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Abstract: In this work, a new approach is developed for dynamic analysis of
a composite beam with an interplay crack, in which a physically impossible
interpenetration of the crack faces is prevented by imposing a special con-
straint, leading to taking account of a force of contact interaction of the crack
faces and to nonlinearity of the formulated boundary value problem. Longi-
tudinal force resultants in the delaminated parts of the beam are taken into
account also, which is another source of the nonlinearity. The shear defor-
mation and rotary inertia terms are included into the formulation, to achieve
better accuracy. The model is based on the first order shear deformation the-
ory, i.e. the longitudinal displacement is assumed to vary linearly through the
beam’s thickness. A variational formulation of the problem, nonlinear partial
differential equations of motion with boundary conditions, a weak form for
the partial differential equations and a finite element formulation on the basis
of the weak form are developed. An example problem of a clamped-free beam
with a piezoelectric actuator is considered, and its finite element solution
is obtained. A noticeable difference of forced vibrations of the delaminated
and undelaminated beams due to the contact interaction of the crack faces is
predicted by the developed model. Besides, linear eigenvalue analysis shows
decrease of natural frequencies upon increase of the crack length, and crack
opening and closing during the vibration in higher mode shapes, beginning
from the fifth one.
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1 Introduction

A model of a composite beam with the delamination and with a piezoelectric actuator,
with account of contact interaction of the delamination crack faces, based on the classical
beam theory, was presented in Reference [1]. This model did not take the shear strain
energy into account, and, therefore, produced sufficiently accurate results only for thin
beams. To model thicker beams with delamination, one needs to use a beam theory,
based on simplifying assumptions, which do not lead to vanishing of the shear strains.
The first order shear deformation theory [2], based on assumed linear variation of a
longitudinal displacement in the thickness direction, is the simplest approach that satisfies
the requirement of a non-zero shear strain. This approach is used in the present paper for
modeling a composite delaminated beam with a piezoelectric actuator. In this model, the
interpenetration of the crack faces is prevented by imposing a constraint, written with
the use of the Heaviside function in one of its analytical forms, leading to taking account
of a force of contact interaction of the crack faces and to nonlinearity of the formulated
boundary value problem.

2 Variational Formulation of The Problem
Total Potential Energy for Zone 0 (Part 0), i.e. for 0 <z < a (Figure 2.1).
Assumptions of the first-order shear deformation beam theory:

uo(x, z,t) = zgo(x,t), wo(x,z,t) = wo(x,t), (1)

where wg(z,z,t) and wo(x,z,t) are longitudinal and transverse displacements of Zone
0 (Part 0). The subscript 0 in the notations wg(x,z,t) and wg(x,z,t) indicates that
the quantities up and wy are associated with the Zone 0 (Part 0). The notation uy =
uo(x, z,t) is not a notation for the axial longitudinal displacement (at z = 0). The axial
longitudinal displacement is considered to be negligibly small here, because this model
is developed for the beam to which an external longitudinal force is not applied.

Strain-displacement relations:
Ju 1/ 0u ow
(0 _ %0 (0 _ 220, Y0
Fas or’ *F T 9 ( 0z + ox ) (22)

In this text, ;. is a notation for a component of the strain tensor, not an engineering
strain. With account of Equation (1), Equations (2a) take the form

1
E;Om) = Z¢67 Eg?z) = §(¢0 + w6)7 (2b)

where prime denotes differentiation with respect to x.

Stress-strain relations for an orthotropic piezoelectric layer of a composite beam (plane
stress with respect to the y-direction), Appendix A:

1 e _ s V

o) = ——elt) - SLL o) = —2e0)
St Su T Sss

(3)
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Figure 2.1. Cantilever beam with delamination and piezoelectric actuator.

a is length of the actuator; « is z-coordinate of the left crack tip; (3 is x-coordinate of
the right crack tip; 7y is z-coordinate of the crack (distance from z-axis to crack); 7
is thickness of the actuator; wy is transverse displacement of zone 0; w; is transverse
displacement of zone 1; wsy is transverse displacement of lower part of zone 2 (under
the crack); w3 is transverse displacement of upper part of zone 2 (above the crack);
wy is transverse displacement of zone 3.

where 7 is thickness of the actuator, and V' = V(x,t) is a voltage, applied to the actuator.
It is implied that this voltage creates an electric field in the z-direction.

Stress-strain relations for an orthotropic layer that does not have piezoelectric properties,

Appendix A:
o = e, o) = 2. @
S11 S5

Total potential energy where K is a shear correction factor and b is the beam’s width

a h/2
1 1
Uozib/ / — () dz dx
0 —h/2 S11'(2)
a h/2+T

—|—%b/ / (_(%(5;1;))2_?371(2)25552)d2d17 (5)
0 h/2 S11 (%) n(z) 7

a h/2 a h/241
1 1
+2Kb ——(c9)* dzdx + 2Kb (e2)? dz da,
g(o) (Z) rz g(p) (Z) rz
0 —h/2 755 0 —nj2 795
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where K is a shear correction factor and b is the beam’s width. Substitution of equation
(2b) into Equation (5) yields

[(A
o= [ (G0 + K00+ up) ~ 1,44 ) ©)
0

where the constants Ao, I, and Gy are defined as

h/2 h/24T
22 22
—h/2 Sii (2) K2 511 (2) .
h/2+4T _ h/2 h/2+T (7)
b d 1 1
K2 Sii(2) —h/2 S5 (2) K2 Sss (2)
Kinetic Energy for Zone 0 (Part 0), i.e. for 0 <z < a:
a h/2 a h/2+T
1 1
T =3 b/ / PO (2) (W + u2) dz dx + 5 b/ / PP (2) (w2 + 42)dzdx, (8)
0 —h/2 0 h/2

where p(©) (z) is a mass density of composite layers of Zone 0 without piezoelectric
properties and p(P)(z) is the mass density of the piezoelectric actuator (p® may depend
on the z-coordinate if the actuator has plies with different densities).

Substitution of Equations (1) into Equation (8) produces the result

f1 1
0

where the constants By and Cj are defined as follows:

h/2 h/24T

Bozb( / p9(2) dz + / p(p)(z)dz>,

—h/2 h/2
h/2 h/2+T

Cozb( / P (2) 22 dz + / p\P)(2) 22 dz).

—h/2 h/2

(10)

In a similar manner we obtain the strain and kinetic energy for Zone 1 (Part 1) and
Zone 3 (Part 4).

Strain Energy for Zone 1 (Part 1), i.e. for a <z <

0= [ (5o + kG 6+ up ) an (1)

a
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where the constants A; and G are defined as follows:

h/2 h/2

22 1
—h/2 511 (2) —h)2 Sss (2)

Kinetic energy for Zone 1 (Part 1), ie. for a <z <

T /1 1.
T, = / (§Blw% + 501¢§) dz,

where the constants By and C are defined as follows:

h/2 h/2

By =b / pW(2)dz, C) = /p(l)(2)22d2’.

