et

2ζ(θ) dθ +

s
∑

m=1

αim

t
∫

t−τ

t
∫

θ

ζ
t(s)E2Qx(m)Et

2ζ(s) dsdθ.

(3.8)

Since for some ρ(i) > 0, i ∈ S
s

∑

m=1

αim

t
∫

t−τ

t
∫

θ

ζ
t(s)E2Qx(m)Et

2
ζ(s) dsdθ ≤ τ

2
ρ(i)ζt(t)E2

s
∑

m=1

αimQx(m)Et
2
ζ(t) (3.9)

and by Fact 1, we have

2

t
∫

t−τ

ζ
t(t)IPt(i)Υ(i)ζ(θ) dθ = 2

t
∫

t−τ

ζ
t(t)IPt(i)E2A∆d(t, i)x(θ) dθ (3.10)

≤ τζ
t(t)IPt(i)E2A∆d(t, i)Q

−1

x (i)At
∆d(t, i)E

t
2
IPt(i)ζ(θ) +

t
∫

t−τ

x
t(s)Qx(i)x(s) ds

= τζ
t(t)IPt(i)E2A∆d(t, i)Q

−1

x (i)At
∆d(t, i)E

t
2
IP(i)ζ(t) +

t
∫

t−τ

ζ
t(θ)E2Qx(i)Et

2
ζ(θ) dθ.

Now, it follows from (3.8) – (3.10) that

ℑζ
1
[V ] ≤ ζ

t(t)

[

Λt
∆

(i)IP(i) + IPt(i)Λ∆(i) +
s

∑

m=1

αimIP(m)

+ ρ(i)τ2
E2

s
∑

m=1

αimQx(m)Et
2

+ τIPt(i)E2A∆d(t, i)Q
−1

x (i)At
∆d(t, i)E

t
2
IP(i)

]

ζ(t)

+ τE2Qx(i)Et
2

+ 2ζ
t(t)IPt(i)Γ̄(i)w(t).

(3.11)

Application of Facts 2 – 3 to (3.11) yields:

ℑζ
1
[V ] ≤ ζ

t(t)

[

Λt
o(i)IP(i) + IPt(i)Λo(i) +

s
∑

m=1

αimP̄ (m)

+ τE2Qx(i)Et
2 + ε1(i)N̄

t
ad(i)N̄ad(i) + ε

−1

1
(i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1
A

t
d(i)E

t
2IP(i)

+ τ
2
ρ(i)E2

s
∑

m=1

αimQx(m)Et
2

+ τε
−1

2
(i)IPt(i)E1Ma(i)M t

a(i)Et
1
IP(i)

]

ζ(t)

+ 2ζ
t(t)IPt(i)Γ̄(i)w(t) = ζ

t(t)Π1ζ(t) + 2ζ
t(t)IPt(i)Γ̄(i)w(t)

(3.12)
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for some scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0. By taking w(t) ≡ 0, the robust stability of

system (2.10) readily follows from (3.12) when Π1 < 0. Thus we conclude that ℑζ
1
[V ] < 0

for all ζ 6= 0 and ℑζ
1
[V ] ≤ 0 for all ζ. By Dynkin’s formula [9], one has IE

[ ∞
∫

0

ℑζ
1
[V ] dt

]

=

IE[V (t, x, i)|t=∞] − V (t, ζ, i)|t=0 ≥ 0. With some manipulations using (2.10) and (3.12),
we obtain:

J (x) = IE

{

∞
∫

0

[zt(t)z(t) − γ
2
w

t(t)w(t) + ℑζ
1
[V ] −ℑζ

1
[V ]]dt

}

≤ IE

{

∞
∫

0

[zt(t)z(t) − γ
2
w

t(t)w(t) + ℑζ
1
[V ]]dt

}

≤ IE

{

∞
∫

0

ζ
t(t)

[

Λt
o(i)IP(i) + IPt(i)Λo(i) +

s
∑

m=1

αimP̄ (m)

+ τE2Qx(i)Et
2 + ε1(i)N̄

t
ad(i)N̄ad(i) + ε

−1

1
(i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1
A

t
d(i)E

t
2IP(i)

+ τ
2
ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε

−1

2
(i)IPt(i)E1Ma(i)M

t
a(i)Et

1IP(i) + Ḡ
t(i)Ḡ(i)

+ [IPt(i)Γ̄(i) + Ḡ
t(i)Φ(i)][γ2

I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)]

]

ζ(t)

}

.

(3.13)

By using (3.1) – (3.4) and Fact 4, it follows from inequality (3.13) that J (x) < 0 and
hence system (2.11) – (2.12) is DDRSS with disturbance attenuation γ > 0.

The following corollary can be readily derived as special case of Theorem 3.1:

Corollary 3.1 Consider the nominal jump system

(ΣTn) : ζ̇(t) = Λo(i)ζ(t) +

t
∫

t−τ

Υ(i)ζ(s) ds + Γ̄(i)w(t),

ζ(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (3.14)

z(t) = Ḡ(i)ζ(t) + Φ(i)w(t). (3.15)

System ΣTn is delay dependent stochastically stable (DDSS) with disturbance attenuation
γ > 0 if given matrix sequence Q(i) = Q

t(i) > 0, i ∈ S , there exist matrices P (i) =
P

t(i) > 0, i ∈ S, satisfying the system of LMIs




Π20(i) Π23(i) Π24(i)
Πt

23
(i) −τQx(i) 0

Πt
24(i) 0 −γ

2
I + Φt(i)Φ(i)



 < 0,

[

−γ
2
I Φt(i)

Φ(i) −I

]

< 0, i ∈ S, (3.16)

where

Π20(i) =











−Pd(i) − P t
d
(i) +

s
∑

m=1
αimPσ(m) −Px(i) + P t

d
(i) + P t

σ(i)Aod(i)

Px(i) + P t
x(i) + τQx(i)

−P t
x(i) + Pd(i) + At

od
(i)Pσ(i) +Gt(i)G(i) + ρ(i)τ2

s
∑

m=1
αimQx(m)











.
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Remark 3.1 In the foregoing analysis, τ is assumed to be known and constant. If
it turns out to be known, the largest value can be computed by solving a generalized
eigenvalue problem of the form:

Maximize τ

subject to
Pσ(i) > 0, Pd(i), Px(i),

ε1(i) > 0, ε2(i) > 0, ρ(i) > 0, γ > 0 i ∈ S.

This problem can be readily solved using the LMI toolbox.

3.1 Example 1

In order to illustrate Theorem 3.1, we consider a pilot-scale multi-reach water quality
system [11] which can fall into the type (2.3) – (2.6). Let the Markov process governing
the mode switching has generator

ℑ =





−4 3 1
2 −6 4
4 4 −8



 .

For the three operating conditions (modes), the associated date are:

Mode 1:

Ao(1) =

[

−0.2 0
0 −0.09

]

, Ad(1) =

[

−0.1 0
−0.1 −0.1

]

, Γ(1) =

[

1 0
0 2

]

,

G(1) =

[

0.2 0
0 0.1

]

, Φ(1) =

[

0.5 0
0 0.4

]

, Ma(1) =

[

0.2
0.1

]

,

Na(1) = [0.2 0.4], Nd(1) = [0.1 0.3].

Mode 2:

Ao(2) =

[

−2 −1
0 −2

]

, Ad(2) =

[

0 1
1 0

]

, Γ(2) =

[

2 0
0 1

]

,

G(2) =

[

0.1 0
0 0.1

]

, Φ(2) =

[

0.3 0
0 0.4

]

, Ma(2) =

[

0.1
0.1

]

,

Na(2) = [0.2 0.2], Nd(2) = [0.1 0.2].

Mode 3:

Ao(3) =

[

−1.9 0
0 −1

]

, Ad(3) =

[

−0.9 0
−1 −1.1

]

, Γ(3) =

[

1 0
0 1

]

,

G(3) =

[

0.2 0
0 0.2

]

, Φ(3) =

[

0.2 0
0 0.3

]

, Ma(3) =

[

0.1
0.2

]

,

Na(3) = [0.3 0.3], Nd(3) = [0.2 0.1].
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Invoking the software environment [7], we solve inequalities (3.1) subject to (3.2) – (3.4)
for i = 1, 2, 3. The feasible solutions obtained for

ε1(1) = 0.7825, ε2(1) = 1.5634, ρ(1) = 3.2312,

ε1(2) = 1.2671, ε2(2) = 3.3451, ρ(2) = 2.7645,

ε1(3) = 4.2355, ε2(3) = 0.6673, ρ(3) = 4.4436

show water quality system is DDRSS with a disturbance attenuation level of γ = 1.25
for any constant time delay τ ≤ 0.6715.

4 Robust H∞ Stabilization

In this section, we consider the control uncertain jumping system with ηt = i ∈ S:

(ΣJC) : ẋ(t) = A∆o(t, i)x(t) + A∆d(t, i)x(t − τ) + B∆o(t, i)u(t) + Γ(i)w(t), t ≥ 0,

x(t) = φ(t), t ∈ [−τ, 0], ηo = i, (4.1)

z(t) = G(i)x(t) + Φ(i)w(t), (4.2)

where u(t) ∈ ℜr is the control input and

B∆o(t, i) = Bo(t, i) + Ma(i)∆(t, i)Nb(i) (4.3)

with Nb(i) ∈ ℜβ×r. We will examine two distinct case of state feedback stabilization:
instantaneous feedback and delayed feedback.

4.1 Instantaneous state feedback

In this case we use the control law for ηt = i ∈ S

u(t) = K(i)x(t), i ∈ S (4.4)

such that the use of (2.8) and (4.4) into (4.1) yields for ηt = i:

σ̇(t) = [A∆k(t, i) + A∆d(t, i)]x(t) + Γ(i)w(t),

A∆k(t, i) = A∆o(t, i) + B∆o(t, i)K(i).
(4.5)

In this case the transformed system becomes

(ΣTK) : ζ̇(t) = Λ∆k(i)ζ(t) +

t
∫

t−τ

Υ(i)ζ(s) ds + Γ̄(i)w(t),

ζ(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (4.6)

z(t) = Ḡ(i)ζ(t) + Φ(i)w(t), (4.7)

where

Λ∆k(i) =

[

0 A∆k(t, i) + A∆d(t, i)
−I I

]

. (4.8)
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Taking into consideration the standard result

IP−1(i) =

[

Xσ(i) 0
Xd(i) Xx(i)

]

,

Xσ(i) = P
−1

σ (i), Xx(i) = P
−1

x (i), Xd(i) = −XxPd(i)Xσ

(4.9)

we define the following matrices for i ∈ S:

Λok(i) =

[

0 Aod(i) + Bo(i)K(i)
−I I

]

, B̄o(i) =

[

Bo(i)
0

]

, Z(i) =

[

0
Xσ(i)

]

,

Ā
t
od(i) = [At

od(i) I], Nkd(i) = Nad(i) + Nb(i)K(i), N̄kd(i) = [0 Nkd(i)],

Y (i) = [Xd(i) Xx(i)], H(i) = [H2(i) H1(i)], Ndk(i) = Nd(i) + Nb(i)Kd(i),

Ω(τ, i) = G
t(i)G(i) + τE2Qx(i)Et

2
+ ρ(i)τ2

E2

s
∑

m=1

αimQx(m)Et
2

+ ε1(i)N
t
ad(i)Nad(i).

(4.10)
The following theorem establish the main result:

Theorem 4.1 System ΣTK is DDRSS with disturbance attenuation γ > 0 under the
control law (4.3) if given matrix sequence Qx(i) = Q

t
x(i) > 0, i ∈ S , there exist matrices

Y (i), Z(i), H(i), i ∈ S and scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0, γ > 0, i ∈ S, satisfying
the system of LMIs























Π3(i) M̄(i) τE1Ma(i) τE2Ad(i)
Γ̄(i)

+ Y t(i)G(i)Φ(i)
R(i)

M̄ t(i) −ε1(i)I 0 0 0 0

M t
a(i)Et

1 0 −τε2(i)I 0 0 0

τAt
d
(i)Et

2 0 0
−τQx(i)

+ τε2(i)Nd(i)Nt
d(i)

0 0

Γ̄t(i)
+ Φt(i)Gt(i)Y (i)

0 0 0
−γ2I

+ Φt(i)Φ(i)
0

Rt(i) 0 0 0 0 −Y(i)























< 0,

[

−Qx(i) Nd(i)
N

t
d(i) −ε2(i)I

]

< 0,

[

−γ
2
I Φt(i)

Φ(i) −I

]

< 0, i ∈ S, (4.11)

where

Π3(i) = Y
t(i)Āt

od(i) + Āod(i)Y (i) − E1(i)Z
t(i) − Z(i)Et

1 + B̄o(i)H(i)

+ H
t(i)B̄t

o(i) + Y
t(i)Ω(τ, i)Y (i) + αiiE1Z

t(i)E2

+ ε1(i)Y
t(i)N t

ad(i)Nb(i)E
t
1L(i) + ε1(i)L

t(i)E1N
t
b(i)Nb(i)E

t
1L(i)

+ ε1(i)L
t(i)E1N

t
b(i)Nad(i)Y (i)

Y(i) = diag
[

E1Z
t(1)E2 . . . E1Z

t(i − 1)E2 E1Z
t(i + 1)E2 . . . E1Z

t(s)E2

]

,

R(i) =
[√

αi1E1Z
t(1)E2 . . .

