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Abstract: In this work, a new approach is developed for dynamic analysis of
a composite beam with an interplay crack, in which a physically impossible
interpenetration of the crack faces is prevented by imposing a special con-
straint, leading to taking account of a force of contact interaction of the crack
faces and to nonlinearity of the formulated boundary value problem. Longi-
tudinal force resultants in the delaminated parts of the beam are taken into
account also, which is another source of the nonlinearity. The shear defor-
mation and rotary inertia terms are included into the formulation, to achieve
better accuracy. The model is based on the first order shear deformation the-
ory, i.e. the longitudinal displacement is assumed to vary linearly through the
beam’s thickness. A variational formulation of the problem, nonlinear partial
differential equations of motion with boundary conditions, a weak form for
the partial differential equations and a finite element formulation on the basis
of the weak form are developed. An example problem of a clamped-free beam
with a piezoelectric actuator is considered, and its finite element solution
is obtained. A noticeable difference of forced vibrations of the delaminated
and undelaminated beams due to the contact interaction of the crack faces is
predicted by the developed model. Besides, linear eigenvalue analysis shows
decrease of natural frequencies upon increase of the crack length, and crack
opening and closing during the vibration in higher mode shapes, beginning
from the fifth one.
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1 Introduction

A model of a composite beam with the delamination and with a piezoelectric actuator,
with account of contact interaction of the delamination crack faces, based on the classical
beam theory, was presented in Reference [1]. This model did not take the shear strain
energy into account, and, therefore, produced sufficiently accurate results only for thin
beams. To model thicker beams with delamination, one needs to use a beam theory,
based on simplifying assumptions, which do not lead to vanishing of the shear strains.
The first order shear deformation theory [2], based on assumed linear variation of a
longitudinal displacement in the thickness direction, is the simplest approach that satisfies
the requirement of a non-zero shear strain. This approach is used in the present paper for
modeling a composite delaminated beam with a piezoelectric actuator. In this model, the
interpenetration of the crack faces is prevented by imposing a constraint, written with
the use of the Heaviside function in one of its analytical forms, leading to taking account
of a force of contact interaction of the crack faces and to nonlinearity of the formulated
boundary value problem.

2 Variational Formulation of The Problem

Total Potential Energy for Zone 0 (Part 0), i.e. for 0 ≤ x ≤ a (Figure 2.1).

Assumptions of the first-order shear deformation beam theory:

u0(x, z, t) = zφ0(x, t), w0(x, z, t) = w0(x, t), (1)

where u0(x, z, t) and w0(x, z, t) are longitudinal and transverse displacements of Zone
0 (Part 0). The subscript 0 in the notations u0(x, z, t) and w0(x, z, t) indicates that
the quantities u0 and w0 are associated with the Zone 0 (Part 0). The notation u0 =
u0(x, z, t) is not a notation for the axial longitudinal displacement (at z = 0). The axial
longitudinal displacement is considered to be negligibly small here, because this model
is developed for the beam to which an external longitudinal force is not applied.

Strain-displacement relations :

ε(0)
xx =

∂u0

∂x
, ε(0)

xz =
1

2

(
∂u0

∂z
+

∂w0

∂x

)
. (2a)

In this text, εxz is a notation for a component of the strain tensor, not an engineering
strain. With account of Equation (1), Equations (2a) take the form

ε(0)
xx = zφ′

0, ε(0)
xz =

1

2
(φ0 + w′

0), (2b)

where prime denotes differentiation with respect to x.