—h/2 —h/2

Strain Energy for Zone 3 (Part 4), i.e. for § <z < L:
/ A G
Us = / (74@2)2 + K (01 + wif) da,
B

where the constants A4 and G4 are defined as follows:

h/2 h/2
22 1
—h/2 511 (2) —h)2 S5 (2)

Kinetic Energy for Zone 3 (Part 4), i.e. for 8 <z < L:
L
1. o, 1 .
T, = §B4w4 + 5 C4¢4 dx,

where the constants B4 and Cy4 are defined as follows:

h/2 h/2

By=1b / PV (z)dz, Cy=b / P (2) 2% d=.
—h/2 —h/2
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(13)

(15)

(16)

(17)

(18)
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Strain Energy for Zone 2 (Part 2 and Part 3), i.e. for a <z < f.
In the Zone 2, which contains the delamination crack, the longitudinal force resultants
in the delaminated lower and upper parts (Part 2 and Part 3),

¥ h/2
N® =b / c@dz, NO® =b / o3 dz,
—h/2 v

can be not negligibly small, even if external longitudinal forces are not applied to the
beam. In order for these force resultants to be taken into account, a nonlinear term

1
—(w')? in the Green-Lagrange strain-displacement relation for the strain component &,

must be taken into account. So, for the Part 2 (lower part of Zone 2) the following
relations are used:

strain-displacement relations:

ou 1/ 0w\ ?
(2 712 2 (%2 1
6w+2(6$>, (192)
1/0u ow
(2) — Z( 222 L T2, 19b
e 2(az+ax>’ (190)
simplifying assumptions:
ug(x, 2, t) = za(x,t) wa(z, z,t) = walx,t); (20)
stress-strain relations:
1 1
2) _ L (2 2) _ L 5 _(2).
U;x) - —(2) 8(11)7 Oéz - —(2) 2€(xz ’ (21)
11 55
strain energy:
1 8 v B v
U =3 b/ / o e dzdr + Kb/ / o dz da. (22)
a —h/2 a —h/2

From Equations (18) —(22) we obtain the following expression for the strain energy:

1 1 1 1
Uz = / {5142(@5'2)2 + 5 KGa(0r ) + S Ha(wh)’d) + 1N£2><w;>2]dx, (23)

o
where As, Go, Hs are constants, defined as

~

v v

1 1 1

Ay =b / 5 22dz, Gy=b / dz, Hs=0b / zdz, (24)
5 )(z) 52 (2) 2

hy2 T11 —hj2 ©55 h/2
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and N is a longitudinal force resultant in the lower delaminated part (Part 2):

,
1
NP® =1 / o2 dz = Hagly + 3 Q2(wh)?, (25)
—h)2

where ()2 is a constant, defined as

Y
1
Q=0 —— dz. (26)
—h/2 11
Similarly, for the Part 3 (upper part of Zone 2) the expression for the strain energy
has the form

1 1 1 1
Us = / [§A3(¢§)2 + §KG3(¢3 +wh)? + = Hy(wh)> ¢ + ZNS) (wé)ﬂ dz, (27)

4
where
h/2 h/2 h/2
1 9 1 1
A3 = b _(3) z dZ, G3 = b W dZ, H3 = b W ZdZ, (28)
5 Si1 (2) 5 Sps (2) 5 Si1(2)
h/2
1
N® =b / o) dz = Hsgly + 5 Q3(wh)?, (29)
v
where
h/2
1
5 Si1'(2)

Kinetic Energy for Zone 2 (Part 2 and Part 3), i.e. for a <z < g.
Expressions for kinetic energy of Part 2 and Part 3 are obtained similarly to the
expressions for the kinetic energies of all other parts, and they have the form:

B
1 1.
ng/(§ng§+§Cg¢§ )d:v,

: (31)
1., 1, .
T3 = §B3w3 dr + §C3¢3 dx,
where
y v
By =b / pP(2)dz, Co=b / PP (2)22 dz,
—h/2 —h/2
h2 h2 (32)

Bs;=b / PP (2)dz, Cs=b / P (2)22 dz.

Y Y
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In view of the expressions for strain and kinetic energies, derived above, the Lagrangian
function density (potential energy minus kinetic energy per unit length) for the delam-
inated composite beam with the piezoelectric actuator (Figure 2.1) can be written as
follows

2’0(1'007 wOa ¢07 ¢07 (bo) in Zone 0 ( )
E - 2/1 (U]l, wla ¢17 (blv (bll) in Zone 1 ( Oé) (33)
22(’(027 wl25 ¢27 é?v (b/Qa w:)’a ’LU/3, ¢37 92.535 Qb{,_),) in Zone 2 (CY S S 6)
£3(w47 ’U}4, ¢47 ¢47 ¢4) in Zone 3 (ﬁ <z< _L)7
where
~ A G By . Co -
£y = 70(%)2 +K 20 (¢ + wh)? — L,V ¢y — ng 70 2 (34a)
~ A G B .
€1 = F (0 + K (o1 +w))? = it — —¢1, (34b)
~ 1 1 1 1
£y = §A2(¢)/2)2 + §KG2(¢2 +wh)? + 5Hz(w;)z’gb’2 + gQg(wg)‘*
1 . 1 . 1 1
- §Bzw§ - 50%253 + §A3(¢§)2 + §K03(¢3 + wh)? (34c)
1 1 1 . 1 .
+ §H3(w§)2¢/3 + §Q3(w/3)4 - 53311’% - §C3¢§,
~ A G By . Cy
Lo = S (00)° + K5 (6a +wl)? — Fraf — 161 (34d)

A variational formulation of the problem includes essential boundary conditions at the
ends of each zone, which will be treated as point-wise constraints, and a nonpenetration
condition for the delamination crack faces (subdomain constraints for Zone 2), Reference
[1]. For a clamped-free beam, the point-wise constraints have the form

Rit)=0 (i=1,2,...,12), (35a)
where
Ry = wp(0,1), Ry = ¢0(0,1),
R3 = wo(a,t) — wi(a,t) Ry = ¢ola,t) — ¢1(a,t),
Rs = w1 (o, t) — wa(a, t), Rs = ¢1(a, t) — da(a, t), (35b)
Ry = wi(o,t) —ws(a,t), Rs = ¢1(a,t) — ¢3(a,t),
Ry = wa(B,t) —wa(B,t),  Rio = d2(B8,t) — ¢4(B,1),
Ri1 = w3(B,t) — wa(p, 1), Riz = ¢3(8,t) — ¢a(B,t)