√
αisE1Z

t(s)E2

]

,

(4.12)

and the state-feedback gain is given by K(i) = H1(i)[Y (i)E1]
−1

.

Proof Again, let xs(t)
△
= x(s+ t), t−τ ≤ s ≤ t and define the process {(x(t), ηt), t ≥

0} over the state space C̄. It should be observed that {(x(t), ηt), t ≥ 0} is strong
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Markovian [9] so is the process {(ζ(t), ηt), t ≥ 0}. Now for ηt = i ∈ S, and given
Q(i) = Q

t(i) > 0, let the Lyapunov functional V (·) : ℜn × ℜ+ × S → ℜ+ as given by

(3.5) and hence the weak infinitesimal operator ℑζ
2
[·] of the process {ζ(t), ηt, t ≥ 0} for

system (4.6) – (4.9) at the point {t, x, ηt} is given by (3.6). It is easy to see that:

∂V

∂ζ
ζ̇(t) = 2ζ

t(t)IPt(i)Λ∆k(i)ζ(t) + 2ζ
t(t)IPt(i)Γ̄(i)w(t) + 2

t
∫

t−τ

ζ
t(t)IPt(i)Υ(i)ζ(θ) dθ.

(4.13)
Hence, it follows from (3.6) and (4.13) that

ℑζ
2
[V ] = ζ

t(t)

[

Λt
∆k(i)IP(i) + IPt(i)Λ∆k(i) +

s
∑

m=1

αimP̄ (m)

]

ζ(t) (4.14)

+ 2ζ
t(t)IPt(i)Γ̄(i)w(t) + 2

t
∫

t−τ

ζ
t(t)IPt(i)Υ(i)ζ(θ) dθ +

t
∫

t−τ

ζ
t(t)E2Qx(i)Et

2ζ(t) dθ

−
t

∫

t−τ

ζ
t(θ)E2Qx(i)Et

2ζ(θ) dθ +

s
∑

m=1

αim

t
∫

t−τ

t
∫

θ

ζ
t(s)E2Qx(m)E2ζ(s) dsdθ.

By making use of (3.9) – (3.10) into (4.14) and applying Facts 2 – 3, we get

ℑζ
2
[V ] ≤ ζ

t(t)

[

Λt
ok(i)IP(i) + IPt(i)Λok(i) +

s
∑

m=1

αimP̄ (m) + ε1(i)N̄
t
kd(i)N̄kd(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1
A

t
d(i)E

t
2IP(i) + τE2Qx(i)Et

2

+ τ
2
ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε

−1

2
(i)IPt(i)E1Ma(i)M t

a(i)Et
1IP(i)

]

ζ(t)

+ ε
−1

1
(i)IPt(i)M̄(i)M̄ t(i)IP(i) + 2ζ

t(t)IPt(i)Γ̄(i)w(t)

(4.15)

for some scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0. By similarity to Theorem 3.1 the robust
stability of system ΣTK is guaranteed readily follows from (3.12) and Definition 2.1. Thus

we conclude that ℑζ
2
[V ] < 0 for all ζ 6= 0 and ℑζ

2
[V ] ≤ 0 for all ζ. Also, by Dynkin’s

formula [9], one has IE[
∞
∫

0

ℑζ
2
[V ]dt] = IE[V (t, x, i)|t=∞] − V (t, ζ, i)|t=0 ≥ 0. With some

manipulations using (4.7) and (4.15), it is readily seen that:

J (x) ≤ IE

{
∫ ∞

0

[zt(t)z(t) − γ
2
w

t(t)w(t) + ℑζ
2
[V ]]dt

}

(4.16)

≤ IE

{
∫ ∞

0

ζ
t(t)

[

Λt
ok(i)IP(i) + IPt(i)Λok(i) +

s
∑

m=1

αimP̄ (m)

+ τE2Qx(i)Et
2 + ε1(i)N̄

t
kd(i)N̄kd(i) + ε

−1

1
(i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1
A

t
d(i)E

t
2IP(i) + Ḡ

t(i)Ḡ(i)

+ τ
2
ρ(i)E2

s
∑

m=1

αimQx(m)Et
2 + τε

−1

2
(i)IPt(i)E1Ma(i)M t

a(i)Et
1IP(i)

+ [P̄ t(i)Γ̄(i) + Ḡ
t(i)Φ(i)][γ2

I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)]

]

ζ(t)

}

.
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In line of Theorem 3.1, it follows from inequality (4.16) that J (x) < 0 is guaranteed if
the following inequality

Λt
ok(i)IP(i) + IPt(i)Λok(i) +

s
∑

m=1

αimP̄ (m) + τE2Qx(i)Et
2

+ ε1(i)N̄
t
kd(i)N̄kd(i)

+ ε
−1

1
(i)IPt(i)E1M̄(i)M̄ t(i)Et

1IP(i)

+ τIPt(i)E2Ad(i)[Qx(i) − ε2(i)Nd(i)N
t
d(i)]

−1
A

t
d(i)E

t
2IP(i)

+ τ
2
ρ(i)E2

s
∑

m=1

αimQx(m)Et
2

+ τε
−1

2
(i)IPt(i)E1Ma(i)M

t
a(i)Et

1
IP(i) + Ḡ

t(i)Ḡ(i)

+ [IPt(i)Γ̄(i) + Ḡ
t(i)Φ(i)][γ2

I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)] < 0

(4.17)

holds. Premultiplying (4.17) by IP−t(i), postmultiplying by IP−1(i), using (4.9) – (4.10)
and manipulating with the help of Fact 3, we obtain the LMI (4.11). It follows that
system (4.6) – (4.7) is DDRSS with disturbance attenuation γ > 0 under the control
law (4.4).

The following corollary can be readily derived as special case of Theorem 3.1:

Corollary 4.1 The nominal jump system ΣTn is delay dependent stochastically stable
(DDSS) with disturbance attenuation γ > 0 under the control law (4.4) if given matrix
sequence Qx(i) = Q

t
x(i) > 0, i ∈ S , there exist matrices Y (i), Z(i), H(i), i ∈ S,

satisfying the system of LMIs







Π30(i) τE2Ad(i) Γ̄(i) + Y
t(i)G(i)Φ(i) R(i)

τA
t
d(i)Et

2
−τQx(i) 0 0

Γ̄t(i) + Φt(i)Gt(i)Y (i) 0 −γ
2
I + Φt(i)Φ(i) 0

Rt(i) 0 0 −Y(i)






< 0,

[

−γ
2
I Φt(i)

Φ(i) −I

]

< 0, i ∈ S,

(4.18)

where

Π30(i) = Y
t(i)Āt

od(i) + Āod(i)Y (i) − E1Z
t(i) − Z(i)Et

1 + B̄o(i)H(i)

+ H
t(i)B̄t

o(i) + Y
t(i)Ωo(τ, i)Y (i) + αiiE1Z

t(i)E2,

Ωo(τ, i) = G
t(i)G(i) + τE2Qx(i)Et

2
+ ρ(i)τ2

E2

s
∑

m=1

αimQx(m)Et
2
,

and the state-feedback gain is given by K(i) = H1(i)[Y (i)E1]
−1

.

4.2 Delayed state feedback

In this case we use the control law for ηt = i ∈ S as

u(t) = Kd(i)x(t − τ), i ∈ S, (4.19)
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along with the following state transformation

σ(t) = x(t) +

t
∫

t−τ

[A∆d(t, i) + B∆o(t, i)Kd(i)]x(s) ds (4.20)

such that the use of (4.19) – (4.20) into (4.1) with (2.13) – (2.14) yields for ηt = i ∈ S:

σ̇(t) = [A∆o(t, i) + A∆kd(t, i)]x(t) + Γ(i)w(t),

A∆kd(t, i) = A∆d(t, i) + B∆o(t, i)Kd(i).
(4.21)

Simple algebra yields the transformed system:

(ΣTD) : ζ̇(t) = Λ∆d(i)ζ(t) +

t
∫

t−τ

Υk(i)ζ(s) ds + Γ̄(i)w(t),

ζ(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (4.22)

z(t) = Ḡ(i)ζ(t) + Φ(i)w(t), (4.23)

where

Λ∆d(i) =

[

0 A∆o(t, i) + A∆kd(t, i)
−I I

]

, Υk(i) =

[

0 0
0 A∆kd(t, i)

]

. (4.24)

Define

Aokd(i) = Aod(i) + Bo(i)Kd(i), Akd(i) = Ad(i) + Bo(i)Kd(i),

L(i) = [L2(i) L1(i)],

Λod(i) =

[

0 Aokd(i)
−I I

]

, Ndr(i) = Nd(i) + Nb(i)L(i)NR(i).

(4.25)

Taking into account the matrices of (4.9) – (4.10), we establish the following theorem:

Theorem 4.2 System ΣTD is DDRSS with disturbance attenuation γ > 0 under
the control law (4.19) if given matrix sequence Qx(i) = Q

t
x(i) > 0, i ∈ S , there exist

matrices Y (i), Z(i), L(i), R(i), i ∈ S and scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0, γ > 0,
i ∈ S, satisfying the system of LMIs

























Π4(i) M̄(i) τE1Ma(i)
τE2Ad(i)

+ τE2Bo(i)
× L(i)E2R(i)

Γ̄(i) + Y t(i)
× G(i)Φ(i)

R(i)

M̄ t(i) −ε1(i)I 0 0 0 0

M t
a(i)Et

1 0 −τε2(i)I 0 0 0

τAt
d(i)Et

2
+ τRt(i)Et

2Lt(i)Bt
o(i)Et

2
0 0

−τQx(i) + τε2(i)
× Ndr(i)Nt

dr(i)
0 0

Γ̄t(i) + Φt(i)Gt(i)Y (i) 0 0 0
−γ2I

+ Φt(i)Φ(i)
0

Rt(i) 0 0 0 0 −Y(i)

























< 0,

[

−Qx(i) Ndr(i)
N

t
dr(i) −ε2(i)I

]

< 0,

[

−Y (i)E1 I

I −R(i)

]

≥ 0,

[

−γ
2
I Φt(i)

Φ(i) −I

]

< 0, i ∈ S, (4.26)
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where

Π4(i) = Y
t(i)Āt

od(i) + Āod(i)Y (i) − E1Z
t(i) − Z(i)Et

1 + B̄o(i)L(i)

+ L
t(i)B̄t

o(i) + Y
t(i)Ω(τ, i)Y (i) + αiiE1Z

t(i)E2

+ ε1(i)Y
t(i)N t

ad(i)Nb(i)E
t
1
L(i) + ε1(i)L

t(i)E1N
t
b(i)Nb(i)E

t
1
L(i)

+ ε1(i)L
t(i)E1N

t
b(i)Nad(i)Y (i)

(4.27)

and the delayed-feedback gain is given by Kd(i) = L(i)E1R(i).

Proof By similarity to Theorem 3.1 and letting the Lyapunov functional V (·) be

given by (3.5), the weak infinitesimal operator ℑζ
3
[·] of the process {ζ(t), ηt, t ≥ 0} for

system (4.22) – (4.23) at the point {t, x, ηt} is given by (3.6). Hence, it is easy to see
that:

∂V

∂ζ
ζ̇(t) = 2ζ

t(t)IPt(i)Λ∆d(i)ζ(t) + 2ζ
t(t)IPt(i)Γ̄(i)w(t)

+ 2

t
∫

t−τ

ζ
t(t)IPt(i)Υk(i)ζ(θ) dθ.

(4.28)

Hence, it follows from (3.6) and (4.27) that

ℑζ
3
[V ] = ζ

t(t)

[

Λt
∆d(i)IP(i) + IPt(i)Λ∆d(i) +

s
∑

m=1

αimP̄ (m)

]

ζ(t)

+ 2ζ
t(t)IPt(i)Γ̄(i)w(t) + 2

t
∫

t−τ

ζ
t(t)IPt(i)Υk(i)ζ(θ) dθ

+

t
∫

t−τ

ζ
t(t)E2Qx(i)Et

2
ζ(t) dθ −

t
∫

t−τ

ζ
t(θ)E2Qx(i)Et

2
ζ(θ) dθ

+

s
∑

m=1

αim

t
∫

t−τ

t
∫

θ

ζ
t(s)E2Qx(m)Et

2ζ(s) dsdθ.