Stress-strain relations for an orthotropic piezoelectric layer of a composite beam (plane
stress with respect to the y-direction), Appendix A:

σ(p)
xx =

1

S11

ε(p)
xx −

d31

S11

V

τ
, σ(p)

xz =
1

S55

2ε(p)
xz , (3)
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Figure 2.1. Cantilever beam with delamination and piezoelectric actuator.

a is length of the actuator; α is x-coordinate of the left crack tip; β is x-coordinate of

the right crack tip; γ is z-coordinate of the crack (distance from x-axis to crack); τ
is thickness of the actuator; w0 is transverse displacement of zone 0; w1 is transverse

displacement of zone 1; w2 is transverse displacement of lower part of zone 2 (under

the crack); w3 is transverse displacement of upper part of zone 2 (above the crack);

w4 is transverse displacement of zone 3.

where τ is thickness of the actuator, and V = V (x, t) is a voltage, applied to the actuator.
It is implied that this voltage creates an electric field in the z-direction.

Stress-strain relations for an orthotropic layer that does not have piezoelectric properties,
Appendix A:

σ(0)
xx =

1

S11

ε(0)
xx , σ(0)

xz =
1

S55

2ε(0)
xz . (4)

Total potential energy where K is a shear correction factor and b is the beam’s width

U0 =
1

2
b

a∫

0

h/2∫

−h/2

1

S
(0)

11 (z)

(
ε(0)

xx

)2
dz dx

+
1

2
b

a∫

0

h/2+τ∫

h/2

(
1

S
(p)

11 (z)

(
ε(p)

xx

)2
−

2d31(z)

S11(z)

V

τ
ε(p)

xx

)
dz dx

+ 2Kb

a∫

0

h/2∫

−h/2

1

S
(0)

55 (z)

(
ε(0)

xz

)2
dz dx + 2Kb

a∫

0

h/2+τ∫

−h/2

1

S
(p)

55 (z)

(
ε(p)

xz

)2
dz dx,

(5)
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where K is a shear correction factor and b is the beam’s width. Substitution of equation
(2b) into Equation (5) yields

U0 =

a∫

0

(
A0

2
(φ′

0)
2 + K

G0

2
(φ0 + w′

0)
2 − IpV φ′

0

)
dx, (6)

where the constants A0, Ip and G0 are defined as

A0 = b

h/2∫

−h/2

z2

S
(0)

11 (z)
dz + b

h/2+τ∫

h/2

z2

S
(p)

11 (z)
dz,

Ip =

(
b

τ

h/2+τ∫

h/2

d31(z)

S
(p)

11 (z)
z dz

)
, G0 = b

h/2∫

−h/2

1

S
(0)

55 (z)
dz + b

h/2+τ∫

h/2

1

S
(p)

55 (z)
dz.

(7)

Kinetic Energy for Zone 0 (Part 0), i.e. for 0 ≤ x ≤ a:

T0 =
1

2
b

a∫

0

h/2∫

−h/2

ρ(0)(z)(ẇ2
0 + u̇2

0) dz dx +
1

2
b

a∫

0

h/2+τ∫

h/2

ρ(p)(z)(ẇ2
0 + u̇2

0) dz dx, (8)

where ρ(0)(z) is a mass density of composite layers of Zone 0 without piezoelectric

properties and ρ(p)(z) is the mass density of the piezoelectric actuator (ρ(p) may depend
on the z-coordinate if the actuator has plies with different densities).

Substitution of Equations (1) into Equation (8) produces the result

T0 =

a∫

0

(
1

2
B0ẇ

2
0 +

1

2
C0φ̇

2
0

)
dx, (9)

where the constants B0 and C0 are defined as follows:

B0 = b

( h/2∫

−h/2

ρ(0)(z) dz +

h/2+τ∫

h/2

ρ(p)(z) dz

)
,

C0 = b

( h/2∫

−h/2

ρ(0)(z) z2 dz +

h/2+τ∫

h/2

ρ(p)(z) z2 dz

)
.

(10)

In a similar manner we obtain the strain and kinetic energy for Zone 1 (Part 1) and
Zone 3 (Part 4).