In case of other kinds of fixation of the beam’s ends, the first two point-wise constraints
will be different, of course, but the other point-wise constraints will be the same.
During the vibration of the delaminated beam, the upper and lower delaminated parts
touch each other, and the force of their interaction needs to be taken into account. This
force enters into the differential equations of motion as a reaction of constraint, which
prevents overlapping of the upper and lower delaminated parts. Such a constraint can be
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expressed by a relationship between wq and w3 (i.e. displacements of the lower and upper
delaminated parts) that prevents the difference ws — ws to take on negative values:

flwa(z,t), ws(z,t)) = fx,t) = (w3 —w2) [1 — Ho(ws —w2)] =0, (36a)

where $)g is a Heaviside function, defined in Appendix B. If delaminated sublaminates
“attempt” to overlap during the vibration (if ws — we < 0), or if the crack is closed
(ws—wq = 0), then Ho(ws—wq) =0, and, therefore, due to equation (10), the difference
ws —wsy is set equal to zero. If the crack is open (w3 —we > 0), then Ho(ws —we) =1,
and no constraints are imposed on the difference ws —ws. With the use of the analytical
representation of the Heaviside function (equation B-5), the nonpenetration constraint,
expressed by equation (36a), can be written as follows:

f(z,t) = (ws — wa) (% - %arctan w) =0, (36Db)

€

where € is some small number. The nonpenetration constraint (36) is a subdomain con-
straint for the Zone 2 (a <z < ).
Now, the problem can be formulated as a problem of finding a constrained (conditional)

extremum of the functional
to L
J://dedt (37)
t1 0

with constraints expressed by Equations (35) and (36). The constraints (35) and (36)
can be included into the functional by the method of Lagrange multipliers. This will
produce a modified functional J:

t2 19 ty B
7:J+/Z)\i(t)Ri(t)+//u(:z:,t)f(a:,t)d:cdt, (39)

where A;(t) and p(z,t) are the Lagrange multipliers. Now we have a problem of an
unconstrained (unconditional) extremum of the modified functional .J. Derivation of
the partial differential equations of motion and natural boundary conditions from the
condition of extremum of the functional (39) can be performed using standard methods
of calculus of variations. In the following text, partial differential equations of motion
with boundary conditions, a weak form of the partial differential equations and a finite

element formulation on the basis of the weak form will be obtained.

3 Partial Differential Equations with Boundary Conditions

To derive the partial differential equations of motion with boundary conditions, the
condition of unconstrained extremum of the functional J (Equation (39)) will be used.
The condition 6J = 0 leads to the following partial differential equations and natural
boundary conditions.
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Partial differential equations:

el

091
of

H (9’[1}2

0%,
092
of

H 811)3

%,
093

094

L0095
dt Buio

Natural boundary conditions:

%o
owyg
0L,
ow}
o}
0Ly

ow)
0z,
O
0L,
ows

0Ly

— +X3=0 at
—A3=0 at
— X =0 at
— X5 =0 at
— X =0 at
—X7=0 at
— X =0 at

-~ 0d

V.Y. PEREL
_%gi({;:o in z€l0,d,
_%giz_o in € a, of,
;xgiz_o in zé€la, g,
8‘1‘;’22:0 in z€la, 3],
(;“)Igiz:o in x €[, 4],
igz_o in zé€la, f,
_%gizzo in zels L],
(;?xgiz_o in zeB L]
i=a %ijg—f—)u;:o
P %4-/\64—)\8—0
r = q, ggz+)\9:0
r=a %4‘/\10:0
r=a %+A12:0

at

at

at

at

at

at

at

T =a,
T =aq,
=«
=6,
z =0,
z=f,
z = [,
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853 853
_8w§1_)\9_/\11:0 at x =0, 6w§l:O at z=1L
oL oL
_8752_)\10_/\12:0 at z =0, 875220 at z = L.

71

;o (58)

(59)

Elimination of the Lagrange multipliers from Equations (51)—(59) leads to the following

eight natural boundary conditions:

08 0L _ o L,
owly  ow, -
0L, 0%

— — =— =0 at =
o, od at = =a,

— 5> —7>=0 at z=aq,

— 7 —57-=0 at z=q,

g2 _C ) at x=
owh  owhy  Ow) at z=p
0L, 0Ly 084
B0 at 2=
o0, "od, g, =P
8_&;, =0 at z=1L,
ow),
dLs
a4, =0 at z=0L.

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

Substitution of Equations (34) into Equations (41)—(50) and into Equations (60)—(67)

produces the following result.
Partial differential equations:

KGo(wl + ¢f)) — Botop =0 in €0, a],
Aoy — KGo(wh + do) — Codo = L,V in x€[0,q,
KGi(w) +¢}) — By =0 in x € [a, of,

A1 — KGi(w) 4+ ¢1) = Cid1 =0 in € [a, a],

KGQ(MIQI + ¢I2) — Batg — M(% — % arctan @)
— Hypywy — ng(w'Q)zwg =0 in z€lwf,
Asl — KGa(uh + ¢) — Cady — Hywut{ =0 in z € [a, ],
KG3(w5 + ¢5) — By + M(% - % arctan @)

3
S Qs3(wh)?wy =0 in x€ |, G,

(68)
(69)
(70)
(71)
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Asdly — KGs(wh + ¢3) — Cihg — Hsywiwy =0 in z€ o, g, (75)
KG4(’LUZ + Qbil) — B4’LZ)4 =0 in x¢€ [6, L] R (76)
Ayl — KGu(w) + ¢4) — Caga =0 in z€ [, L], (77)

Natural boundary conditions:

Go(¢o +wp) = Gi(gr +wy) =0 at z=a, (78)
Aoy — A1y =L,V at z=a, (79)
KGy(p1 + w)) — KGa(do + wh) — Hawyey

1 1
-3 Q2(wh)? — KG3(p3 + wh) — Hywhoh — 3 Qs(ws)>*=0 at xz=a, (80)
1 1
A1) — Ay — 3 Hy(wh)* — Asdply — 3 Hs(ws)* =0 at z=a, (81)

1
KGy(pg + wh) + Hywlhely + 5 Qa(wh)? + KG3(¢s + wh)

+ Hywholy + % Qs(wh)? — KGy(ps +w)) =0 at z =0, (82)

Aol + Asdh — Audfy =0 at z=f, (83)

dps+wy=0 at z=1L, (84)

¢y =0 at z=L. (85)

In computation of derivatives %fz and %fg in Equations (45) and (47), which led

to Equations (72) and (74), the following chain of transformations was used:

3 — W2 1 62(11}3 — ’wz)
=lim| — | = — —arctan —
0 eme? + (w3 — w)?
= —lim (— — ~ arctan —— w2)
e—0 s €
So,

8f 1 1 w3 — w2
— ~ —| - — —arctan ——— 86
s <2 — arctan —— , (86)

where € is some small number. Similarly

Bf 1 1 w3 — W2
Fug (— - = arctani) (87)

So, the formulation of the problem includes eleven equations for subdomains: ten
partial differential equations (68)—(77) and one algebraic equation of constraint (36b)
for Zone 2. The number of unknown functions is also eleven. The unknown functions
are: pu(x,t), wg(x,t), or(x,t) (k= 0,1,2,3,4). The total order of spatial derivatives
of the partial differential equations is twenty, and the number of boundary conditions
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is also twenty: twelve essential boundary conditions (Equations (35)) and eight natural
boundary conditions (Equations (78)—(85)).