(4.29)

Following parallel developments to Theorem 4.1, we applying Facts 2 – 3, use (3.9), (4.7),
(4.10) and (4.24) – (4.25) and manipulate, we get

J (x) ≤ IE

{

∞
∫

0

ζ
t(t)

[

Λt
od(i)IP(i) + IPt(i)Λod(i) +

s
∑

m=1

αimP̄ (m) (4.30)

+ τE2Qx(i)Et
2 + ε1(i)N̄

t
kd(i)N̄kd(i) + ε

−1

1
(i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Akd(i)[Qx(i) − ε2(i)Ndk(i)N t
dk(i)]−1

A
t
kd(i)E

t
2
IP(i)

+ τ
2
ρ(i)E2

s
∑

m=1

αimQx(m)Et
2

+ τε
−1

2
(i)IPt(i)E1Ma(i)M

t
a(i)Et

1
IP(i) + Ḡ

t(i)Ḡ(i)

+ [P̄ t(i)Γ̄(i) + Ḡ
t(i)Φ(i)][γ2

I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)]

]

ζ(t)

}
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for some scalars ε1(i) > 0, ε2(i) > 0, ρ(i) > 0. It follows from inequality (4.30) that
J (x) < 0 is guaranteed if the following inequality

Λt
od(i)IP(i) + IPt(i)Λod(i) +

s
∑

m=1

αimP̄ (m) + τE2Qx(i)Et
2

+ ε1(i)N̄
t
kd(i)N̄kd(i)

+ ε
−1

1
(i)IPt(i)M̄(i)M̄ t(i)IP(i)

+ τIPt(i)E2Akd(i)[Qx(i) − ε2(i)Ndk(i)N t
dk(i)]−1

A
t
kd(i)Et

2IP(i)

+ τ
2
ρ(i)E2

s
∑

m=1

αimQx(m)Et
2

+ τε
−1

2
(i)IPt(i)E1Ma(i)M

t
a(i)Et

1
IP(i) + Ḡ

t(i)Ḡ(i)

+ [IPt(i)Γ̄(i) + Ḡ
t(i)Φ(i)][γ2

I − Φt(i)Φ(i)]−1[Γ̄t(i)IP(i) + Φt(i)Ḡ(i)] < 0

(4.31)

holds. Premultiplying (4.17) by IP−t(i), postmultiplying by IP−1(i), using (4.27) and
manipulating with the help of Fact 3, we obtain the LMI (4.26). It follows that system
(4.22) – (4.23) is DDRSS with disturbance attenuation γ > 0 under the state-delayed
control law (4.19).

The following corollary can be readily derived as special case of Theorem 3.1:

Corollary 4.2 The nominal jump system ΣTn is delay dependent stochastically stable
(DDSS) with disturbance attenuation γ > 0 under the control law (4.19) if given matrix
sequence Qx(i) = Q

t
x(i) > 0, i ∈ S , there exist matrices Y (i), Z(i), L(i), R(i), i ∈ S,

satisfying the system of LMIs









Π40(i) τE2[Ad(i) + Bo(i)L(i)E2R(i)] Γ̄(i) + Y t(i)G(i)Φ(i) R(i)

τAt
d
(i)Et

2 −τQx(i) 0 0

Γ̄t(i) + Φt(i)Gt(i)Y (i) 0 −γ2I + Φt(i)Φ(i) 0

Rt(i) 0 0 −Y(i)









< 0,

[

−γ
2
I Φt(i)

Φ(i) −I

]

< 0,

[

−Y (i)E1 I

I −R(i)

]

≥ 0, i ∈ S, (4.32)

where

Π40(i) = Y
t(i)Āt

od(i) + Āod(i)Y (i) − E1Z
t(i) − Z(i)Et

1 + B̄o(i)L(i)

+ L
t(i)B̄t

o(i) + Y
t(i)Ωo(τ, i)Y (i) + αiiE1Z

t(i)E2

(4.33)

and the delayed-feedback gain is given by Kd(i) = L(i)NR(i).

4.2 Example 2

We use the data of Example 1 in addition to

Bo(1) =

[

1 0
0 1

]

, Bo(2) =

[

1 0
0 2

]

, Bo(3) =

[

2 0
0 1

]

,

Nb(1) = [0.1 0.3], Nb(2) = [0.2 0.2], Nb(3) = [0.3 0.1]
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and the level of disturbance attenuation γ = 1.35. For the data under consideration and
in view of Theorem 4.1, the feasible solutions of LMIs (4.11) using the software LMILab
[7] yields the gain matrices

K(1) =

[

0.8532 0.9260
−1.4317 −1.2628

]

, K(2) =

[

0.9145 −0.6128
0.5844 1.9912

]

,

K(3) =

[

1.1425 0.6603
−0.3123 0.4912

]

for

ε1(1) = 1.3345, ε2(1) = 0.9144, ρ(1) = 2.4367,

ε1(2) = 2.3567, ε2(2) = 2.5433, ρ(2) = 1.5321,

ε1(3) = 5.2355, ε2(3) = 0.6673, ρ(3) = 2.3226,

and τ ≤ 0.4772.
On the other hand, considering Theorem 4.2 we solve the LMIs (4.26) to get the gain

matrices

Kd(1) =

[

0.0454 −0.9231
0.0422 0.9123

]

, Kd(2) =

[

−0.1636 0.2628
−0.5628 1.2182

]

,

Kd(3) =

[

0.3144 1.1268
−0.7435 −0.8655

]

for

ε1(1) = 3.4225, ε2(1) = 0.7428, ρ(1) = 1.3452,

ε1(2) = 1.7111, ε2(2) = 1.6655, ρ(2) = 3.0987,

ε1(3) = 4.0205, ε2(3) = 0.0876, ρ(3) = 4.2247

and τ ≤ 0.4653.

5 H∞-Output Feedback Controller

In this section, we consider the design of an H∞-output feedback controller for the
jumping system for η = i ∈ S

ẋ(t) = A∆o(t, i)x(t) + A∆d(t, i)x(t − τ) + B∆o(t, i)u(t) + Γ(i)w(t),

x(t) = φ(t), t ∈ [−τ, 0], t ≥ 0, (5.1)

y(t) = Co(i)x(t) + Do(i)w(t), (5.2)

z(t) = G(i)x(t) + Φ(i)w(t), (5.3)

where y(t) ∈ ℜp is the measured output and the matrices Co(i), Do(i) are constant with
appropriate dimensions. Note that system (5.1) – (5.3) is more general (2.3) – (2.4) for
control design purposes. A dynamic output feedback controller for i ∈ S, has the form:

ẋC(t) = AC(i)xC(t) + BC(i)[y(t) − Co(i)xC(t)],

u(t) = CC(i)xC(t), (5.4)
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where xC(t) ∈ ℜn is the state of the controller and the matrices AC(i) ∈ ℜn×n, BC(i) ∈
ℜn×p, CC(i) ∈ ℜm×n are controller matrices to be determined. Combining (5.1) – (5.4)
for i ∈ S, we obtain the closed-loop system

ξ̇(t) = AJC∆(t, i)ξ(t) + AJCd∆(t, i)ξ(t − τ(t)) + ΓJC∆(t, i)w(t), t ≥ 0,

ξ(t) = φJC(t), t ∈ [−τ
∗
, 0],

z(t) = Ḡ(i)ξ(t) + Φ(i)w(t),

(5.5)

where

ξ(t) =

[

x(t)
xC(t)

]

∈ ℜ2n
,

AJCd∆(t, i) = Ād(i) + M̄JC(i)∆(t, i)N̄JCd(i), (5.6)

AJC∆(t, i) =

[

A∆o(i) B∆o(i)CC(i)
BC(i)Co(i) AC(i) − BC(i)Co(i)

]

= AJCo(i) + M̄JC(i)∆(t, i)N̄JCa(i),

ΓJC∆(t, i) =

[

Γ(i)
BCDo(i)

]

= ΓJCo(i) + M̄a(i)∆aN̄d(i)

and

AJCo(i) =

[

Ao(i) Bo(i)CC(i)
BC(i)Co(i) AC(i) − BC(i)Co(i)

]

,

M̄JC(i) =

[

0
M̄a

]

, N̄JCd = [0 N̂d],

M̄a(i) =

[

Ma(i) 0
0 0

]

, N̂a(i) =

[

Na(i) 0
0 0

]

,

N̂d(i) =

[

Nd(i) 0
0 0

]

, Ād(i) =

[

Ad(i) 0
0 0

]

, ΓJCo(i) =

[

Γ(i)
BCDo(i)

]

.

(5.7)

Now for each possible value ηt = i, i ∈ S, we introduce the following state transformation

µ(t) = ξ(t) +

t
∫

t−τ

AJCd∆(t, i)ξ(s) ds (5.8)

into (5.5) to yield

µ̇(t) = [AJC∆(t, i) + AJCd∆(t, i)]ξ(t) + Γ̄JCo(i)w(t). (5.9)

Define the augmented state-vector

ω(t) =

[

µ(t)
ξ(t)

]

∈ ℜ4n
. (5.10)

By combining (5.1) and (5.8) – (5.10), we obtain the transformed system

ω̇(t) = ΛJC∆(i)ω(t) +

t
∫

t−τ

ΥJC∆(i)ω(s) ds + ΓJCo(i)w(t),

ω(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (5.11)

z(t) = Ĝ(i)ω(t) + Φ(i)w(t), (5.12)
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where

ΛJC∆(i) =

[

0 AJC∆(t, i) + AJCd∆(t, i)
−I I

]

= ΛJCo(i) + M̄JC(i)∆(t, i)N̄JCe(i),

ΥJC∆(i) =

[

0 0
0 AJCd∆(t, i)

]

= ΥJCo(i) + M̄JC(i)∆(t, i)N̄JCd, (5.13)

ΛJCo(i) =

[

0 AJCo(i) + Ād(i)
−I I

]

, ΥJCo(i) =

[

0 0
0 Ād(i)

]

,

Γ̄JCo(i) =

[

ΓJCo(i)
0

]

, N̄JCe = [N̂d(i) + N̂a(i) 0], Ĝ(i) = [0 Ḡ(i)].

Given matrices

0 < Pµ(i) ∈ ℜ2n
, Pd(i) ∈ ℜ2n

, Pξ(i) ∈ ℜ2n
, i ∈ S,

P(i) =

[

Pµ(i) 0
Pd(i) Pξ(i)

]

∈ ℜ4n
(5.14)

such that for i ∈ S

P−1(i) =

[

Xµ(i) 0
Xd(i) Xξ(i)

]

, Xµ(i) =

[

Xµ1(i) 0
0 Xµ2

]

,

Xξ(i) =

[

Xξ1(i) 0
0 Xξ2

]

, Xd(i) =

[

Xd1(i) 0
0 Xd2

]

,

Xµ(i) = P−1

µ (i), Xd(i) = −Xµ(i)Pd(i)Xξ(i), Xξ(i) = P−1

ξ (i)

(5.15)

and define the matrices:

Σ(i) = [Xµ(i) Xξ(i)], Āt
JCod(i) = [At

JCo(i) + Ā
t
d(i) I], Ξ(i) =

[

0
Xµ(i)

]

,

Θ(τ, i) = τE2IR(i)Et
2 + ε1(i)N̄

t
JCd(i)N̄JCd(i) (5.16)

+ Ḡ
t(i)Ḡ(i) + τ

2
ρ(i)E2

s
∑

m=1

αimIR(m)Et
2
.