Strain Energy for Zone 1 (Part 1), i.e. for a ≤ x ≤ α:

U1 =

α∫

a

(
A1

2
(φ′

1)
2 + K

G1

2
(φ1 + w′

1)
2

)
dx, (11)
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where the constants A1 and G1 are defined as follows:

A1 ≡ b

h/2∫

−h/2

z2

S
(1)

11 (z)
dz G1 ≡ b

h/2∫

−h/2

1

S
(1)

55 (z)
dz. (12)

Kinetic energy for Zone 1 (Part 1), i.e. for a ≤ x ≤ α:

T1 =

α∫

a

(
1

2
B1ẇ

2
1 +

1

2
C1φ̇

2
1

)
dx, (13)

where the constants B1 and C1 are defined as follows:

B1 = b

h/2∫

−h/2

ρ(1)(z) dz, C1 = b

h/2∫

−h/2

ρ(1)(z) z2 dz. (14)

Strain Energy for Zone 3 (Part 4), i.e. for β ≤ x ≤ L:

U4 =

L∫

β

(
A4

2
(φ′

4)
2 + K

G4

2
(φ4 + w′

4)
2

)
dx, (15)

where the constants A4 and G4 are defined as follows:

A4 = b

h/2∫

−h/2

z2

S
(4)

11 (z)
dz G4 = b

h/2∫

−h/2

1

S
(4)

55 (z)
dz. (16)

Kinetic Energy for Zone 3 (Part 4), i.e. for β ≤ x ≤ L:

T4 =

L∫

β

(
1

2
B4ẇ

2
4 +

1

2
C4φ̇

2
4

)
dx, (17)

where the constants B4 and C4 are defined as follows:

B4 = b

h/2∫

−h/2

ρ(4)(z) dz, C4 = b

h/2∫

−h/2

ρ(4)(z) z2 dz. (18)
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Strain Energy for Zone 2 (Part 2 and Part 3), i.e. for α ≤ x ≤ β.
In the Zone 2, which contains the delamination crack, the longitudinal force resultants

in the delaminated lower and upper parts (Part 2 and Part 3),

N (2)
x = b

γ∫

−h/2

σ(2)
xx dz, N (3)

x = b

h/2∫

γ

σ(3)
xx dz,

can be not negligibly small, even if external longitudinal forces are not applied to the
beam. In order for these force resultants to be taken into account, a nonlinear term
1

2
(w′)2 in the Green-Lagrange strain-displacement relation for the strain component εxx

must be taken into account. So, for the Part 2 (lower part of Zone 2) the following
relations are used:

strain-displacement relations:

ε(2)
xx =

∂u2

∂x
+

1

2

(
∂w2

∂x

)2

, (19a)

ε(2)
xz =

1

2

(
∂u2

∂z
+

∂w2

∂x

)
; (19b)

simplifying assumptions:

u2(x, z, t) = zφ2(x, t) w2(x, z, t) = w2(x, t); (20)

stress-strain relations:

σ(2)
xx =

1

S
(2)

11

ε(2)
xx , σ(2)

xz =
1

S
(2)

55

2ε(2)
xz ; (21)

strain energy:

U2 =
1

2
b

β∫

α

γ∫

−h/2

σ(2)
xx ε(2)

xx dz dx + Kb

β∫

α

γ∫

−h/2

σ(2)
xz ε(2)

xz dz dx. (22)

From Equations (18) – (22) we obtain the following expression for the strain energy:

U2 =

β∫

α

[
1

2
A2(φ

′
2)

2 +
1

2
KG2(φ2 + w′

2)
2 +

1

4
H2(w

′
2)

2φ′
2 +

1

4
N (2)

x (w′
2)

2

]
dx, (23)

where A2, G2, H2 are constants, defined as

A2 = b

γ∫

−h/2

1

S
(2)

11 (z)
z2 dz, G2 = b

γ∫

−h/2

1

S
(2)

55 (z)
dz, H2 = b

γ∫

−h/2

1

S
(2)

11 (z)
z dz, (24)
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and N
(2)
x is a longitudinal force resultant in the lower delaminated part (Part 2):

N (2)
x = b

γ∫

−h/2

σ(2)
xx dz = H2φ

′
2 +

1

2
Q2(w

′
2)