The formulation of the problem in terms of partial differential equations can be sim-
plified, if the penalty function method [2] is used for the nonpenetration constraint, i.e.
if the Lagrange multiplier u(x,t), associated with the nonpenetration constraint (36), is
written as

,U(Ia t) = Xf(xa t)v (88)

where the function f(z,t) is defined by Equation (36b), and x is some large number,
which has to be chosen by an analyst. Then, Equation (72) takes the form

1 1 —
KGa(wy + ¢h) — Batig — x(ws —wg)(§ - = arctanu) =0 in z € [, (], (89)

™ €
and Equation (74) takes the form
1 ’ . 1 1 w3 — W2 .
KGs(ws + ¢5) — Bsws + x(ws — w2) 37~ arctan — )= 0 in z €, B]. (90)

In transition from Equations (72) and (74) to Equations (89) and (90) respectively, the
following transformation was used

/T\
|
|
Q
=
Q
-+
Q
]
w
|
g
[\v]
"
(V]
Il
—_
|
S
S
g
w
|
g
V)
S—
S~—

(91)

=1-$Ho(wz —wy) =

Now, the formulation of the problem contains ten partial differential equations (68)—
(71), (89), (73), (90), (75)—(77) with ten unknown functions wy(x,t), ér(z,t), (k =
0,1,2,3,4).

The natural boundary condition (79) is nonhomogeneous, because the externally ap-
plied voltage V'(a,t) enters into it. To avoid having the nonhomogeneous boundary
condition, one can consider that the voltage, applied to the actuator, is distributed not
over the subdomain z € [0,a], but over the subdomain z € [0, a — €], where ¢ is some
very small positive number. Then the physics of the problem is not changed, and the
voltage V'(a,t) does not enter into the boundary condition (79), i.e. this boundary
condition takes a simpler homogeneous form

Aoy — A1y =0 at z=a. (92)

Let us consider, for example, the woltage distributed uniformly over the length of the
actuator, i.e.
V(z,t)=V () in ze€][0,aq] (93a)

Then, without altering the physical formulation of the problem, we can write
V(z,t) =V(t) in x€]0,a—c¢] (93b)
Then, the voltage V(x,t) can be presented in the form

V(a,t) = [1 = 9ue@)] V(E) i we0,d] (94)
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where $,_.(z) is the Heaviside function (Appendix B). Then, the right side of the

differential equation (69) takes the form

LV =—LV(t) 9, .(z) = —LV(t) o_c(z),

where §,_(z) is the delta-function (Appendix B).

(95)

In computation of the example problems for the clamped-free beams, presented below,
the formulation based on the penalty function method will be used, and the voltage will be
distributed uniformly along the length of the actuator. For convenience, this formulation

is summarized below.
Partial differential equations:

KGo(wq + ¢) — Botrg = 0

Ao — KGo(wh + ¢o) — Codo = =L,V (t)0a—c(2)

KGl(’wlll + ¢Il) - Bl’lbl =0

A1¢] — KG1(wh + ¢1) — C11 =0

1 1 —
KGz(wg + ¢12) — Bty — x (w3 — wy) <§ — — arctan ws w2)

3
~ Hadlutf — 5 Qalwh)uf =

Asdly — KGa(wh + ¢2) — Cagy — Howhwly =0

KG3(w3 + ¢3) — Bas + x(ws — w2)<

3
= Q(wh)*wy =

- H3¢'/3w/3/ - 2

Asdly — KGs(wh + ¢3) — C3(é§3 — Hywhwy =0

KG4(U)Z + Qbil) - B4’LI)4 =0

— — — arctan
2

in ze€][0,al,

in z¢€la,ql,

in z¢€la,ql,

T €
in ze€lof,

in z€la,

1 w3 — Wy
™ €

in ze€l M.

in z€la, fl,

inz e L],

Ayl — KGa(wy + ¢1) — Cads =0 in z €[, L].
Essential boundary conditions:
R,=0 (i=12,...,12),

where

R1 Ewo(o,t), R E¢0(O,t>,

Rs; = wp(a,t) —wi(a,t), Ry = ¢o(a,t) — ¢1(a,t),

R5Ew1(a,t)—w2(a,t), R E¢1(Oz,t)—¢g(0[,t),

R7 = wi(a,t) —ws(a,t), Rs = ¢1(a, t) — ¢3(a, t),

RQE’U)Q(ﬁ,t)_UM(ﬁ,t), RlO:¢2(ﬁut)_¢4(ﬁ7t)u

R11£w3(65t)_w4(67t)5 R12_¢3(65t)_¢4(67t)'
Natural boundary conditions:

Go(po +wy) — Gi(pr +wy) =0 at x=a,

in ze€[0,al,

(96)
(97)
(98)
(99)

(106b)

(107)
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Agdy — A1py =0 at z=a, 108
0 1
1
KG1(p1 + w)) — KGa(da + wh) — Hawydy — 3 Qa2 (wh)?
) (109)
— KGs(¢3 + ws) — Hawsz — 3 Q3(wy)®> =0 at z=aq,
1 1
A1g — Asdly — 5 Ha(wp)® — Asy — 5 Hy(wy)? =0 at w=a,  (110)
1
KGs(¢2 + w) + Hawyh + 5 Q(wh)* + KGa(es + wh)
(111)
1
+ Hywhdly + 5 Qa(wh)? — KGa(da +wf) =0 at z=,
Aoy + Ay — Aady =0 at = =5, (112)
¢s+wy=0 at z=1L, (113)
¢, =0 at z=1L. (114)

4 Finite Element Formulation

The finite element formulation is made on the basis of weak forms for the derived partial
differential equations (96)—(105).

Finite element within Zone 0 (Part 0), i.e. within a subdomain x € [0, a].

The weak form for a finite element within Zone 0 is obtained by multiplying equations
(96) and (97) by weight functions (variations) dwo and d¢y respectively, integrating
them over an element’s length, performing integration by parts and adding the resulting
equations. The weak form thus obtained is

XB

0= [ [ Aottt + K Golu -+ o) 8+ KGo(u + ) 3
Xa
+ Botig dwo + Cogo 5o — I,V (t) 6oz () 6¢o] dx (115)

+ [KGO(% + ¢o) 5w0} - [KGO(U’B + ¢o) 5wo]

x=Xa r=Xp

+ (Aodhog0) = (Aodhog)

T=AA =AB

where X4 and Xp are coordinates of the element’s left and right boundary points.
In the boundary terms of the weak form, variations of the unknown functions wy and
¢o themselves (not their derivatives) are present, therefore, the Lagrange interpolation
polynomials are appropriate for approximation of the unknown functions within a finite
element [3]. In this analysis, the author chose to approximate both unknown functions
wo(z,t) and ¢o(x,t), within a finite element, by the Lagrange interpolation polynomials
of a fifth degree:

6 6

wo(x,t) & Y Ni(@)woi(t), ¢o(w,t) = > Ni(x)oi(t), (116)

i=1 i=1
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where
woi(t) = wo(zs, t),  doi(t) = ¢o(xs, 1), (117)
6
Xr — X
Ni(z) = I
@) =11 5= o (118)
j=1
J#i
IlEXA, IgEXB. (119)

So, the finite element has six nodes, and two unknown nodal parameters wq; and ¢g; are
associated with each i-th node. The nodes are chosen to be equidistant. Denoting the
element’s length as [, the nodal coordinates, in the local element coordinate system (the
origin of which coincides with the left boundary point of the element), can be written as

(i=1,...,6). (120)

Explicit expressions for the shape functions are written below

625 . 625 , 2125 , 375 , 137

Ni(z) = — |
@) = ot gE® Tt TeE Tt
3125 z° 6625 2% 42522 T
Nelw) = 255 =B+ 5 07
3125 2 8125 x4 7375 3 2675 22 T
Nj(z) = — 222 2t T 957
3(2) LrF T TRE BT 1R K 121)
by BBt s et 50a
BN DINE 12 B 2 2 T3
Na(e) = 312500 G875 0t 512508 152507 251
ST T o s T o 18T 24 BT 24 12 4 1
No(ay_ 8282° 6250t ST 1%4% g
OV T 12 T 3 12 2
The column-matrix of element nodal parameters is introduced as follows
{0} =|wo ¢o wo2 o2 wos Goz woa Goa wos dos wos dos | - (122)

(12x1)

Then, in view of formulas (116), the unknown functions wo(z,t) and ¢o(z,t) can be
expressed in terms of the column-matrix of nodal parameters {6} by the formulas

Wo = L(I)J {6‘}7 ¢o = \_\IJJ {9}7 (123)
(1x12) (1x12)
where
|®] =[N, 0 N, 0 N3 0 Ny 0 N5 0 Ng 0], (124a)
(1x12)
L‘I’J E\_O Nl 0 N2 0 N3 0 N4 0 N5 0 NGJ (124b)

(1x12)
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Substitution of equations (124) into the integral part of the weak form (115) produces
the result

{00y T( [ml {8} + K {6} - {f}) (125)

(1x12) “(12x12)(12x1) (12x12)(12x1)  (12x1)

where {§6} is a column-matrix of variations of the nodal parameters, and the other
matrices are defined as follows:

element mass matriz:
l l

[m] _BO/(@J T 9] d:c—|—C’0/ 1o T |V da, (126)

(12x12) 12x1) (1x12) o (12x1) (1x12)

element stiffness matriz:

I
d
= [ (G o) (i o, )
(12><12) ] dx (12><1 d$(1x12)

l

+KGO/<% 1) + M)T(% 1] + Lm)m,

0 (12x1) (1x12)

(127)

element force vector for the element adjacent to the right boundary of Zone 0:

{f} =4 axn 5, (128a)
azx1) LV ()

element force vector for all other elements of Zone 0

{r} = {0}. (128b)

(12x1)  (12x1)

Similar derivations can be used for deriving equations of motion of a finite element within
Zone 1 (Part 1) and Zone 3 (Part 4).

Finite element within Zone 2 (Part 2 and Part 3), i.e. within a subdomain z € [, (]
and z € [—h/2, 7].

The weak form for a finite element within Zone 2 is obtained by multiplying equations
(100) and (101) by weight functions (variations) dws and d¢o respectively, multiplying
equations (102) and (103) by dws and d¢3 respectively, integrating them over an element’s
length, performing integration by parts and adding the resulting equations. The integral
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part of the weak form thus obtained is

[A20h 8y + KGa(wh + ¢2) dwhy + KGao(wh + ¢2) o

Il
S _

+ Botg dwe + 02(52 5(}52] dx

+ [ [A305 8¢ + KG3(wh + ¢3) dwly + KGs(wh + ¢3) 63

o _

+ B33 dws + Cg(ég3 5(;53] dx

= [ [ (s + 3 Qut? ) s + o 562 o (129)

— O\N

- / {<H3¢’3 + g Qg(wé)2) wy dws + Hzwiwy 5(;53} dx
0

1 1 —
X (w3 — wa) (5 - = arctan -2 . w2>(5w2 dx

- O\N

1 _
+ /x w3 — Wa (— — Z arctan 22 w2>6w3 dx.
o €
0

The same interpolation polynomials are used for the Zone 2 as for the Zone 0, i.e.

ZN ’wgz ZN wSz
ZN )62i(),  dalwt) ~ ZN )3 (1)

(130)

where

wa;(t) = wa(wiyt), wsi(t) = ws(wi,t), @2(t) = ¢2(xit), ¢3i(t) = d3(ws,t), (131)
and shape functions N;(x) are defined by equations (121).
The column-matrix of the element nodal parameters for Zone 2 are introduced as

follows:
{9}(2)
(12x1)
0} = , 132
<2{4x}1> {6} (132
(12x1)
where

{0V = [ woy oy Was on Wiz Paz Wou Bog Wy dos Was  dog |
(133)

(0} = | w1 @31 wss 32 waz P33 wa4 bz wis Bas wse Pag )
(134)
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are column-matrices of nodal parameters of Part 2 and Part 3 respectively (of lower and
upper delaminated parts of Zone 2). Then, using the weak form (equation (129)) and
following the same procedures as for an element in Zone 0, the following expressions for
the element mass and stiffness matrices of Zone 2 are obtained.

Element mass matriz for Zone 2:

() (0]
(12x12)  (12x12)
(m] = : (135)
(24x24) [0] [m](g)
(12x12)  (12x12)
where
m]?) = B; z+ C v (i=2,3),
ml =B [ 18] 7 (0] oG [ (0T 0 do (=23, (130
(12x12) (12x1) (1x12) 12x1) (1x12)
and row-matrices |®| and | V] are defined by equations (124).
Element stiffness matrix for Zone 2:
[k (0]
(12x12)  (12x12)
(k] = : (137)
(24x24) [0] [k]®
(12x12)  (12x12)
where l
, d d
199 =i [ (1o 7) (5 L9 Jao
(12x12) , d$(12x1) d$(1x12)
(138)

+KG1-/Z(%L<I>J+LWJ)T(%@JJrL\IJJ)dx (i =2,3),
0

(12x1) (1x12)

The last two integrals in the weak form (129) represent virtual works of forces of mutual
impact of the crack’s faces, acting, correspondingly, on the lower and upper crack’s face.
The computation of contribution of these integrals to the discretized equations of motion
of a finite element within Zone 2 is presented below. Let us consider one of these integrals

s €

l
1 1 -
Bz [ xtws =) - Saretan 1 ) ) (140)
0

which represent virtual work of force of impact acting on the lower face of the crack. Sub-
stitution of functions ws(x,t) and ws(z,t) by their polynomial approximation (equa-
tions (130)) yields

! 6 6
12 = /X<Z 51,021 NZ) (Z ws; — U]QJ >
5 i=1 j=1
11 6
X <§ — ;arctan( -1 Z W3 — Wam,) m)) dx.

=1

(141)
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Let the function under the integral sign in the last integral be denoted as g(z). Then,
using the trapezoidal rule of numerical integration, with evaluation of the function g(x)
at the nodal points x1 = 0, z9, x3, T4, T5, xg = | of the finite element,

5

l
[ ata)do = 45]a(0) + 1) +2 3 gt (142
0

k=2

and using the property N;(z;) = ¢;; of the shape functions, defined by equation (118),
one can obtain
1 = x {60} {1}, (143)

(ix12) (12x1)

where

l 1 1 i — Wy .
fi= E(w3i—w2i)<§——arCtanu> for i=1,11,
s €

l

1 1
fi = — (w3 — wa;) (— — — arctan (144)
) 2 7

W3q — W24
€

> for i=3,5,7,9,

f;=0 for i=2,4,6,8, 10, 12.

Similarly, the last integral in equation (129) can be written as

l
I3 = /X(wg — w2)<% — %arctan @) (dws)dx = x {59(3)}T {f}. (145)
0

(ix12) (12x1)

The nonlinear terms

(a0t + 5 QaCus)? ) s + o

. O\N

—/ |:<H3¢/3 + g Qg(w’g)2>w§’ dws + Hywiwl 5¢)3} dx
0

in the weak form (129), which are due to taking account of longitudinal force resultants in
the delaminated parts (i.e. due to the von Karman nonlinearity of the strain-displacement
relations), lead to the presence of a column-matrix in the equations of motion of a finite
element, the components of which depend nonlinearly on the nodal parameters wy; and

ws; (1 =1,2,...,6). This column-matrix will be denoted as
{g}®
_ ) (e2xy
{9} = : (146)
(24x1) {9}(3)
(12x1)

where {g}®) is a column-matrix the components of which depend nonlinearly on nodal
parameters wy; (associated with the lower delaminated part), and {g}® is a column-
matrix the components of which depend nonlinearly on nodal parameters ws; (associated
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with the upper delaminated part). Components of {g}(? and {g}(®) are not written here
explicitly, because of their large size.

So, equations of motion of a finite element in the delaminated zone of the beam
(Zone 2) have the form

m 0 7 ({67 K 0] ] (0@
(12x12)  (12x12) (12x1) 0(12x12)  (12x12) (12x1)
o WO | Y@@ ("] 0w | e
(12x12)  (12x12) (12x1) (12x12)  (12x12) (12x1) (147)
- {f} ~({g}(2;
(12x1) 12x1 .
+ x + = {0} .
{/} {9}(3) (24x1)
(12x1) (12x1)

In Equation (147), the nonlinear internal force vector x | —{f}T {f}T|" depends on
nodal parameters, associated with both lower and upper delaminated parts (Part 2 and
Part 3). Therefore, in the system of equations (147), the nodal parameters {6},
associated with the lower delaminated part (Part 2) are coupled to the nodal parameters
{6} associated with the upper delaminated part.

So, the derivation of the finite element matrices is completed, and an example problem
will be considered next.

5 Solution of Example Problems

As an example problem, a clamped-free wooden beam with the following characteristics
(Figure 2.1) is considered: length L = 20 x 107%m, width b = 2.76 x 10~%m, thickness
h = 0.99 x 10~2m, wood density p(® = 418.02%, Young’s modulus of the wood in
the direction of fibers E§O) = 1.0897 x 1010%. The piezoelectric actuator is QP10W
(Active Control Experts). Thickness of the actuator is 7 = 3.81 x 10~%m, its length
is a = 5.08 x 1072m , the piezoelectric constant in the range of applied voltage (from
0 to 200V) is d3; ~ —1.05 x 10_9%7 the Young’s modulus of the actuator with its
packaging is E§p) = 2.57 x 1010%, mass density of the actuator with its packaging is
p®) = 6151.1% . The voltage V(t), applied to the piezoelectric actuator, is distributed
uniformly along the length of the actuator and varies with time as

V(t) = V, sin(Qt),

where V, =200V, Q = 600%. The wooden beam is cut along its fibers, so that the angle
0 in the formula (6) is equal to zero, and, therefore, the elastic compliance coefficient

S11 for the wood is equal to ?ﬁ) = ﬁ = 9.1768 x 10_117%2 . For the piezoelectric
1

actuator, the material coordinate system coincides with the problem coordinate system,
so that the elastic compliance coefficient S1; for the material of the piezo-actuator is

gﬁ) = % = 3.8911 x 10_117%2 . Coordinates of the crack tips are: a = 10 x 10~2m,
El

B=15x10"2m, v =0.66 x 1072 — % = 1.65 x 1073m . Then the constants, entering
into the variational formulation and the differential equations of the problem, have the
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following values in SI units: Ag = 31.463, By = 0.1789, Cy = 2.6429 x 1075, Gy =
1.29910 x 108, A; =24.319, By = 0.11422, C; = 9.3289 x 1077, G = 1.190999 x 10°,
Ay =12.61, By = 7.6147x 1072, Oy = 4.8372x 1077, Gy = 7.93999 x 10°, A3 = 11.709,
Bz = 3.8073 x 1072, C3 = 4.4917 x 1077, G5 = 3.969995 x 10° , Ay = 24.319,
By = 0.11422, Cy = 9.3289 x 1077, G4 = 1.190999 x 10%, I, = —3.8285 x 1073,
a=5.08x1072 V, =200, Q =600, « =10x 1072, =15x 1072, v = 1.65 x 1073,
b=276x 1072 h=0.99 x 1072, Q2 = 1.985005666 x 10°, Q3 = 9.925028332 x 105,
Hy = —3275.25935, Hs = 3275.25935. The small constant € and the large constant y
are chosen to be € =1 x 1073 and y = 1 x 10°.

5.1 Time-domain response to dynamic excitation

Time integration of a system of ordinary differential equations of a global (assembled)
semi-discrete finite element model

[M]{G} =+ [K]{@} + {R}nonlin = {F}

was performed with the use of the backward-difference method [4]. In the last equation,
{R}nonlin is a column-matrix, which contains components that depend nonlinearly on
the unknown nodal parameters ©;. Transverse displacements as functions of time at free
ends of delaminated and undelaminated beams are shown in graphs of Figure 5.1. These
graphs are noticeably different. Numerical experiments show that neglecting nonlinear
terms in the strain-displacement relations (19a), and, therefore, neglecting the longitu-

dinal force resultants N§2) and N§3) in the delaminated parts of the beam (equations
(25) and (29)), produces much smaller effect on the transverse displacement of the de-
laminated beam than neglecting the force of contact interaction of the crack faces.

5.2 Eigenvalue analysis

For the same beam, natural frequencies and mode shapes were computed from a linear
eigenvalue analysis. Results of calculation of frequencies for beams with different crack
lengths are presented in tables below. For some crack lengths, comparison is made
between frequencies computed on the basis of the first order shear deformation theory,
presented in this paper, and the frequencies computed on the basis of the Euler-Bernoulli
beam theory, presented in Reference [1]. Rotary inertia terms are taken into account in
both types of solutions.

Let us consider, at first, the first seven circular frequencies of a clamped-free beam
without the delamination and with the actuator, obtained by setting equal the x-
coordinates of the crack tips. The frequencies for this case are presented below. Notation
FOSDT stands for the First Order Shear Deformation Theory of the beam, notation E-B
stands for the Euler-Bernoulli beam theory.

w1 w2 w3 Wy Wws We w7

FOSDT | 1395.535 | 8130.531 | 21436.8 | 40361.9 | 64915.31 | 9.36739 x 10%* | 1.25461 x 10°
E-B 1397.435 | 8217.911 | 21986.6 | 42205.0 | 69331.23 | 1.02371 x 10° | 1.40641 X 10°
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displacement

Figure 5.1.
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Transverse displacement of free end of delaminated beam (solid line)

and undelaminated beam (dashed line). Coordinates of the crack tips of the delam-
inated beam are a = 0,1m, 8 = 0,15m, v = 1,65 x 10 3m.
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In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: « = 0.1m, § = 0.11m,
v =1.65 x 10~ 3m.

w1 wo w3 w4 ws We w7
FOSDT 1395.5 8130.5 21436.0 | 40361.5 | 64909.9 | 9.3669 x 10% 1.2545 x 10°
E-B 1397.435 | 8217.909 | 21986.1 | 42204.9 | 69331.2 | 1.02371 x 10° | 1.40641 x 10°

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: « = 0.1m, § = 0.12m,

v =1.65 x 1073m.

w1 w9 w3 Wy ws We w7
FOSDT 1395.5 8130.5 | 21433.6 | 40356.8 | 64900.7 | 9.3629 x 10* 1.2544 X 10°
E-B 1397.433 | 8217.9 | 21986.0 | 42200.0 | 69330.0 | 1.02368 x 10° | 1.40625 x 10°

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: « = 0.1m, § = 0.13m,

~v=1.65 x 10~ 3m.
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w1 w2 w3 Wy Wws We w7 ‘

FOSDT | 1395.49 | 8130.46 | 21431.655 | 40345.03 | 64894.09 | 9.3576 x 10% 1.2535><105|

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: « = 0.1m, 8 = 0.14m,
v =1.65 x 10~ 3m.

w1 w2 w3 Wy Wws We w7

FOSDT | 1395.47 | 8130.28 | 21430.371 | 40330.58 | 64850.16 | 9.3541 x 10% | 1.2504 x 10°

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: « = 0.1m, 8 = 0.15m,
v =1.65 x 10~ 3m.

w1 w2 w3 Wy Ws We w7

FOSDT | 1395.456 | 8129.95 | 21427.848 | 40320.39 | 64719.1 | 9.31501 x 10% | 1.10100 x 10°
E-B 1397.432 | 8217.62 21980.0 42201.0 | 69094.0 | 1.01932 x 10° | 1.33019 x 10°

So, the frequencies decrease as the crack length increases. This phenomenon is more
pronounced for higher frequencies.

The first four mode shapes of delaminated beams are nearly the same as the corre-
sponding mode shapes of the undelaminated beams, so that the difference is not notice-
able on graphs. But the higher mode shapes of the delaminated beams, beginning from
the fifth mode shape, show the crack opening and closure during the vibration, as can
be seen in Figures 5.2, 5.3 and 5.4.

Figure 5.2a. Fifth mode shape of clamped-free beam without delamination.
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Figure 5.2b. Fifth mode shape of clamped-free beam with delamination.

N N N

Figure 5.3a. Sixth mode shape of clamped-free beam without delamination.

AN N
X\

Figure 5.3b. Sixth mode shape of clamped-free beam with delamination.

Figure 5.4a. Seventh mode shape of clamped-free beam without delamination.

85
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Figure 5.4b. Seventh mode shape of clamped-free beam with delamination.

Experimental verification of the developed theory and the finite element program will
be presented in a subsequent publication. The theory, presented in this work, and the
finite element program, based on this theory, are developed for the purpose of their sub-
sequent use in nondestructive detection of delamination cracks in composite structures.

Appendix A
Constitutive Equations for a Piezoelectric Orthotropic Layer of a Thin
Composite Beam

The constitutive equations of a generally anisotropic piezoelectric material can be writ-
ten in a matrix form as follows (in these equations, the bars over characters are put to
emphasize that the quantities are presented in a problem coordinate system, the coordi-
nate planes of which do not necessarily coincide with the planes of elastic or dielectric
symmetry)

(&} = [S] {7} + [d " {€}, (A-1)
(6x1) (6x6)(6x1) (6x3) (3x1)
{D} = [d] {7} + [ {&}, (A-2)
(3x1)  (3x6)(6x1)  (3x3)(3x1)
where
(2} = |ewe Eyy €22 26y 26n. 264y (A-3)
(6x1)

is a column-matrix of components of the strain tensor,

_ T
(gai) = |0px Oyy Ozz Oys Ozz Ogy | (A-4)
X

is a column-matrix of components of the stress tensor,

(@) =& & &7 (A-5)
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is a column-matrix of components of the electric field intensity vector, [S] isa matrix of
(6x6)
elastic coefficients (compliance coefficients) and [d] and [(] are matrices of material
(3x6) (3%3)
constants that characterize electrical properties.
For an orthotropic material, in the principal material coordinate system (whose co-
ordinate planes coincide with the planes of elastic symmetry), the matrix of compliance
coefficients is denoted as [S] (without a bar) and has the form

Si2 Sz Sz 0 0 0

S13 Seg S3z 0 0 0
0 0 0 Su 0 0
0 0 0 0 Sk 0
0 0 0 0 0 Ses

5] = (A-6)

where the compliance coeflicients .S;; are expressed in terms of engineering constants by
the formulas

1 V12 V13 1 V23
Si= =, Sip=-"2 = U8 g, Gy
11 Elu 12 El ) 13 E1 ) 22 E27 23 EQ ) (A_7)
S L S. 1 Ss5 = 1 Se6 = 1
33 — Eg’ 44 — G 37 55 — Glg’ 66 — GlQ'

The matrices, characterizing electric properties of the material, in the principle material
coordinate system, will be denoted without the bar also, i.e. as [d] and [(] .
(3%x6) (3%x3)

In the laminate (problem) coordinate system, rotated clockwise by an angle 6 with

respect to the principle material coordinate system, the matrix of compliance coefficients

and the matrices, characterizing electric properties of the material, [d] and [{] , have

(3%x6) (3%x3)
the form
[S] = [1] " [s] (1], (A-8)
(6x6) (6x6) (6x6)(6x6)
[ = R"T [ [R, (A-9)
(3x3) (3x3) (3%x3)(3x3)
[d = [R] " [d 1], (A-10)

(3x6)  (3x3) (3x6)(6x6)

where the transformation matrices [T] and [R] are defined as follows (with the use of
notation ¢ = cosf, s =sinf):

2 2 00 0 2sc
s 2 00 0 —2sc
0 0O 1 0 O 0
(gl) o 0 0 ¢ —-s 0 ’ (A-11)
0 0 0 s ¢ 0
—sc s¢c 00 0 2—g2
c 0
Rl =|—-s ¢ 0 (A-12)
(3%x3) 0 0 1
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For the composite piezoelectric layer of a thin and narrow composite beam, which bends
in the z-z plane, the following assumptions can be adopted

Ozz = Oxz = Oyz = Oyy = 0.

(A-13)

Besides, in the problem under consideration, the electrical field is applied to the actuator
only in the thickness direction (in the direction of the z-axis), i.e.

(A-14)

If equations (A-13) and (A-14) are substituted into the constitutive equations (A-1) and
(A-2) with account of transformation relations (A-8), (A-9) and (A-10) and with account
of equations (A-6) and (A-7) for compliance matrix in the principle material coordinate

system, then the constitutive equations take the form

(=T s lio e ew
(D)= @al{ 7 b Tl (). (A-16)

From the constitutive equations (A-15) and (A-16), one can obtain the constitutive equa-
tions in a different form:

1 0 _Ei |
811 Sll c
o =z
o 0 — Sk %.. ¢, (A-17a)
D. Sss ;955 , E.
d31 d3s (g _da %)
L Sll 55 33 Sll S55 -
or, in view of the relationship &, = —%, where ¢ is the electric potential,
1 0 aﬂ ]
. S11 Su .
O 0 — = 24, (A-17D)
b S oL | LB
dy - dss <—Z33+@+$>
L 511 555 Sll 555 -

According to equations (A-7) and (A-8), the compliance coefficients S;; and S5 in
the problem coordinate system that enter into equations (A-17), are expressed in terms
of the engineering constants by the formulas

1

— 1
Sss = — 5% 4+ —c2,
%7 Gas Gis (A-18)
— 1 1 1 V12
T~ AL LA g2 22
11 Elc +E28 +(G12 El)sc
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The material constants ds; and dss, which characterize the piezoelectric properties in
the problem coordinate system, are expressed in terms of the piezoelectric constants d;;
of the material coordinate system by the formulas (derived from matrix transformation
equations A-10)

ds1 = d31® + dszs” — dagse, (A-19a)
dss = —dsas + dsse, (A-19D)

and, according to the transformation equation (A-9),

(33 = Gas- (A-20)

We consider a piezoelectric material with orthorhombic mm2 symmetry, such as
polyvinylidene (PVDF) or lead zirconate-titanate (PZT), in which the planes of elastic
symmetry are made, in the manufacturing process, the same as the planes of piezoelectric
symmetry. In this case, the piezoelectric constants ds4 and dss are equal to zero (see [5]
and [6]). Then, according to equation (A-19b), d3s = 0, and equation (A-17b) takes the
form

1 d
— 0 3L
Oxx Sll 1 Sll Exx
Oxz = 0 = 0 25;Ez . (A—21)
D S's5 dp
z day _ agl 0z
S ( 0 Sn

These are the constitutive equations for a layer of orthotropic piezoelectric material with
orthorhombic mm2 symmetry, in which the planes of elastic symmetry are the same as the
planes of piezoelectric symmetry, in a narrow and thin composite beam. Obviously, for
a layer of orthotropic material, in a thin narrow beam, which does not have piezoelectric
properties, the constitutive equations have the form

1

= 0
Ozxx _ Sll Exx ~
E N L )

Sss

Appendix B
Properties of the Heaviside Function

It can be shown [7] that the Heaviside function (unit step-function) $,(x), defined by
formula

(1) = { 0 for z< a, (B-1)
1 for x> q,
has the following property
9a(®) _ 5 0 (B-2)
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where 0, (x) is the Dirac’s delta-function, defined as a function that has the following

properties:
0 f ,
5 () = { or x# (B-3)
o for z=a
and
f <a< 9,
/f 2)di — { fla) for z1 <a <z (B4)
0 for a < xy and for a > x5.

The delta—functlon has several analytical representations, one of which has the form [8]:

1 €

%a(e) = by S T ap (B-5)
According to formula (B-2), the analytical representation of the Heaviside function, cor-
responding to the analytical representation of the delta-function (B-5) is

0 for x<a,
1 z—a 1 1
o(z) = lim — arct =% Z = B-6
Ha(z) lim — arctan — +2 5 for = = qa, (B-6)
1 for = > a.

Carrying out the Heaviside function $,(z) beyond the integral sign in an indefinite
integral is done with the use of the formula

/f)a x)dr = Ha(x /f (B-7)

With the use of properties (B-2) and (B-4), it can be shown that

daf
/f ) Loela %zf{;@(a) or ms @<, (B-5)

for a < xy and for a > 5.
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