It follows from Theorem 3.1 that given matrix sequence 0 < IR(i) = IR
t(i), i ∈ S the

transformed system (5.11) – (5.12) is DDRSS with disturbance attenuation γ > 0 if the
algebraic inequality:

Σt(i)Λt
JCod(i) + ΛJCod(i)Σ(i) − E1Ξ

t(i) − Ξ(i)Et
1

+ E1Ξ
t(i)E2

( s
∑

m=1

αim[Et
2
Ξ(m)]−1

)

E
t
2
Ξ(i)Et

1
+ ε

−1

1
(i)M̄a(i)E1M̄

t
a(i)Et

1

+ τε
−1

2
(i)M̄JC(i)M̄ t

JC(i) + Σt(i)Θ(τ, i)Σ(i)(i)

+ τE2Ād(i)[IR(i) − ε2(i)N̄JCd(i)N̄
t
JCd(i)]

−1
Ā

t
d(i)E

t
2

+ [Γ̄JCo(i) + X t(i)Ĝt(i)Φ(i)][γ2
I − Φt(i)Φ(i)]−1[Γ̄t

JCo(i) + Φt(i)Ĝ(i)X ]

△
= IM(τ, i) =

[

IMµ(τ, i) IM c(τ, i)

IM
t
c(τ, i) IM ξ(τ, i)

]

< 0

(5.17)
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is satisfied for some positive scalars ε1(i), ε2(i), ρ(i), i ∈ S, where

IMµ(τ, i) =

[

IMµ1(τ, i) IMµ3(τ, i)

IM
t
µ3(τ, i) IMµ2(τ, i)

]

, (5.18)

IM c(τ, i) =

[

IM c1(τ, i) IM c3(τ, i)
IM c4(τ, i) IM c2(τ, i)

]

,

IM ξ(τ, i) =

[

IM ξ1(τ, i) 0
0 IM ξ2(τ, i)

]

,

Ωµ(τ, i) = τIR(i) + ǫ1(i)[Na(i) + Nd(i)][N
t
a(i) + N

t
d(i)] + G

t(i)G(i)

+ τ
2
ρ(i)

∑

m

αimIR(m),

IMµ1(τ, i) = [Ao(i) + Ad(i)]Xd1(i) + X t
d1

(i)[At
o(i) + A

t
d(i)]

+ X t
µ1(i)

∑

m

X−1

µ1
(m)Xµ1(i) + ǫ

−1
Ma(i)M t

a(i) + Γ(i)[γ2
I − Φt(i)Φ(i)]−1Γt(i),

IMµ3(τ, i) = Bo(i)CC(i)Xd2(i) + X t
d1

(i)Ct
o(i)B

t
C(i)

+ Γ(i)[γ2
I − Φt(i)Φ(i)]−1[Dt

o(i)B
t
C(i) + Φt(i)G(i)Xd2(i)],

IMµ2(τ, i) = [AC(i) − BC(i)Co(i)]Xd2(i) + X t
d2[A

t
C(i) − C

t
o(i)B

t
C(i)]

+ X t
µ2

(i)Ωµ(τ, i)Xµ2(i) + X t
µ2

(i)
∑

m

αimX−1

µ2
(m)Xµ2(i),

IM c1(τ, i) = −X t
µ1(i) + X t

d1(i) + [Ao(i) + Ad(o)]X t
µ1(i),

IM c2(τ, i) = −X t
µ2

(i) + X t
d2

(i) + [AC(i) − BC(i)Co(i)]Xµ2(i)

+ [BC(i)Do(i) + X t
d2

(i)Gt(i)Φ(i)][γ2
I − Φt(i)Φ(i)]−1Φt(i)G(i)Xµ2(i)

+ X t
µ2

(i)Ωµ(τ, i)Xµ2(i) + X t
µ2

(i)
∑

m

αimX−1

µ1
(m)Xξ2(i),

IM c4(τ, i) = BC(i)Co(i)X t
µ1

(i),

IM c3(τ, i) = Γ(i)[γ2
I − Φt(i)Φ(i)]−1Φt(i)G(i)X t

µ2
(i) + Bo(i)CC(i)X t

µ2
(i),

IM ξ1(τ, i) = Xµ1(i) + X t
µ1

(i) + τǫ
−1

2
Ma(i)M t

a(i) + τAd(i)[IR(i) − ǫ2NodN
t
od]

−1
A

t
d(i),

IM ξ2(τ, i) = Xµ2(i) + X t
µ2(i) + X t

µ2(i)Ωµ(τ, i)Xµ2(i)

+ X t
µ2(i)G

t(i)Φ(i)[γ2
I − Φt(i)Φ(i)]−1Φt(i)G(i)Xµ2(i).

Our objective is to develop conditions that can be used for computing the gains of
the dynamic output feedback controller. The following theorem summarizes the main
solvability conditions for controller (5.4) guaranteeing that the closed-loop system (5.11) –
(5.12) is delay-dependent robustly stochastically stable with disturbance attenuation γ.

Theorem 5.1 Consider the closed-loop system (5.11) – (5.12) with matrices described
in (5.6) – (5.7) and (5.13) – (5.16). Given scalars γ > 0, ε1(i) > 0, ε2(i) > 0, ρ(i), i ∈ S,
there exists a dynamic output feedback controller of the type (5.4) such that the closed-loop
system (5.11) – (5.12) is DDRSS with a disturbance attenuation γ if there exist matrices
Xµ1(i), Xµ2(i), Xξ1(i), Xξ2(i), Xd1(i), Xd2(i), i ∈ S satisfying the following system of
simultaneous matrix inequalities and equations
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



Xξ1(i) + X t
ξ1(i) τMa(i) τAd(i)

τM
t
a(i) −ǫ2I 0

τA
t
d(i) 0 −[IR − ǫ2NodN

t
od]



 < 0, (5.19)









[Ao(i) + Ad(i)]Xd1(i)
+ X

t
d1(i)[Ao(i) + Ad(i)]t + αiiX

t
µ1(i)

Ma(i) Γ(i) W1(i)

M t
a(i) −ǫ1I 0

Γt(i) 0 −[γ2I − Φt(i)Φ(i)] 0

Wt
1(i) 0 0 −V1(i)









< 0, (5.20)

[

Xµ2(i) + X t
µ2

(i) + X t
µ2

(i)Ωµ(τ, i)Xµ2(i) X t
µ2

(i)Gt(i)Φ(i)

Φt(i)G(i)Xµ2(i) −[γ2
I − Φt(i)Φ(i)]

]

< 0, (5.21)









[AC(i) − BC(i)Co(i)]Xd2(i)

+ X t
d2(i)[AC(i) − BC(i)Co(i)]

t + αiiX t
µ2(i)

X t
µ2

(i) W2(i)

Xµ2(i) −Ωµ(τ, i) 0
Wt

2
(i) 0 −V2(i)









< 0, (5.22)

Xd1(i) −Xµ1(i) + X t
ξ1(i)[Ao(i) + Ad(i)]

t = 0, (5.23)

Xd2(i) −Xµ2(i) + X t
ξ2(i)[AC(i) − BC(i)Co(i)]

t + Xξ2(i)Ωµ(τ, i)Xµ2(i) = 0. (5.24)

Then the associated controller matrices are given by:

AC(i) = Ao(i),

BC(i) = −X t
d2(i)G

t(i)[γ2
I − Φt(i)Φ(i)]Φ(i)D†

o(i),

CC(i) = B
†
o(i)Γ(i)[γ2

I − Φt(i)Φ(i)]Φ(i)G(i),

(5.25)

where

V1(i) = diag
[

X t
µ1

(1) . . .X t
µ1

(i − 1) X t
µ1

(i + 1) . . .X t
µ1

(s)
]

,

V2(i) = diag
[

X t
µ2

(1) . . .X t
µ2

(i − 1) X t
µ2

(i + 1) . . .X t
µ2

(s)
]

,

W1(i) =
[√

αi1X t
µ1(1) . . .

√
αisX t

µ1(s)
]

,

W2(i) =
[√

αi1X t
µ1

(1) . . .
√

αisX t
µ1

(s)
]

and B
†
o(i) and D

†
o(i) are the pseudo-inverse of Do(i) and Bo(i), respectively.

Proof We start from matrix inequality (5.17) and using (5.18) with standard alge-
braic manipulations, it follows that the choice of the controller matrices (5.25) subject
to inequalities (5.19) – (5.24) ensures that IM(τ, i) < 0, i ∈ S and hence guarantees
that system (5.11) – (5.12) is DDRSS with a disturbance attenuation γ and the proof is
completed.

In the absence of uncertainties, the closed-loop system (5.11) – (5.12) reduces to

ω̇(t) = ΛJCo(i)ω(t) +

t
∫

t−τ

ΥJCo(i)ω(s) ds + ΓJCo(i)w(t),

ω(t) = φ̄(t), t ∈ [−2τ, 0], ηo = i, t ≥ 0, (5.26)

z(t) = Ĝ(i)ω(t) + Φ(i)w(t) (5.27)

and for which the following corollary holds:
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Corollary 5.1 Consider the closed-loop system (5.26) – (5.27) with matrices descri-
bed in (5.6) – (5.7) and (5.13) – (5.16). Given scalars ρ(i) > 0, i ∈ calS, γ > 0, there
exists a dynamic output feedback controller of the type (5.4) such that the closed-loop
system (5.26) – (5.27) is DDRSS with a disturbance attenuation γ if there exist matrices
Xµ1(i), Xµ2(i), Xξ1(i), Xξ2(i), Xd1(i), Xd2(i), i ∈ S satisfying the following system of
simultaneous matrix inequalities and equations

[

Xξ1(i) + X t
ξ1(i)(i) τAd(i)

τA
t
d(i) −IR

]

< 0, (5.28)







[Ao(i) + Ad(i)]Xd1(i)

+ X
t
d1(i)[Ao(i) + Ad(i)]t + αiiX

t
µ1(i)

Γ(i) W1(i)

Γt(i) −[γ2I − Φt(i)Φ(i)] 0

Wt
1(i) 0 −V1(i)






< 0, (5.29)

[

Xµ2(i) + X t
µ2

(i) + X t
µ2

(i)Ω̄µ(τ, i)Xµ2(i) X t
µ2

(i)Gt(i)Φ(i)

Φt(i)G(i)Xµ2(i) −[γ2
I − Φt(i)Φ(i)]

]

< 0, (5.30)









[AC(i) − BC(i)Co(i)]Xd2(i)

+ X t
d2(i)[AC(i) − BC(i)Co(i)]

t + αiiX t
µ2(i)

X t
µ2

(i) W2(i)

Xµ2(i) −Ω̄µ(τ, i) 0
Wt

2(i) 0 −V2(i)









< 0, (5.31)

Xd1(i) −Xµ1(i) + X t
ξ1(i)[Ao(i) + Ad(i)]

t = 0, (5.32)

Xd2(i) −Xµ2(i) + X t
ξ2(i)[AC(i) − BC(i)Co(i)]

t + Xξ2(i)Ω̄µ(τ, i)Xµ2(i) = 0, (5.33)

where
Ω̄µ(τ, i) = τIR(i) + G

t(i)G(i) + τ
2
ρ(i)

∑

m

αimIR(m) (5.34)

and the associated controller matrices are given by (5.25).

5.1 Example 3

We consider the multi-reach water quality system with the data given in Examples 1 and
2 in addition to the following

Co(1) =

[

2 0
0 2

]

, Co(2) =

[

2 0
0 2

]

, Co(3) =

[

2 0
0 2

]

,

Do(1) =

[

1 0
0 1

]

, Do(2) =

[

1 0
0 1

]

, Do(3) =

[

1 0
0 1

]

.

With the aid of the LMILab [7], the feasible solutions of LMIs (5.19) – (5.24) yields the
controller matrices:

AC(1) =

[

−0.2 0
0 −0.09

]

, AC(2) =

[

−2 −1
0 −2

]

, AC(3) =

[

−1.9 0
0 −1

]

,

BC(1) =

[

0.7854 −1.3246
0.2234 −2.0045

]

, BC(2) =

[

−1.1157 0.8006
0.7256 −1.7654

]

,
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BC(3) =

[

0.3423 −1.0206
−0.5494 3.1145

]

,

CC(1) =

[

0.2238 0.0912
0.5412 0.7644

]

, CC(2) =

[

0.3458 0.9442
−0.1244 −0.4564

]

,

CC(3) =

[

−0.8121 0.8724
0.8126 −0.6944

]

for τ ≤ 0.6545.