2, (25)

where Q2 is a constant, defined as

Q2 = b

γ∫

−h/2

1

S
(2)

11 (z)
dz. (26)

Similarly, for the Part 3 (upper part of Zone 2) the expression for the strain energy
has the form

U3 =

β∫

α

[
1

2
A3(φ

′
3)

2 +
1

2
KG3(φ3 + w′

3)
2 +

1

4
H3(w

′
3)

2φ′
3 +

1

4
N (3)

x (w′
3)

2

]
dx, (27)

where

A3 = b

h/2∫

γ

1

S
(3)

11 (z)
z2 dz, G3 = b

h/2∫

γ

1

S
(3)

55 (z)
dz, H3 = b

h/2∫

γ

1

S
(3)

11 (z)
z dz, (28)

N (3)
x = b

h/2∫

γ

σ(3)
xx dz = H3φ

′
3 +

1

2
Q3(w

′
3)

2, (29)

where

Q3 = b

h/2∫

γ

1

S
(3)

11 (z)
dz. (30)

Kinetic Energy for Zone 2 (Part 2 and Part 3), i.e. for α ≤ x ≤ β.
Expressions for kinetic energy of Part 2 and Part 3 are obtained similarly to the

expressions for the kinetic energies of all other parts, and they have the form:

T2 =

β∫

α

(
1

2
B2ẇ

2
2 +

1

2
C2φ̇

2
2

)
dx,

T3 =

β∫

α

(
1

2
B3ẇ

2
3 dx +

1

2
C3φ̇

2
3

)
dx,

(31)

where

B2 = b

γ∫

−h/2

ρ(2)(z) dz, C2 = b

γ∫

−h/2

ρ(2)(z)z2 dz,

B3 = b

h/2∫

γ

ρ(3)(z) dz, C3 = b

h/2∫

γ

ρ(3)(z)z2 dz.

(32)



68 V.Y. PEREL

In view of the expressions for strain and kinetic energies, derived above, the Lagrangian
function density (potential energy minus kinetic energy per unit length) for the delam-
inated composite beam with the piezoelectric actuator (Figure 2.1) can be written as
follows

L̃ =





L̃0(ẇ0, w′
0, φ0, φ̇0, φ′

0) in Zone 0 (0 ≤ x ≤ a)

L̃1(ẇ1, w′
1, φ1, φ̇1, φ′

1) in Zone 1 (a ≤ x ≤ α)

L̃2(ẇ2, w′
2, φ2, φ̇2, φ′

2, ẇ3, w′
3, φ3, φ̇3, φ′

3) in Zone 2 (α ≤ x ≤ β)

L̃3(ẇ4, w′
4, φ4, φ̇4, φ′

4) in Zone 3 (β ≤ x ≤ L),

(33)

where

L̃0 =
A0

2
(φ′

0)
2 + K

G0

2
(φ0 + w′

0)
2 − IpV φ′

0 −
B0

2
ẇ2

0 −
C0

2
φ̇2

0, (34a)

L̃1 =
A1

2
(φ′

1)
2 + K

G1

2
(φ1 + w′

1)
2 −

B1

2
ẇ2

1 −
C1

2
φ̇2

1, (34b)

L̃2 =
1

2
A2(φ

′
2)

2 +
1

2
KG2(φ2 + w′

2)
2 +

1

2
H2(w

′
2)

2φ′
2 +

1

8
Q2(w

′
2)

4

−
1

2
B2ẇ

2
2 −

1

2
C2φ̇

2
2 +

1

2
A3(φ

′
3)

2 +
1

2
KG3(φ3 + w′

3)
2 (34c)

+
1

2
H3(w

′
3)

2φ′
3 +

1

8
Q3(w

′
3)

4 −
1

2
B3ẇ

2
2 −

1

2
C3φ̇

2
3,

L̃3 =
A4

2
(φ′

4)
2 + K

G4

2
(φ4 + w′

4)
2 −

B4

2
ẇ2

4 −
C4

2
φ̇2

4. (34d)

A variational formulation of the problem includes essential boundary conditions at the
ends of each zone, which will be treated as point-wise constraints, and a nonpenetration
condition for the delamination crack faces (subdomain constraints for Zone 2), Reference
[1]. For a clamped-free beam, the point-wise constraints have the form

Ri(t) = 0 (i = 1, 2, . . . , 12), (35a)

where
R1 ≡ w0(0, t), R2 ≡ φ0(0, t),

R3 ≡ w0(a, t) − w1(a, t) R4 ≡ φ0(a, t) − φ1(a, t),

R5 ≡ w1(α, t) − w2(α, t), R6 ≡ φ1(α, t) − φ2(α, t),

R7 ≡ w1(α, t) − w3(α, t), R8 ≡ φ1(α, t) − φ3(α, t),

R9 ≡ w2(β, t) − w4(β, t), R10 ≡ φ2(β, t) − φ4(β, t),

R11 ≡ w3(β, t) − w4(β, t), R12 ≡ φ3(β, t) − φ4(β, t).

(35b)

In case of other kinds of fixation of the beam’s ends, the first two point-wise constraints
will be different, of course, but the other point-wise constraints will be the same.

During the vibration of the delaminated beam, the upper and lower delaminated parts
touch each other, and the force of their interaction needs to be taken into account. This
force enters into the differential equations of motion as a reaction of constraint, which
prevents overlapping of the upper and lower delaminated parts. Such a constraint can be
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expressed by a relationship between w2 and w3 (i.e. displacements of the lower and upper
delaminated parts) that prevents the difference w3 − w2 to take on negative values:

f(w2(x, t), w3(x, t)) = f(x, t) ≡ (w3 − w2) [1 − H0(w3 − w2)] = 0, (36a)

where H0 is a Heaviside function, defined in Appendix B. If delaminated sublaminates
“attempt” to overlap during the vibration (if w3 − w2 < 0), or if the crack is closed
(w3−w2 = 0), then H0(w3−w2) = 0, and, therefore, due to equation (10), the difference
w3 −w2 is set equal to zero. If the crack is open (w3 −w2 > 0), then H0(w3 −w2) = 1,
and no constraints are imposed on the difference w3−w2. With the use of the analytical
representation of the Heaviside function (equation B-5), the nonpenetration constraint,
expressed by equation (36a), can be written as follows:

f(x, t) ≡ (w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
= 0, (36b)

where ǫ is some small number. The nonpenetration constraint (36) is a subdomain con-
straint for the Zone 2 (α ≤ x ≤ β).

Now, the problem can be formulated as a problem of finding a constrained (conditional)
extremum of the functional

J =

t2∫

t1

L∫

0

L̃ dx dt (37)

with constraints expressed by Equations (35) and (36). The constraints (35) and (36)
can be included into the functional by the method of Lagrange multipliers. This will
produce a modified functional J :

J = J +

t2∫

t1

12∑

i=1

λi(t)Ri(t) +

t2∫

t1

β∫

α

µ(x, t)f(x, t) dx dt, (39)

where λi(t) and µ(x, t) are the Lagrange multipliers. Now we have a problem of an

unconstrained (unconditional) extremum of the modified functional J . Derivation of
the partial differential equations of motion and natural boundary conditions from the
condition of extremum of the functional (39) can be performed using standard methods
of calculus of variations. In the following text, partial differential equations of motion
with boundary conditions, a weak form of the partial differential equations and a finite
element formulation on the basis of the weak form will be obtained.

3 Partial Differential Equations with Boundary Conditions

To derive the partial differential equations of motion with boundary conditions, the
condition of unconstrained extremum of the functional J (Equation (39)) will be used.

The condition δJ = 0 leads to the following partial differential equations and natural
boundary conditions.
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Partial differential equations:

−
∂

∂t

∂L̃0

∂ẇ0
−

∂

∂x

∂L̃0

∂w′
0

= 0 in x ∈ [0, a] , (41)

∂L̃0

∂φ0
−

∂

∂t

∂L̃0

∂φ̇0

−
∂

∂x

∂L̃0

∂φ′
0

= 0 in x ∈ [0, a] , (42)

−
∂

∂t

∂L̃1

∂ẇ1
−

∂

∂x

∂L̃1

∂w′
1

= 0 in x ∈ [a, α] , (43)

∂L̃1

∂φ1
−

∂

∂t

∂L̃1

∂φ̇1

−
∂

∂x

∂L̃1

∂φ′
1

= 0 in x ∈ [a, α], (44)

µ
∂f

∂w2
−

∂

∂t

∂L̃2

∂ẇ2
−

∂

∂x

∂L̃2

∂w′
2

= 0 in x ∈ [α, β] , (45)

∂L̃2

∂φ2
−

∂

∂t

∂L̃2

∂φ̇2

−
∂

∂x

∂L̃2

∂φ′
2

= 0 in x ∈ [α, β] , (46)

µ
∂f

∂w3
−

∂

∂t

∂L̃2

∂ẇ3
−

∂

∂x

∂L̃2

∂w′
3

= 0 in x ∈ [α, β] , (47)

∂L̃2

∂φ3
−

∂

∂t

∂L̃2

∂φ̇3

−
∂

∂x

∂L̃2

∂φ′
3

= 0 in x ∈ [α, β] , (48)

−
∂

∂t

∂L̃3

∂ẇ4
−

∂

∂x

∂L̃3

∂w′
4

= 0 in x ∈ [β, L] , (49)

∂L̃3

∂φ4
−

∂

∂t

∂L̃3

∂φ̇4

−
∂

∂x

∂L̃3

∂φ′
4

= 0 in x ∈ [β, L] . (50)

Natural boundary conditions:

∂L̃0

∂w′
0

+ λ3 = 0 at x = a,
∂L̃0

∂φ′
0

+ λ4 = 0 at x = a, (51)

−
∂L̃1

∂w′
1

− λ3 = 0 at x = a,
∂L̃1

∂w′
1

+ λ5 + λ7 = 0 at x = α, (52)

−
∂L̃1

∂φ′
1

− λ4 = 0 at x = a,
∂L̃1

∂φ′
1

+ λ6 + λ8 = 0 at x = α (53)

−
∂L̃2

∂w′
2

− λ5 = 0 at x = α,
∂L̃2

∂w′
2

+ λ9 = 0 at x = β, (54)

−
∂L̃2

∂φ′
2

− λ6 = 0 at x = α,
∂L̃2

∂φ′
2

+ λ10 = 0 at x = β, (55)

−
∂L̃2

∂w′
3

− λ7 = 0 at x = α,
∂L̃2

∂w′
3

+ λ11 = 0 at x = β, (56)

−
∂L̃2

∂φ′
3

− λ8 = 0 at x = α,
∂L̃2

∂φ′
3

+ λ12 = 0 at x = β, (57)
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−
∂L̃3

∂w′
4

− λ9 − λ11 = 0 at x = β,
∂L̃3

∂w′
4

= 0 at x = L, (58)

−
∂L̃3

∂φ′
4

− λ10 − λ12 = 0 at x = β,
∂L̃3

∂φ′
4

= 0 at x = L. (59)

Elimination of the Lagrange multipliers from Equations (51) – (59) leads to the following
eight natural boundary conditions:

∂L̃0

∂w′
0

−
∂L̃1

∂w′
1

= 0 at x = a, (60)

∂L̃0

∂φ′
0

−
∂L̃1

∂φ′
1

= 0 at x = a, (61)

∂L̃1

∂w′
1

−
∂L̃2

∂w′
2

−
∂L̃2

∂w′
3

= 0 at x = α, (62)

∂L̃1

∂φ′
1

−
∂L̃2

∂φ′
2

−
∂L̃2

∂φ′
3

= 0 at x = α, (63)

∂L̃2

∂w′
2

+
∂L̃2

∂w′
3

−
∂L̃3

∂w′
4

= 0 at x = β, (64)

∂L̃2

∂φ′
2

+
∂L̃2

∂φ′
3

−
∂L̃3

∂φ′
4

= 0 at x = β, (65)

∂L̃3

∂w′
4

= 0 at x = L, (66)

∂L̃3

∂φ′
4

= 0 at x = L. (67)

Substitution of Equations (34) into Equations (41) – (50) and into Equations (60) – (67)
produces the following result.

Partial differential equations:

KG0(w
′′
0 + φ′

0) − B0ẅ0 = 0 in x ∈ [0, a] , (68)

A0φ
′′
0 − KG0(w

′
0 + φ0) − C0φ̈0 = IpV

′ in x ∈ [0, a] , (69)

KG1(w
′′
1 + φ′

1) − B1ẅ1 = 0 in x ∈ [a, α] , (70)

A1φ
′′
1 − KG1(w

′
1 + φ1) − C1φ̈1 = 0 in x ∈ [a, α] , (71)

KG2(w
′′
2 + φ′

2) − B2ẅ2 − µ

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)

− H2φ
′
2w

′′
2 −

3

2
Q2(w

′
2)

2w′′
2 = 0 in x ∈ [α, β] , (72)

A2φ
′′
2 − KG2(w

′
2 + φ2) − C2φ̈2 − H2w

′
2w

′′
2 = 0 in x ∈ [α, β] , (73)

KG3(w
′′
3 + φ′

3) − B3ẅ3 + µ

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)

− H3φ
′
3w

′′
3 −

3

2
Q3(w

′
3)

2w′′
3 = 0 in x ∈ [α, β] , (74)
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A3φ
′′
3 − KG3(w

′
3 + φ3) − C3φ̈3 − H3w

′
3w

′′
3 = 0 in x ∈ [α, β] , (75)

KG4(w
′′
4 + φ′

4) − B4ẅ4 = 0 in x ∈ [β, L] , (76)

A4φ
′′
4 − KG4(w

′
4 + φ4) − C4φ̈4 = 0 in x ∈ [β, L] , (77)

Natural boundary conditions:

G0(φ0 + w′
0) − G1(φ1 + w′

1) = 0 at x = a, (78)

A0φ
′
0 − A1φ

′
1 = IpV at x = a, (79)

KG1(φ1 + w′
1) − KG2(φ2 + w′

2) − H2w
′
2φ

′
2

−
1

2
Q2(w

′
2)

3 − KG3(φ3 + w′
3) − H3w

′
3φ

′
3 −

1

2
Q3(w

′
3)

3 = 0 at x = α, (80)

A1φ
′
1 − A2φ

′
2 −

1

2
H2(w

′
2)

2 − A3φ
′
3 −

1

2
H3(w

′
3)

2 = 0 at x = α, (81)

KG2(φ2 + w′
2) + H2w

′
2φ

′
2 +

1

2
Q2(w

′
2)

3 + KG3(φ3 + w′
3)

+ H3w
′
3φ

′
3 +

1

2
Q3(w

′
3)

3 − KG4(φ4 + w′
4) = 0 at x = β, (82)

A2φ
′
2 + A3φ

′
3 − A4φ

′
4 = 0 at x = β, (83)

φ4 + w′
4 = 0 at x = L, (84)

φ′
4 = 0 at x = L. (85)

In computation of derivatives
∂f

∂w2
and

∂f

∂w3
in Equations (45) and (47), which led

to Equations (72) and (74), the following chain of transformations was used:

∂f

∂w2
= lim

ǫ→0

∂

∂w2

(
(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

))

= lim
ǫ→0

(
−

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
+

1

ǫπ

ǫ2(w3 − w2)

ǫ2 + (w3 − w2)2

)

= − lim
ǫ→0

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
.

So,
∂f

∂w2
≈ −

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
, (86)

where ