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Abstract: In the present paper the swing-by maneuvers are studied and clas-
sified under the model given by the three-dimensional restricted three-body
problem. The modification in the orbit of the spacecraft due to the close ap-
proach is shown in plots that specify from which type of orbits the spacecraft
is coming and to which type it is going. The results generated here are used
to solve optimal problems, such as finding trajectories that satisfy some given
constraints (such as achieving an escape or a capture) with some parameters
being extremized (position, velocity, etc...).
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1 Introduction

Applications of the swing-by technique can be found in several publications in the lit-
erature [1 – 9]. In the present paper the swing-by maneuvers are studied and classified
under the model given by the three-dimensional circular restricted three-body problem.
The goal is to simulate a large variety of initial conditions for those orbits and classify
them according to the effects caused by the close approach in the orbit of the spacecraft.
This swing-by is assumed to be performed around the secondary body of the system. For
a large number of values of these three variables, the equations of motion are integrated
numerically forward and backward in time, until the spacecraft is at a distance that
can be considered far enough from M2. It is necessary to integrate in both directions
of time because the set of initial conditions used gives information about the spacecraft
exactly at the moment of the closest approach. At these two points, the effect of M2

can be neglected and the system formed by M1 and the spacecraft can be considered a
two-body system. At these two points, two-body celestial mechanics formulas are valid
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to compute the energy and the angular momentum before and after the close approach.
With those results, the orbits are classified in four categories: elliptic direct (negative en-
ergy and positive angular momentum), elliptic retrograde (negative energy and angular
momentum), hyperbolic direct (positive energy and angular momentum) and hyperbolic
retrograde (positive energy and negative angular momentum). Then, the problem is to
identify the category of the orbit of the spacecraft before and after the close encounter
with M2. After that, those results are used to identify up to sixteen classes of transfers,
accordingly to the changes in the category of the orbit caused by the close encounter.
They are named with the first sixteen letters of the alphabet. After that, several optimal
problems involving this maneuver can be formulated and solved with the help of the
plots shown. Some examples include finding specific types of orbits (escape, capture,
etc.) that have maximum or minimum velocity at periapsis (or any other parameters,
such as the distance of the periapsis or the angle of approach).

2 The Swing-By in Three Dimensions

This maneuver can be identified by four independent parameters: i) Vp, the magnitude
of the velocity of the spacecraft at periapsis. For the most general case, it would be
necessary to give an information about the direction of the velocity. In this paper, only
velocities parallel to the x–y plane are considered. This constraint is assumed, because
it is the most usual situation in interplanetary research, since the planets have orbits
that are almost coplanar. Under this approximation, and taking into account that the
velocity at periapse is perpendicular to the periapsis vector, the information about the
magnitude of the velocity is enough to completely specify the velocity vector; ii) Rp,
the distance between the spacecraft and the celestial body during the closest approach;
iii) α, the angle between the projection of the periapsis line in the x–y plane and the line
that connects the two primaries; iv) β, the angle between the periapsis line and the x–y

plane.

Figure 2.1. The swing-by in the three-dimensional space.
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Figure 2.1 shows the sequence for this maneuver and some of those and other impor-
tant variables. It is assumed that the system has three bodies: a primary (M1) and a
secondary (M2) body with finite masses that are in circular orbits around their common
center of mass and a third body with negligible mass (the spacecraft) that has its motion
governed by the two other bodies. The spacecraft leaves the point A, passes by the point
P (the periapsis of the trajectory of the spacecraft in its orbit around M2) and goes to the
point B. The points A and B are chosen in a such way that the influence of M2 at those
two points can be neglected and, consequently, the energy can be assumed to remain
constant after B and before A (the system follows the two-body celestial mechanics).
The initial conditions are clearly identified in the Figure 2.1: the periapsis distance Rp

(distance measured between the point P and the center of M2), the angles α and β and
the velocity Vp. The distance Rp is not to scale, to make the figure easier to understand.
The result of this maneuver is a change in velocity, energy and angular momentum in
the keplerian orbit of the spacecraft around the central body.

3 The Three-Dimensional Circular Restricted Problem

For the research performed in this paper, the equations of motion for the spacecraft
are assumed to be the ones valid for the well-known three-dimensional restricted circular
three-body problem. The standard dimensionless canonical system of units is used, which
implies that: the unit of distance is the distance between M1 and M2; the mean angular
velocity (ω) of the motion of M1 and M2 is assumed to be one; the mass of the smaller
primary (M2) is given by µ = m2

m1+m2

(where m1 and m2 are the real masses of M1 and

M2, respectively) and the mass of M2 is (1 − µ); the unit of time is defined such that
the period of the motion of the two primaries is 2π and the gravitational constant is one.
There are several systems of reference that can be used to describe the three-dimensional
restricted three-body problem [10; Chapter 10]. In this paper the rotating system is used.
In this system of reference, the origin is the center of mass of the two massive primaries.
The horizontal axis (x) is the line that connects the two primaries at any time. It rotates
with a variable angular velocity in a such way that the two massive primaries are always
on this axis. The vertical axis (y) is perpendicular to the (x) axis. In this system, the
positions of the primaries are: x1 = −µ, x2 = 1 − µ, y1 = y2 = 0. In this system, the
equations of motion for the massless particle are [10; Chapter 10]:
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where r1 and r2 are the distances from M1 and M2.

4 Algorithm to Solve the Problem

A numerical algorithm to solve the problem has the following steps: 1. Arbitrary values
for the three parameters Rp, Vp, α and β are given; 2. With these values the initial
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conditions in the rotating system are computed. The initial position is the point
(Xi, Yi, Zi) and the initial velocity is (VXi, VY i, VZi), where:

Xi = 1 − µ + Rp cos(β) cos(α), (4)

Yi = Rp cos(β) sin(α), (5)

Zi = Rp sin(β), (6)

VXi = −Vp sin(α) + Rp cos(β) sin(α), (7)

VY i = Vp cos(α) − Rp cos(β) cos(α), (8)

VZi = 0, (9)

where the last equation comes from the decision of studying the maneuvers with Vp paral-
lel to the orbital plane of the primaries; 3. With these initial conditions, the equations of
motion are integrated forward in time until the distance between M2 and the spacecraft
is larger than a specified limit d. At this point the numerical integration is stopped and
the energy (E+) and the angular momentum (C+) after the encounter are calculated;
4. Then, the particle goes back to its initial conditions at the point P , and the equations
of motion are integrated backward in time, until the distance d is reached again. Then
the energy (E−) and the angular momentum (C−) before the encounter are calculated.

For all the simulations shown, a Runge–Kutta of 8th order was used for numerical
integration. The criteria to stop numerical integration is the distance between the space-
craft and M2. When this distance reaches the value d = 0.5 (half of the semimajor
axis of the two primaries) the numerical integration is stopped. The value 0.5 is larger
than the sphere of influence of M2, which avoids any important effects of M2 at these
points. Simulations using larger values for this distance were performed, and it increased
the integration time, but did not significantly change the results. To study the effects
of numerical accuracy, several cases were simulated using different integration methods
and/or different values for the accuracy required with no effects in the results.

With this algorithm available, the given initial conditions (values of Rp, Vp, α, β)
are varied in any desired range and the effects of the close approach in the orbit of the
spacecraft are studied.

5 Classification of the Orbits

The main results consist of plots that show the change of the orbit of the spacecraft,
due to the close encounter with M2. The Earth–Moon, Sun–Uranus and the Sun–Saturn
systems of primaries are used. Any mission using a swing-by with one of those system
can use those results. First of all, it is necessary to classify all the close encounters
between M2 and the spacecraft, according to the change obtained in the orbit of the
spacecraft. The letters A –P are used for this classification. They are assigned to the
orbits according to the rules showed in Table 5.1.

With those rules defined, the results consist of assigning one of those letters to a
position in a two-dimensional diagram that has the angle α (in degrees) in the vertical
axis and the angle β (in degrees) in the horizontal axis. One plot is made for every value
of Rp and Vp. This type of diagram is called here a “letter-plot” and it was used before
in [2].
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Table 5.1. Rules to assign letters to orbits.

After

Before

Direct
Ellipse

Retrograde
Ellipse

Direct
Hyperbola

Retrograde
Hyperbola

Direct Ellipse A E I M

Retrograde Ellipse B F J N

Direct Hyperbola C G K O

Retrograde Hyperbola D H L P

In the present paper several simulations were made and they are shown in Figures 5.1 –
5.3. For each plot a total of 961 trajectories were generated, dividing each axis in 31
segments. The interval plotted for α is 180 ≤ α ≤ 360 deg because there is a symmetry
with respect to the vertical line α = 180 deg. The plot for the interval 0 ≤ α ≤ 180 deg

is a mirror image of the region 180 ≤ α ≤ 360 deg with the following letter substitutions:
L becomes O, N becomes H, I becomes C, B becomes E, M becomes D and J becomes
G. The letters K, P, F and A remain unchanged.

Figure 5.1. Simulations for Rp = 0.00008464 in the Sun–Saturn system.

By examining Figures 5.1 – 5.3 it is possible to identify the following families of orbits:
a) Orbits that result in an escape (transfer from elliptic to hyperbolic), that are repre-
sented by the letters I, J, M, N and that appear between the center (α = 270◦) and the
bottom part of some of the plots (the ones for lower velocities); b) Orbits that result in a
capture (transfer from hyperbolic to elliptic), that are represented by the letters C, D, G,
H that do not appear in the plots shown in this paper (but exist in the symmetric part
not shown here); c) Elliptic orbits (transfer from elliptic to elliptic), that are represented
by the letters A, B, E, F and that appear at the bottom of some of the plots (the ones
for lower velocities); d) Hyperbolic orbits (transfer from hyperbolic to hyperbolic), that
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Figure 5.2. Simulations in the Earth–Moon system.

are represented by the letters K, L, O, P and that appears at the upper part of the plots
and that are the only families available for higher velocities; e) Orbits that change the
direction of motion from direct to retrograde that are represented by the letters E, M, G,
O and that do not appear in the plots shown in this paper (but exist in the symmetric
part not shown here); f) Orbits that change the direction of motion from retrograde to
direct, that are represented by the letters B, D, J, L, that appear in the lower-center of
the plot; g) Retrograde orbits that are represented by the letters F, H, N, P that appear
in the majority of the bottom part of the plots; h) Direct orbits that are represented by
the letters A, C, I, K that appear in the top of the plots.
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Figure 5.3. Simulations for Rp = 0.000082 in the Sun–Uranus system.

6 Optimal Problems

The results generated in this research can be used to help mission designers to plan
missions that involve optimization of parameters. It is possible to use the plots made
here to find situations where a specific case (represented by the letters A –P) can be
obtained with one or more variables (like Vp or Rp) extremized. The parameters Vp and
Rp are important parameters to be extremized. If the goal of the mission is to collect
data from M2, it is interesting to minimize Rp (to get closer to M2) and Vp (to stay
more time close to M2). In the opposite, if M2 is necessary to be used to change the
trajectory of the spacecraft, but it represents a risk to the vehicle due to the presence of
an atmosphere and/or radiation, etc., it is necessary to maximize Rp and/or Vp, subject
to the restriction of obtaining the desired change in the trajectory. To use a real case
as an example, the Earth–Moon, Sun–Saturn and the Sun–Uranus systems are used to
solve the problems described below.

Problem 1: It is desired to find a trajectory of type N (a retrograde escape) in the Earth–
Moon system, subject to the constraints Vp = 3.0 and requiring that Rp is maximized.
Figure 5.2 shows that the trajectory type N, in the case Vp = 3.0, appear for Rp = 0.00476
and Rp = 0.00675, but do not appear for Rp = 0.009. Figure 6.1 shows plots of the
sequence made to find the solution. The solution to this problem is Rp = 0.0075234375.
The complete values for the set of variables are: α = 192◦; β = 0◦.

Problem 2: It is desired to find a trajectory of type B (an ellipse that changes the
motion from retrograde to direct) in the Sun–Saturn system, subject to the constraints
Rp = 0.00008464 (2.0 radius of Saturn) and requiring that the velocity at periapsis be a
maximum. Figure 5.1 shows that the trajectory type B appears for Vp = 3.0, but do not
appear for Vp = 3.5. To find the solution, plots were made for several values of Vp in this
interval. Figure 6.2 shows two plots of this sequence. The solution to this problem is
Vp = 3.12, since for Vp = 3.13, B does not occur anymore. It is also possible to see that
this problem has four solutions: α = 216◦, β = −54◦; α = 210◦, β = −24◦; α = 210◦,
β = 24◦; α = 216◦, β = 54◦.
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Figure 6.1. Solution for the Problem 1 in the Earth–Moon system.

Figure 6.2. Solution for the Problem 2 for Rp = 0.00008464 in the Sun–Saturn

system.

Problem 3: It is desired to obtain a trajectory of type N (a retrograde ellipse before
the swing-by and a retrograde hyperbola after) in the Sun–Uranus system, subject to
the constraints Rp = 0.000082 (10.0 radius of Uranus) and requiring that the velocity
at periapsis be a maximum. Figure 5.3 shows that the trajectory type N appears for
Vp = 2.5, but do not appear for Vp = 3.0. To find the solution, plots were made for
several values of Vp in this interval. Figure 6.3 shows two plots of this sequence. The
solution to this problem is Vp = 2.62, since for Vp = 2.63, N does not occur anymore. In
this example, it is possible to see that there is a range of values of β that allows solutions.
So, the complete values for the set of variables are: −48◦ ≤ β ≤ 48◦; α = +186◦.

This information constitutes a set of initial conditions to design the trajectory. Several
improvements can be made: 1) more plots can be generated to get more accuracy for
the data, in particular in the solutions of the optimal problems; 2) many other types of
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Figure 6.3. Solution for the Problem 3 for Rp = 0.000082 in the Sun–Uranus

system.

optimization problems can be solved, combining different constraints and/or variables to
be extremized; 3) others systems can be used; etc.

7 Conclusions

In this paper the three-dimensional restricted three-body problem is described and used
to study the swing-by maneuver. Several letter-plot type of graphics are made to repre-
sent the effect of a close approach in the orbit of a spacecraft. In particular, the effects of
the third dimension in this maneuver are studied. It is shown that the hyperbolic orbits
(family K) dominate the region where α is larger than 270◦ and that when the velocity
increases, the families K, L and P dominate the plots. Families with particularities, like
parabolic or zero angular momentum orbits, are shown to exist in the borders between
the main families. After that, the results available here were used in the solution of
optimal problems. In this type of problem, it is necessary to find the initial conditions
that generates a given orbit change, subject to the extremization of some parameters
like Vp or Rp.
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