6 Conclusion

This paper has introduced a new transformation method for the H∞ analysis and syn-
thesis of a class of uncertain time-delay systems with Markovian jump parameters. It has
been established that the new method exhibits the delay-dependence properties of the
uncertain jumping system and therefore provides a tractable methodology for stability
analysis, stabilization and output feedback control. All the developed results have been
cast into the format of linear matrix inequalities and several examples have been worked
out to illustrate the theory.
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Abstract: In this paper, the stabilization problem is considered for a class
of nonlinear continuous stochastic systems with state delays. The purpose
of this problem is to design a state feedback controller such that the closed-
loop system is exponentially stable (or exponentially ultimately bounded) in
the mean square, for all admissible nonlinearities and time-delays. We first
investigate the sufficient conditions for the nonlinear stochastic time-delay
systems to be stable, and then derive the explicit expression of the desired
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1 Introduction

Nonlinear stochastic control has long been an important research field that has attracted
many researchers, and enormous results have been published in the literature. In partic-
ular, the fundamental nonlinear stochastic stabilization issue has received considerable
research interests, and has found successful applications in control and communication
problems, such as attitude control of satellites and missile control, macroeconomic system
control, chemical process control, etc., see [8] for a survey.
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Recently, there have appeared many methods to tackle different kinds of nonlinear
stochastic systems. For example, in [2], a minimax dynamic game approach has been de-
veloped for the controller design problem of the nonlinear stochastic systems that employ
risk-sensitive performance criteria. The stabilization problem has been investigated in
[3, 4] for nonlinear stochastic systems, and a stochastic counterpart of the input-to-state
stabilization results has been provided. In [7], under an infinite-horizon risk-sensitive
cost criterion, the problem of output feedback control design has been studied for a class
of strict feedback stochastic nonlinear systems. In [16], the decentralized global stabiliza-
tion problem has been dealt with by using a Lyapunov-based recursive design method.
On the other hand, the dual nonlinear stochastic filtering problem has also been an ac-
tive area for three decades [8], and a number of nonlinear filtering approaches have been
proposed in the literature, such as extended Kalman filters, bound-optimal filters [13],
exponentially bounded filters [14, 20], etc.

It is now a recognized fact that the time delay is frequently a source of instability and
encountered in various engineering systems such as chemical processes, long transmission
lines in pneumatic systems, and so on. Recently, increasing attention has been focused on
robust and/or H∞ control problems for linear systems with certain types of time-delays,
see [1] for a survey. Within the stochastic framework, the stability analysis problem
for linear time-delay systems has been studied by many authors. For example, in [11],
the stability analysis problem for linear stochastic delay interval systems with Markovian
switching has been considered. In [17], an LMI approach has been developed to cope with
the robust H∞ control problem for linear uncertain stochastic systems with state delay.
As for nonlinear stochastic time-delay systems, the related results have been scattered,
and most of the results have been concerned with the stability analysis issue, see e.g.[5, 9].
So far, the stabilization problem for general nonlinear time-delay systems has not been
fully investigated and remains important.

In this paper, we will consider the stabilization problem for a class of nonlinear contin-
uous stochastic systems with state delays. Such a class of systems have been intensively
investigated in [18 – 20] for the nonlinear filtering problems. An effective algebraic ma-
trix inequality approach is proposed to design the state feedback controllers, such that
the closed-loop system is stochastically exponentially stable (or exponentially ultimately
bounded) in the mean square, for all admissible nonlinearities and time-delays. We
first investigate the sufficient conditions for the nonlinear stochastic systems to be ex-
ponentially stable (or exponentially ultimately bounded), and then derive the explicit
expression of the desired controller gains. A numerical simulation example is provided
to show the usefulness and effectiveness of the proposed design method.

Notation The notations in this paper are quite standard. R
n and R

n×m denote,
respectively, the n dimensional Euclidean space and the set of all n × m real matri-
ces. The superscript “T” denotes the transpose and the notation X ≥ Y (respectively,
X > Y ) where X and Y are symmetric matrices, means that X − Y is positive
semi-definite (respectively, positive definite). I is the identity matrix with compati-
ble dimension. We let τ > 0 and C([−τ, 0]; R

n) denote the family of continuous
functions ϕ from [−τ, 0] to R

n with the norm ‖ϕ‖ = sup
−τ≤θ≤0

|ϕ(θ)|, where | · | is

the Euclidean norm in R
n. If A is a matrix, denote by ‖A‖ its operator norm, i.e.,

‖A‖ = sup{|Ax| : |x| = 1} =
√

λmax(ATA) where λmax(·) (respectively, λmin(·)) means
the largest (respectively, smallest) eigenvalue of A. l2[0,∞] is the space of square in-
tegrable vector. Moreover, let (Ω,F , {Ft}t≥0, P ) be a complete probability space with
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a filtration {Ft}t≥0 satisfying the usual conditions (i.e., the filtration contains all P -
null sets and is right continuous). Denote by L

p
F0

([−τ, 0]; R
n) the family of all F0-

measurable C([−τ, 0]; R
n)-valued random variables ξ = {ξ(θ) : − τ ≤ θ ≤ 0} such that

sup
−τ≤θ≤0

E|ξ(θ)|p < ∞ where E{·} stands for the mathematical expectation operator with

respect to the given probability measure P . Sometimes, the arguments of a function will
be omitted in the analysis when no confusion can arise.

2 Problem Formulation and Assumptions

Consider the following nonlinear continuous-time state delayed stochastic system in a
fixed complete probability space (Ω,F , {Ft}t≥0, P ):

dx(t) = [f(x(t), u(t)) + g(x(t − τ))] dt + Dx(t) dw(t), (1)

x(t) = ϕ(t), t ∈ [−τ, 0], (2)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the deterministic input, y(t) ∈ R
p is the

measurement output, and f(·, ·) ∈ R
n and g(·) ∈ R

n are nonlinear vector functions.
τ > 0 denotes the state delay and ϕ(t) is a continuous vector valued initial function.
Here, w(t) = [w1(t)w2(t) . . . wm(t)]T ∈ R

m is an m-dimensional Brownian motion.
The initial state x(0) has the mean x̄(0) and covariance P (0), and is uncorrelated
with w(t). D is a known constant matrices with appropriate dimensions.

Assumption 1 The nonlinear vector functions f(·, ·) and g(·) are assumed to satisfy
f(0, 0) = 0, g(0) = 0 and

∣

∣

∣

∣

f(x(t), u(t)) − [ A B ]

[

x(t)
u(t)

] ∣

∣

∣

∣

≤ a11

∣

∣

∣

∣

[

x(t)
u(t)

] ∣

∣

∣

∣

+ a12, (3)

|g(x(t − τ)) − Adx(t − τ)| ≤ a21|x(t − τ)| + a22, (4)

where A ∈ R
n×n, B ∈ R

n×m, Ad ∈ R
n×n are known constant matrices, and a11 > 0,

a12 ≥ 0, a21 > 0 and a22 ≥ 0 are known scalars.

Remark 1 The system (1) – (2) can be used to represent many important physical
nonlinear systems subject to inherent state delays and stochastic exogenous noises with
known statistics. Similar to [18 – 20], the nonlinear descriptions (3) – (4) quantify the ma-
ximum possible derivations from a linear model with (A, B, Ad) as its system parameter
matrices, and are more general than those of [13], [14].

When a state feedback control law

u(t) = Kx(t) (5)

is applied to the system (1) – (2), the closed-loop system is governed by

dx(t) = [f(x(t), Kx(t)) + g(x(t − τ))] dt + Dx(t) dw(t). (6)

For notation convenience, we give the following definitions:

Ac = A + BK, (7)

p(t) = f(x(t), Kx(t)) − Acx(t), (8)

q(t) = g(x(t − τ)) − Adx(t − τ), (9)
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and then obtain from (6) that

dx(t) = [Acx(t) + Adx(t − τ) + p(t) + q(t)] dt + Dx(t) dw(t). (10)

Now, let x(t; ξ) denote the state trajectory from the initial data x(θ) = ξ(θ) on
−τ ≤ θ ≤ 0 in L

2

F0
([−τ, 0]; R

n). It is clear from Assumption 1 that the system (10)

admits a trivial solution x(t; 0) ≡ 0 corresponding to the initial data ξ = 0.
Furthermore, we introduce the following concepts for stability and boundedness in the

mean square.

Definition 1 Consider the system (10). For every ξ ∈ L
2

F0
([−τ, 0]; R

n),

(1) the trivial solution is exponentially stable in the mean square if there exist con-
stants α > 0 and β > 0 such that

E|x(t; ξ)|2 ≤ αx
−βt sup

−τ≤θ≤0

E|ξ(θ)|2; (11)

(2) the trivial solution is exponentially ultimately bounded in the mean square if
there exist constants α > 0, β > 0, γ > 0 such that

E|x(t; ξ)|2 ≤ αx
−βt sup

−τ≤θ≤0

E|ξ(θ)|2 + γ. (12)

The objective of this paper is to design a controller for the nonlinear time-delay sys-
tem (1) – (2), such that the closed-loop systems is exponentially stable (or exponentially
ultimately bounded) in the mean square. More specifically, we are interested in designing
a controller parameter K such that:

(1) in the case of a12 = 0 and a22 = 0 (i.e., there are no bounded nonlinearities
and uncertain disturbances), the solution of the system (10) is guaranteed to be
exponentially stable;

(2) in the case of a12 6= 0 or a22 6= 0 (i.e., there are bounded nonlinearities or
uncertain disturbances), the solution of the system (10) is guaranteed to be ex-
ponentially ultimately bounded in the mean square.

3 Main Results and Proofs

In this section, the controller analysis problem will be considered firstly. Given a con-
troller structure, we shall establish the conditions under which the system dynamics is
stochastically exponentially stable (or exponentially ultimately bounded) in the mean
square. Then, we shall take the controller design problem into account, whose purpose is
to derive the explicit expression for the expected controller gain in terms of the positive
definite solution to an algebraic matrix inequality.

The following theorem will play an essential role in the design of the expected con-
trollers. It reveals that the exponential stability (or exponential ultimate boundedness)
of the controlled nonlinear time-delay stochastic system (10) can be guaranteed if a pos-
itive definite solution to a modified algebraic Riccati-like matrix inequality (quadratic
matrix inequality) is known to exist.
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Theorem 1 Let the controller parameter K be given. If there exist positive scalars
ε1, ε2, ε3, ε4 such that the following matrix inequality

A
T

c P + PAc + D
T
PD + (ε1 + ε2)P

2 + 4ε
−1

2
a
2

11(I + K
T
K) + Q < 0 (13)

where
Q = ε

−1

1
A

T

d Ad + 4ε
−1

2
a
2

21I (14)

has a solution P > 0, then in the mean square, the system (10) is

(i) exponentially stable in the case of a12 = 0 and a22 = 0;
(ii) exponentially ultimately bounded in the case of a12 6= 0 or a22 6= 0.

Proof Fix ξ ∈ L
2

F0
([−τ, 0]; R

n) arbitrarily and write x(t; ξ) = x(t). For (x(t), t) ∈
R

n × R+, we define the Lyapunov function candidate

V (x(t), t) = x
T(t)Px(t) +

t
∫

t−τ

x
T(s)Qx(s) ds, (15)

where P is the positive definite solution to the matrix inequality (13) and Q > 0 is
defined in (14).

By Itô’s formula (see, e.g., [10]), the stochastic derivative of V along a given trajectory
is obtained as

dV (x(t), t) =
{

x
T(t)P [Acx(t) + Adx(t − τ) + p(t) + q(t)]

+ [Acx(t) + Adx(t − τ) + p(t) + q(t)]TPx(t)

+ x
T(t)Qx(t) − x

T(t − τ)Qx(t − τ)

+ x
T(t)DT

PDx(t)
}

dt + 2x
T(t)PDx(t) dw(t)

=
{

x
T(t)[AT

c P + PAc + D
T
PD + Q]x(t)

+ x
T(t)PAdx(t − τ) + x

T(t − τ)AT

d Px(t)

+ x
T(t)P [p(t) + q(t)] + [p(t) + q(t)]TPx(t)

− x
T(t − τ)Qx(t − τ)

}

dt + 2x
T(t)PDx(t) dw(t).

(16)

Let ε1 and ε2 be two positive scalars. Then the matrix inequality

[

ε
1/2

1
x

T(t)P − ε
−1/2

1
x

T(t − τ)AT

d

][

ε
1/2

1
x

T(t)P − ε
−1/2

1
x

T(t − τ)AT

d

]T ≥ 0

yields
x

T(t)PAdx(t − τ) + x
T(t − τ)AT

d Px(t)

≤ ε1x
T(t)P 2

x(t) + ε
−1

1
x

T(t − τ)AT

d Adx(t − τ).
(17)

In the sequel, we will use several times the following simple inequality

(u + v)T(u + v) ≤ 2u
T
u + 2v

T
v,

where u ∈ R
n and v ∈ R

n.
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Noticing the Assumption 1 and the definitions (7) – (9), we have

p
T(t)p(t) = |f(x(t), Kx(t)) − Acx(t)|2 ≤

{

a11

∣

∣

∣

∣

[

x(t)
Kx(t)

] ∣

∣

∣

∣

+ a12

}2

(18)

≤ 2a
2

11

∣

∣

∣

∣

[

x(t)
Kx(t)

] ∣

∣

∣

∣

2

+ 2a
2

12 ≤ 2a
2

11x
T(t)

(

I + K
T
K
)

x(t) + 2a
2

12,

q
T(t)q(t) = |g(x(t − τ)) − Adx(t − τ)|2 ≤

{

a21|x(t − τ)| + a22

}2

(19)
≤ 2a

2

21x
T(t − τ)x(t − τ) + 2a

2

22.

Then, it follows from (18), (19) and

Ψ1 = ε
1/2

2
x

T(t)P − ε
−1/2

2
[p(t) + q(t)]T, Ψ1Ψ

T

1
≥ 0

that
x

T(t)P [p(t) + q(t)] + [p(t) + q(t)]TPx(t)

≤ ε2x
T(t)P 2

x(t) + ε
−1

2
[p(t) + q(t)]T[p(t) + q(t)]

≤ ε2x
T(t)P 2

x(t) + 2ε
−1

2
[pT(t)p(t) + q

T(t)q(t)]

= x
T(t)[ε2P

2 + 4ε
−1

2
a
2

11
(I + K

T
K)]x(t)

+ 4ε
−1

2
a
2

21
x

T(t − τ)x(t − τ) + 4ε
−1

2
(a2

12
+ a

2

22
).

(20)

For simplicity, we denote

Π = A
T

c P +PAc+D
T
PD+(ε1+ε2)P

2+4ε
−1

2
a
2

11(I+K
T
K)+ε

−1

1
A

T

d Ad+4ε
−1

2
a
2

21I, (21)

and then (13) and (14) indicate that Π < 0.
Substituting (14), (17) and (20) into (16) gives

dV (x(t), t) ≤
[

x
T(t)Πx(t) + 4ε

−1

2
(a2

12 + a
2

22)
]

dt + 2x
T(t)PDx(t)dw(t). (22)

We are now in a position to show the expected exponential stability (or exponential
ultimate boundedness) of the system (10), by using the the technique developed in [10].
Let β > 0 be the unique root of the equation

λmin(−Π) − βλmax(P ) − βτλmax(Q)xβτ = 0 (23)

where Π and Q are defined, respectively, in (21) and (14), P is the positive definite
solution to (13), and τ is the time-delay.

We can obtain from (22) that

d
[

x
βt

V (x(t), t)
]

= x
βt
[

βV (x(t), t)dt + dV (x(t), t)
]

≤ x
βt

(

−
[

λmin(−Π) − βλmax(P )
]

|x(t)|2 + βλmax(Q)

t
∫

t−τ

|x(s)|2ds

)

dt

+ 4ε
−1

2
(a2

12 + a
2

22)x
βt

dt + 2x
βt

x
T(t)PDx(t)w(t)dt.
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Then, integrating both sides from 0 to T > 0 and taking the expectation result in

x
βT

EV (x(T ), T ) ≤
[

λmax(P ) + τλmax(Q)
]

sup
−τ≤θ≤0

E|ξ(θ)|2

−
[

λmin(−Π) − βλmax(P )
]

E

T
∫

0

x
βt|x(t)|2dt

+ βλmax(Q)E

T
∫

0

x
βt

t
∫

t−τ

|x(s)|2dsdt + 4ε
−1

2
(a2

12
+ a

2

22
)β−1(xβT − 1).

Note that

T
∫

0

x
βt

t
∫

t−τ

|x(s)|2dsdt ≤
T
∫

−τ

( min(s+τ,T )
∫

max(s,0)

x
βt

dt

)

|x(s)|2ds

≤
T
∫

−τ

τx
β(s+τ)|x(s)|2ds ≤ τx

βτ

T
∫

0

x
βt|x(t)|2dt + τx

βτ

0
∫

−τ

|ξ(θ)|2dθ.

Then, considering the definition of β in (23), we have

x
βT

EV (x(T ), T ) ≤
[

λmax(P ) + τλmax(Q)
]

sup
−τ≤θ≤0

E|ξ(θ)|2

+ βλmax(Q)τ2
x

βτ sup
−τ≤θ≤0

E|ξ(θ)|2 + 4ε
−1

2
(a2

12
+ a

2

22
)β−1(xβT − 1),

and

E|x(T )|2 ≤ λ
−1

min
(P )
(

[

λmax(P ) + τλmax(Q)
]

sup
−τ≤θ≤0

E|ξ(θ)|2

+ βλmax(Q)τ2
x

βτ sup
−τ≤θ≤0

E|ξ(θ)|2
)

x
−βT

+ 4ε
−1

2
(a2

12
+ a

2

22
)β−1

λ
−1

min
(P )(xβT − 1)x−βT

.

Notice that (xβT − 1)x−βT
< 1 and let

α = λ
−1

min
(P )
[

λmax(P ) + τλmax(Q)(1 + βτx
βτ )
]

, γ = 4ε
−1

2
(a2

12
+ a

2

22
)β−1

λ
−1

min
(P ).

Since T > 0 is arbitrary, the definition of exponential ultimate boundedness in (12) is
then satisfied if a12 6= 0 or a22 6= 0. If a12 = a12 = 0, it is obvious that the definition
of exponential stability in (11) is met. This completes the proof of Theorem 1.

Next, let us focus on deriving the explicit expression of expected controller gains by
using an algebraic matrix inequality approach. It is worth mentioning that, in most
literature concerning nonlinear stochastic stabilization problems, the solution has not
been given as an explicit representation.

Based on Theorem 1, we can see that the controller design problem can be transformed
into the following two-step problem: (i) find a necessary and sufficient condition for the
existence of the positive definite matrix P such that there exists a controller gain K

satisfying (13); and (ii) if the controller gain K exists, give the characterization of the
set of expected controller gains in terms of the positive definite matrix P and some other
free parameters.
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Lemma 1 [6] Let X ∈ R
m1×n1 and Y ∈ R

m1×p1 (m1 ≤ p1). There exists a
matrix U ∈ R

n1×p1 which simultaneously satisfies Y = XU and UU
T = I if and only

if XX
T = Y Y

T.

For presentation convenience, we define

Γ(ε1, ε2, P ) = A
T
P + PA + D

T
PD + (ε1 + ε2)P

2 + 4ε
−1

2
a
2

11
I + Q, (24)

Ξ(ε1, ε2, P ) = A
T
P + PA + D

T
PD + P [(ε1 + ε2)I − 0.25 ε2a

−2

11
BB

T]P
(25)

+ 4ε
−1

2
(a2

11
+ a

2

21
)I + ε

−1

1
A

T

d Ad,

where Q is defined in (14).
The aforementioned two-step problem is solved in the following theorem.

Theorem 2 There exist positive scalars ε1, ε2 and a positive definite matrix P such
that the matrix inequality (13) has a solution K if and only if the following quadratic
matrix inequality

Ξ(ε1, ε2, P ) < 0 (26)

holds, where Ξ(ε1, ε2, P ) is defined in (25). Furthermore, if (26) is true, all gain matrices
K satisfying the matrix inequality (13) can be parameterized by

K = (0.5 a
−1

11
ε
1/2

2
ΛU − 0.25 a

−2

11
ε2PB)T (27)

where Λ ∈ R
n×m is any matrix satisfying

ΛΛT
< −Ξ(ε1, ε2, P ) (28)

and U ∈ R
m×m is arbitrary orthogonal matrix (i.e., UU

T = I).

Proof Rewrite the matrix inequality (13) as

K
T
B

T
P + PBK + 4ε

−1

2
a
2

11K
T
K + Γ(ε1, ε2, P ) < 0, (29)

where Γ(ε1, ε2, P ) is defined in (24).
In terms of the definition of Ξ(ε1, ε2, P ) in (25), we can rearrange (29) as

(2ε
−1/2

2
a11K

T + 0.5ε
1/2

2
a
−1

11
PB)(2ε

−1/2

2
a11K

T + 0.5ε
1/2

2
a
−1

11
PB)T < −Ξ(ε1, ε2, P ). (30)

Obviously, there exists a controller gain matrix K such that the inequality (13) (or
equivalently (30)) holds for some positive scalars ε1, ε2 and positive definite matrix P if
and only if the right-hand side of (30) is positive definite, i.e., −Ξ(ε1, ε2, P ) > 0 or (26)
holds. The first part of this theorem is proved.

Assume now that (26) is true. Note that the dimension of the controller gain K is
m×n. From (30) and the definition of Λ ∈ R

n×m in (28), we could relate a Λ such that

(2ε
−1/2

2
a11K

T + 0.5ε
1/2

2
a
−1

11
PB)(2ε

−1/2

2
a11K

T + 0.5ε
1/2

2
a
−1

11
PB)T = ΛΛT

. (31)

It then follows from Lemma 1 that (31) holds if and only if

2ε
−1/2

2
a11K

T + 0.5 ε
1/2

2
a
−1

11
PB = ΛU, (32)

where U ∈ R
m×m is an arbitrary orthogonal matrix. Therefore, the expression (27)

follows immediately. This completes the proof of the theorem.

Finally, our main results can be summarized in the following corollary.
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Corollary 1 Consider the nonlinear discrete-time state delayed stochastic system
(1) – (2) with the state feedback controller u(t) = Kx(t). If there exist positive scalars
ε1, ε2, and a positive definite matrix P such that the matrix inequality (26) holds, then
the state feedback controller with its gain given in (27) will be such that the system (10)
is exponentially stable in the case of a12 = 0 and a22 = 0; or exponentially ultimately
bounded in the case of a12 6= 0 or a22 6= 0, both in the mean square.

Remark 2 Corollary 1 solves the addressed stabilization problem for the class of non-
linear time-delay stochastic systems in this paper. In implementation, we could first
solve the quadratic matrix inequality (26), and then obtain the expected control param-
eters from (27) easily. Firstly, based on the algorithms provided in [15] and references
therein, we may select appropriate positive scalar parameters ε1 and ε2 so as to reduce
the conservatism that may have resulted from the inequalities (17) and (20). Then, (26)
will be a standard quadratic matrix inequality (QMI) for P . For details concerning the
general QMIs and relevant algorithms, we refer the reader to [12]. It can also be no-
ticed that, there exists a lot of design freedom in our proposed procedure, such as the
choices of matrices Λ and U , which could be used to achieve other expected performance
specifications, e.g., reliability constraints.

4 Numerical Simulation

In this section, for the purpose of illustrating the usefulness and flexibility of the theory
developed in this paper, we present a simulation example.

Assume that the nonlinear continuous-time stochastic state delayed system (1) – (2) is
given by

dx1(t) = [−2x1(t) − 0.1x2(t) + 0.2 cos(x1(t) + x2(t))

+ 0.1x1(t − 0.1) + 0.16 sinx2(t) + 2.9u1(t) + 0.2u2(t)] dt + 0.2x1 dw(t),

dx2(t) = [−0.1x1(t) + x2(t) + 0.15 sinx2(t)

+ 0.1x2(t − 0.1) + 0.15 cosx1(t) + 0.1u1(t) − 2.1u2(t)] dt + 0.2x2 dw(t).

Considering the system (1) – (2) with the constraints (3) – (4), we can obtain that

A =

[

−2 −0.1
−0.1 1

]

, B =

[

2.9 0.2
0.1 −2.1

]

, Ad = 0.1I2, D = 0.2I2,

d = 0.1, a11 = 0.25; a12 = 0.12; a21 = 0; a22 = 0.

We choose ε1 = 4.8, ε1 = 8.2, and solve (26) to obtain

P =

[

0.1287 0.0013
0.0013 0.2003

]

.

Then, setting Λ = 2I2 which meets (28) and considering two cases of U = I2 and
U = −I2, we have two desired gain matrices as follows:

Case 1: K1 =

[

−0.7938 −0.7764
−0.7580 25.2439

]

, Case 2: K2 =

[

−23.7023 −0.7764
−0.7580 2.3354

]

.
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Figure 4.1. x1 (solid), x2 (dashed).

Figure 4.2. x1 (solid), x2 (dashed).

The responses of closed-loop system dynamics to initial conditions are shown in Fig-

ure 4.1 and Figure 4.2. The simulation results imply that the desired goal is well achieved,

i.e., the closed-loop system is exponentially stable in the mean square.
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5 Conclusions

In this paper, we have studied the stabilization problem for a class of nonlinear sto-
chastic time-delay systems. The nonlinearities are assumed to have the similar form as
those in [18 – 20]. We have developed an effective algebraic matrix inequality approach
to designing the state feedback controllers, such that the closed-loop system is stochas-
tically exponentially stable (or exponentially ultimately bounded) in the mean square,
for all admissible nonlinearities and time-delays. We have investigated the sufficient con-
ditions for the nonlinear stochastic systems to be exponentially stable (or exponentially
ultimately bounded), and have derived the explicit expression of the desired controller
gains. A numerical simulation example has been provided to show the usefulness and
effectiveness of the proposed design method.
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1 Introduction

Observer design for linear as well as nonlinear systems has been an active research area
in the past years. Various approaches, such as transfer-function, geometric, algebraic,
singular value decomposition and so on, have been successfully proposed and many results
on the observer design have been reported in the literature. For some representative
work on this general topic, to name a few, we refer readers to [6, 7, 9, 10, 12] and the
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references therein. However, one of the limitations of classical observer theory is that

it cannot guarantee the observer performance when parameter uncertainty appears in

a system model. This has motivated the study of robust observer design problem; see,

e.g. [1, 3, 15], and the references cited therein. It is worth noting that in the context of

stochastic nonlinear systems, the robust observer design problem has been investigated

in [20], in which a method for the design of time-invariant observers with guaranteed

exponential convergence has been proposed.

On the other hand, it is well known that time delays are inherent in many physical

and engineering systems due to transportation lags, and conduction or computation

times [4, 8]. It has been shown that time delay is often a main cause of instability of

a dynamic system. A number of estimation and control problems related to time-delay

systems have been addressed by many researchers [5, 11, 13, 16 – 18]. Recently, a great

deal of interest has been devoted to the observer design for time-delay systems. A general

form of linear observers for time-delay systems by using the factorization approach was

proposed in [19], where a necessary and sufficient condition for the existence of the

state functional observers was presented. For discrete-time delay systems, a memoryless

state observer was designed by the state augmentation approach in [13]. However, it

should be pointed out that disturbances as well as nonlinearities may be present in

time-delay systems. Therefore, the observer design problem for nonlinear time-delay

stochastic systems is important in both theory and practice and challenging, thus should

be considered. To date, to the authors’ best knowledge, little work has been done for

such stochastic systems.

In this paper, we are concerned with the problem of robust observer design for a class

of nonlinear stochastic systems with state delay and parameter uncertainties. The class of

systems under consideration is described by a linear stochastic differential delay equation

with the addition of known nonlinearities which depend not only on the state but also

on the delayed state and are assumed to satisfy the global Lipschitz conditions. The

nonlinearities appear in both the state and measured output equations. The parameter

uncertainties are real time-varying norm-bounded and appear in both the state and

output matrices of the linear part of the system model. The problem under study is the

design of a nonlinear observer that guarantees mean square asymptotic stability of the

error dynamics for the whole set of admissible systems. A linear matrix inequality (LMI)

approach is proposed to solve this problem and a solution is given in terms of an LMI,

which defines a convex set of solutions and can be easily computed by the available LMI

algorithms ([2]).

Notation Throughout this paper, for symmetric matrices X and Y , the notation

X ≥ Y (respectively, X > Y ) means that the matrix X − Y is positive semi-definite

(respectively, positive definite); I is the identity matrix with appropriate dimension. The

notation M
T represents the transpose of the matrix M . While, (Ω, F , P) is a probability

space, where Ω is the sample space, F is the σ-algebra of subsets of the sample space

and P is the probability measure on F . The notation E {·} stands for the expectation

operator; ‖x‖ stands for the Euclidean norm of the vector x. Matrices, if not explicitly

stated, are assumed to have compatible dimensions.
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2 Problem Formulation

Consider the following class of nonlinear stochastic systems with state-delay and para-
meter uncertainties:

(Σ): dx(t) = [(A + ∆A(t)) x(t) + (Ad + ∆Ad(t)) x(t − τ) + Gg(x(t), x(t − τ))] dt

+ [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t)) x(t − τ)] dω(t), (1)

dy(t) = [(C + ∆C(t)) x(t) + (Cd + ∆Cd(t)) x(t − τ) + Hh(x(t), x(t − τ))] dt

+ [(D + ∆D(t)) x(t) + (Dd + ∆Dd(t)) x(t − τ)] dω(t), (2)

x(t) = φ(t), ∀ t ∈ [−τ, 0], (3)

where x(t) ∈ R
n is the system state, y(t) ∈ R

m is the measurement; ω(t) is a zero-
mean real scalar Wiener process on (Ω, F , P) relative to an increasing family (Ft)t>0

of σ-algebras Ft ⊂ F . We assume

E {dω(t)} = 0, E
{

dω(t)2
}

= dt. (4)

In system (Σ), φ(t) is a real-valued continuous initial function on [−τ, 0], τ > 0 is a
known time delay of the system, g(·, ·) : R

n × R
n → R

ng and h(·, ·) : R
n × R

n → R
nh

are known nonlinear functions, A, Ad, B, Bd, C, Cd, D, Dd, G and H are known
real constant matrices, ∆A(t), ∆Ad(t), ∆B(t), ∆Bd(t), ∆C(t), ∆Cd(t), ∆D(t) and
∆Dd(t) are unknown matrices representing time-varying parameter uncertainties, and
are assumed to be of the form

[

∆A(t) ∆Ad(t) ∆B(t) ∆Bd(t)
∆C(t) ∆Cd(t) ∆D(t) ∆Dd(t)

]

=

[

M1

M2

]

F (t) [ N1 N2 N3 N4 ] , (5)

where M1, M2, N1, N2, N3 and N4 are known real constant matrices and F (·) : R →
R

k×l is a unknown real-valued time-varying matrix satisfying

F (t)TF (t) ≤ I, ∀ t. (6)

It is assumed that all the elements of F (t) are Lebesgue measurable. ∆A(t), ∆Ad(t),
∆B(t), ∆Bd(t), ∆C(t), ∆Cd(t), ∆D(t) and ∆Dd(t) are said to be admissible if both (5)
and (6) hold.

Remark 1 The parameter uncertainty structure as in (5) and (6) has been widely
used in the problems of robust control and robust filtering of uncertain systems, see,
for example, [11, 12, 15] and the references therein and many practical systems possess
parameter uncertainties which can be either exactly modeled, or overbounded by (6).
Observe that the unknown matrix F (t) in (5) can even be allowed to be state-dependent,
i.e. F (t) = F (t, x(t)), as long as (6) is satisfied.

Throughout the paper, we make the following assumption on the nonlinear functions
in system (Σ).

Assumption 1

(I) g(0, 0) = 0;

(II) ‖g(x1, x2) − g(y1,y2)‖ ≤ ‖S1g(x1 − y1)‖ + ‖S2g(x2 − y2)‖,
‖h(x1, x2) − h(y1,y2)‖ ≤ ‖S1h(x1 − y1)‖ + ‖S2h(x2 − y2)‖,
for all x1, x2, y1, y2 ∈ R

n, where S1g, S2g, S1h and S2h are known real constant
matrices.

Before formulating the problem to be addressed in this paper, we first introduce the
following concept of stochastic stability.
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Definition 1 The equilibrium x = 0 of the system (1) is said to be mean square
stable if for any ε > 0 there is a δ(ε) > 0 such that

E |x(t)|2 < ε, t > 0

when sup
−τ≤s≤0

E |φ(s)|2 < δ(ε). If, in addition,

lim
t→∞

x(t) = 0

for any initial conditions, then the equilibrium x = 0 of the system (1) is said to be
mean square asymptotically stable.

Now, the observer design problem we address in this paper can be formulated as
follows: given the uncertain nonlinear stochastic time-delay system (Σ), we are concerned
with obtaining an estimate x̂(t) of the state x(t) by using the measurement y(t), such
that the error dynamics remain mean square asymptotically stable for all admissible
uncertainties satisfying (5) and (6) and the nonlinearities satisfying Assumption 1.

3 Main Results

In this section, an LMI approach is proposed to solve the robust observe design problems
formulated in the previous section. Before presenting the main results, we give the
following lemmas which will be used in the proof of our main results.

Lemma 1 [14] Let A, D, S, W and F be real matrices of appropriate dimensions
such that W > 0 and F

T
F ≤ I. Then we have the following:

(1) for scalar ǫ > 0 and vectors x, y ∈ R
n
,

2x
TDFSy ≤ ǫ

−1
x

TDDT
x + ǫy

TSTSy;

(2) for any scalar ǫ > 0 such that W − ǫDDT
> 0,

(A + DFS)TW−1(A + DFS) ≤ AT(W − ǫDDT)−1A + ǫ
−1STS.

Theorem 1 Consider the uncertain nonlinear stochastic time-delay system (1) and
(3), that is,

(Σ1) : dx(t) = [(A + ∆A(t)) x(t) + (Ad + ∆Ad(t)) x(t − τ) + Gg(x(t), x(t − τ))] dt

+ [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t))x(t − τ)] dω(t), (7)

x(t) = φ(t), ∀ t ∈ [−τ, 0]. (8)

Then system (Σ1) is mean square asymptotically stable if there exist matrices P > 0,
Q > 0 and scalars ǫ1 > 0, ǫ2 > 0 and ǫ3 > 0, such that the following LMI holds:















Ω1 PAd + ǫ2N
T
1

N2 + ǫ3N
T
3

N4 PG PM1 0 B
T
P

A
T

d P + ǫ2N
T
2

N1 + ǫ3N
T
4

N3 Ω2 0 0 0 B
T

d P

G
T
P 0 −ǫ1I 0 0 0

M
T
1

P 0 0 −ǫ2I 0 0
0 0 0 0 −ǫ3I M

T
1 P

PB PBd 0 0 PM1 −P















< 0

(9)
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where

Ω1 = A
T
P + PA + Q + 2ǫ1S

T

1gS1g + ǫ2N
T

1 N1 + ǫ3N
T

3 N3 (10)

Ω2 = 2ǫ1S
T

2gS2g + ǫ2N
T

2
N2 + ǫ3N

T

4
N4 − Q. (11)

Proof Define the following Lyapunov function candidate:

V (xt, t) = x(t)TPx(t) +

t
∫

t−τ

x(s)TQx(s) ds (12)

where
xt = x(t + β), β ∈ [−τ, 0] .

By Itô’s formula, we obtain the stochastic differential as

dV (xt) = LV (xt, t)dt+2x(t)TP [(B + ∆B(t)) x(t)+(Bd + ∆Bd(t)) x(t− τ)] dω(t), (13)

where

LV (xt, t) = 2x(t)TP [(A + ∆A(t)) x(t) + (Ad + ∆Ad(t))x(t − τ) + Gg(x(t), x(t − τ))]

+ [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t)) x(t − τ)]
T

× P [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t)) x(t − τ)]

+ x(t)TQx(t) − x(t − τ)TQx(t − τ). (14)

From Assumption 1, it follows that

‖g(x(t), x(t − τ))‖ ≤ ‖S1gx(t)‖ + ‖S2gx(t − τ)‖ .

Therefore
‖g(x(t), x(t − τ))‖2 ≤ 2 ‖S1gx(t)‖2

+ 2 ‖S2gx(t − τ)‖2
. (15)

Considering this and (5) and using Lemma 1, we have that for any scalars ǫ1 > 0 and
ǫ2 > 0,

2x(t)TPGg(x(t), x(t − τ))

≤ ǫ
−1

1
x(t)TPGG

T
Px(t) + ǫ1g(x(t), x(t − τ))Tg(x(t), x(t − τ))

≤ ǫ
−1

1
x(t)TPGG

T
Px(t) + 2ǫ1

[

x(t)TS
T

1gS1gx(t) + x(t − τ)TS
T

2gS2gx(t − τ)
]

(16)

and

2x(t)TP [∆A(t)x(t) + ∆Ad(t)x(t − τ)] = 2x(t)TPM1F (t) [N1x(t) + N2x(t − τ)]

≤ ǫ
−1

2
x(t)TPM1M

T

1 Px(t) + ǫ2 [N1x(t) + N2x(t − τ)]
T

[N1x(t) + N2x(t − τ)] .
(17)

Furthermore, from (9) it is easy to see that

ǫ3I − M
T

1 PM1 > 0
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which implies
P − ǫ

−1

3
PM1M

T

1
P > 0.

Therefore, by using Lemma 1 again, we have

[

B + M1F (t)N
]T

P
[

B + M1F (t)N
]

≤ B
T

P
(

P − ǫ
−1

3
PM1M

T

1 P
)−1

PB + ǫ3N
T

N

(18)
where

B = [ B Bd ] , N = [N3 N4 ] .

Noting

[(B + ∆B(t))x(t) + (Bd + ∆Bd(t))x(t − τ)]TP

× [(B + ∆B(t)) x(t) + (Bd + ∆Bd(t)) x(t − τ)]

= [ x(t)T x(t − τ)T ]
[

B + M1F (t)N
]T

P
[

B + M1F (t)N
]

[

x(t)
x(t − τ)

]

and using (16) – (18) we obtain

LV (xt, t) ≤ [ x(t)T x(t − τ)T ] W

[

x(t)
x(t − τ)

]

(19)

where

W =

[

Ω1 + ǫ
−1

1
PGG

T
P + ǫ

−1

2
PM1M

T
1

P PAd + ǫ2N
T
1

N2 + ǫ3N
T
3

N4

A
T

d P + ǫ2N
T
2 N1 + ǫ3N

T
4 N3 Ω2

]

+ B
T

P
(

P − ǫ
−1

3
PM1M

T

1 P
)−1

PB.

On the other hand, pre and post-multiplying (9) by















I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 0 I

0 0 0 0 I 0















and using Schur complement, we have W < 0, this together with (19) implies

LV (xt, t) < 0

for
[

x(t)
x(t − τ)

]

6= 0,

which, by the result in [8], guarantees the mean square asymptotic stability of sys-
tem (Σ1).

Now, we are in a position to give a solution to the robust observer design problem
formulated in the previous section.
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Theorem 2 Consider the uncertain nonlinear stochastic time-delay system (Σ) under
Assumption 1. If there exist matrices P1 > 0, P2 > 0, Q1 > 0, Q2 > 0 and Z and
scalars ǫ1 > 0, ǫ2 > 0 and ǫ3 > 0, such that the following LMI holds:











Ξ1 Λ1 Λ2 0 Λ3

ΛT
1 Ξ2 0 0 Π1

ΛT
2

0 −Υ1 0 0
0 0 0 −Υ2 Π2

ΛT
3 ΠT

1 0 ΠT
2 −Υ3











< 0 (20)

where

Ξ1 = diag (Ξ11, Ξ12) ,

Ξ2 = diag (Ξ21, Ξ22) ,

Ξ11 = A
T
P1 + P1A + Q1 + 2ǫ1S

T

1gS1g + ǫ2N
T

1 N1 + ǫ3N
T

3 N3,

Ξ12 = A
T
P2 + P2A − ZC − C

T
Z

T + Q2 + 2ǫ1S
T

1
S1,

Ξ21 = 2ǫ1S
T

2gS2g + ǫ2N
T

2 N2 + ǫ3N
T

4 N4 − Q1,

Ξ22 = 2ǫ1S
T

2
S2 − Q2,

Λ1 =

[

P1Ad + ǫ2N
T
1

N2 + ǫ3N
T
3

N4 0
0 P2Ad − ZCd

]

,

Λ2 =

[

P1G 0 0 P1M1

0 P2G −ZH P2M1 − ZM2

]

,

Λ3 =

[

B
T
P1 B

T
P2 − D

T
Z

T

0 0

]

,

Π1 =

[

B
T

d P1 B
T

d P2 − D
T

d Z
T

0 0

]

,

Π2 = [ MT
1

P1 M
T
1

P2 − M
T
2

Z
T ] ,

Υ1 = diag (ǫ1I, ǫ1I, ǫ1I, ǫ2I) ,

Υ2 = ǫ3I,

Υ3 = diag(P1, P2).

Then the robust observer design problem is solvable, where

S1 =

[

S1g

S1h

]

, S2 =

[

S2g

S2h

]

. (21)

Furthermore, when LMI (20) is satisfied, a suitable nonlinear observer is given as follows:

dx̂(t) = [Ax̂(t) + Adx̂(t − τ) + Gg(x̂(t), x̂(t − τ))] dt

+ L [dy(t) − (Cx̂(t) + Cdx̂(t − τ) + Hh(x̂(t), x̂(t − τ))) dt] ,
(22)

where L = P
−1

2
Z.

Proof Let
x̃(t) = x(t) − x̂(t)
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then from (1) – (3) and (22), we obtain

dx̃(t) = [(A − LC)x̃(t) + (Ad − LCd)x̃(t − τ) + (∆A(t) − L∆C(t)) x(t)

+ (∆Ad(t) − L∆Cd(t))x(t − τ) + Ḡξ(x(t), x(t − τ), x̂(t), x̂(t − τ))
]

dt

+ [((B − LD) + (∆B(t) − L∆D(t)))x(t)

+ ((Bd − LDd) + (∆Bd(t) − L∆Dd(t)))x(t − τ)] dω(t),

(23)

where Ḡ = [ G −LH ] and

ξ(x(t), x(t − τ), x̂(t), x̂(t − τ)) =

[

g(x(t), x(t − τ)) − g(x̂(t), x̂(t − τ))

h(x(t), x(t − τ)) − h(x̂(t), x̂(t − τ))

]

.

Setting

η(t)T = [ x(t)T x̃(t)T ]
T

and considering (1) – (3) and (18), we have

dη(t) = [(Ac + ∆Ac(t)) η(t) + (Acd + ∆Acd(t)) η(t − τ)

+ Gcξc(x(t), x(t − τ), x̂(t), x̂(t − τ))]dt

+ [(Bc + ∆Bc(t)) η(t) + (Bcd + ∆Bcd(t)) η(t − τ)] dω(t),

(24)

where

Ac =

[

A 0
0 A − LC

]

, ∆Ac(t) =

[

∆A(t) 0
∆A(t) − L∆C(t) 0

]

,

Acd =

[

Ad 0
0 Ad − LCd

]

, ∆Acd(t) =

[

∆Ad(t) 0
∆Ad(t) − L∆Cd(t) 0

]

,

Bc =

[

B 0
B − LD 0

]

, ∆Bc(t) =

[

∆B(t) 0
∆B(t) − L∆D(t) 0

]

,

Bcd =

[

Bd 0
Bd − LDd 0

]

, ∆Bcd(t) =

[

∆Bd(t) 0
∆Bd(t) − L∆Dd(t) 0

]

,

Gc =

[

G 0
0 Ḡ

]

and

ξc(x(t), x(t− τ), x̂(t), x̂(t− τ)) = [ g(x(t), x(t − τ))T ξ(x(t), x(t − τ), x̂(t), x̂(t − τ))T ]T .

Using Assumption 1 yields

‖ξc(x(t), x(t − τ), x̂(t), x̂(t − τ))‖2 ≤ 2
∥

∥

∥
S̃1η(t)

∥

∥

∥

2

+ 2
∥

∥

∥
S̃2η(t − τ)

∥

∥

∥

2

, (25)

where

S̃1 =

[

S1g 0
0 S1

]

, S̃2 =

[

S2g 0
0 S2

]

. (26)
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Noting (5), it can be easily seen that

[ ∆Ac(t) ∆Acd(t) ∆Bc(t) ∆Bcd(t) ] = M1cF (t) [ N1c N2c N3c N4c ] ,

where

M1c =

[

M1

M1 − LM2

]

, N1c = [ N1 0 ] , N2c = [ N2 0 ] ,

N3c = [ N3 0 ] , N4c = [ N4 0 ] .

Define

Pc = diag (P1, P2) ,

Qc = diag (Q1, Q2) ,

Ω1c = A
T

c Pc + PcAc + Qc + 2ǫ1S̃
T

1
S̃1 + ǫ2N

T

1cN1c + ǫ3N
T

3cN3c,

Ω2c = 2ǫ1S̃
T

2
S̃2 + ǫ2N

T

2cN2c + ǫ3N
T

4cN4c − Qc,

then by some algebraic manipulations and noting (20), it follows that























Ω1c
PcAcd + ǫ2N

T
1cN2c

+ ǫ3N
T
3cN4c

PcGc PcM1c 0 B
T
c Pc

A
T

cdPc + ǫ2N
T
2cN1c

+ ǫ3N
T
4cN3c

Ω2c 0 0 0 B
T

cdPc

G
T
c Pc 0 −ǫ1I 0 0 0

M
T
1cPc 0 0 −ǫ2I 0 0
0 0 0 0 −ǫ3I M

T
1cPc

PcBc PcBcd 0 0 PcM1c −Pc























=











Ξ1 Λ1 Λ2 0 Λ3

ΛT
1 Ξ2 0 0 Π1

ΛT
2

0 −Υ1 0 0
0 0 0 −Υ2 Π2

ΛT
3

ΠT
1

0 ΠT
2

−Υ3











< 0.

Finally, using this inequality and Theorem 1, the desired result follows immediately.

Remark 2 Theorem 2 provides an LMI method for designing robust observers for
system (Σ). It is worth pointing out that the LMI in (20) can be solved by means of
numerically efficient convex programming algorithms, and no tuning of parameters is
required [2, though there are several parameters and matrices to be determined.

4 Numerical Example

In this section, we provide an example to demonstrate the effectiveness of the proposed
method.
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Consider the following class of nonlinear stochastic systems with state-delay and pa-
rameter uncertainties:

dx1(t) = [−1.8x1(t) + (0.2 − 0.4f(t))x2(t) − (0.1 + 0.2f(t))x1(t − 1.5) + 0.2x2(t − 1.5)

+ 0.3 sin(−0.2x1(t) + 0.1x2(t) + 0.1x1(t − 0.5) + 0.2x2(t − 1.5))] dt

+ [(0.1 + 0.2f(t))x1(t) + (0.3 + 0.2f(t))x2(t)

+ 0.4f(t)x1(t − 1.5) − 0.2x2(t − 1.5)] dω(t),

dx2(t) = [−0.4x1(t) − (2.5 + 0.2f(t))x2(t) − 0.1f(t)x1(t − 1.5) − 0.1x2(t − 1.5)

+ 0.2 sin(−0.2x1(t) + 0.1x2(t) + 0.1x1(t − 1.5) + 0.2x2(t − 1.5))] dt

+ [(0.1f(t) − 0.4)x1(t) + (1 + 0.1f(t))x2(t)

+ (0.6 + 0.2f(t))x1(t − 1.5) + 0.1x2(t − 1.5)] dω(t),

dy(t) = [0.1x1(t) − (0.4 + 0.2f(t))x2(t) + (0.4 − 0.1f(t))x1(t − 1.5) + 0.6x2(t − 1.5)

+ 0.5 sin(0.2x1(t) − 0.1x2(t) + 0.2x1(t − 1.5))] dt

+ [0.1f(t)x1(t) + (0.1f(t) − 0.2)x2(t)

+ (0.2f(t) − 0.5)x1(t − 1.5) + 0.2x2(t − 1.5)] dω(t),

where f(t) is unknown but satisfies |f(t)| ≤ 1. It is easy to see that the above system
has the form (1) and (2) with parameters as follows

A =

[

−1.8 0.2
−0.4 −2.5

]

, Ad =

[

−0.1 0.2
0 −0.1

]

,

B =

[

0.1 0.3
−0.4 1

]

, Bd =

[

0 −0.2
0.6 0.1

]

,

C = [ 0.1 −0.4 ] , Cd = [ 0.4 0.6 ] ,

D = [ 0 −0.2 ] , Dd = [−0.5 0.2 ] ,

G =

[

0.3
0.2

]

, H = 0.5,

M1 =

[

0.4
0.2

]

, M2 = 0.2,

N1 = [ 0 −1 ] , N2 = [−0.5 0 ] ,

N3 = [ 0.5 0.5 ] , N4 = [ 1 0 ] ,

S1g = [−0.2 0.1 ] , S2g = [ 0.1 0.2 ] ,

S1h = [ 0.2 −0.1 ] , S2h = [ 0.2 0 ] .

Now, using the Matlab LMI Control Toolbox, we obtain the solution to the LMI (20) as
follows:

P1 =

[

5.0934 −0.7812
−0.7812 4.3022

]

, P2 =

[

2.8203 −0.5012
−0.5012 1.6465

]

,

Q1 =

[

10.9532 −0.5227
−0.5227 3.6335

]

, Q2 =

[

4.3914 −0.7795
−0.7795 4.7745

]

,

Z =

[

0.1271
−2.1537

]

,

ǫ1 = 4.8400, ǫ2 = 2.6078, ǫ3 = 2.7588.
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Therefore, by Theorem 2, it follows that the robust observer design problem is solvable,
and the desired nonlinear observer can be chosen by

dx̂(t) =

([

−1.8 0.2
−0.4 −2.5

]

x̂(t) +

[

−0.1 0.2
0 −0.1

]

x̂(t − 1.5)

+

[

0.3
0.2

]

sin([−0.2 0.1 ] x̂(t) + [ 0.1 0.2 ] x̂(t − 1.5))

)

dt

+

[

−0.1981
−1.3684

]

(dy(t) − ([ 0.1 −0.4 ] x̂(t) + [ 0.4 0.6 ] x̂(t − 1.5)

+ 0.5 sin ([−0.2 0.1 ] x̂(t) + [ 0.1 0.2 ] x̂(t − 1.5))) dt) .

5 Conclusions

In this paper, we have studied the robust observer design problem for a class of nonlinear
stochastic systems with state delays and time-varying norm-bounded parameter uncer-
tainties. In terms of an LMI, a nonlinear observer has been developed to guarantee mean
square asymptotic stability of the error dynamics for all admissible uncertainties. A
numerical example has been provided to show the effectiveness of the proposed methods.
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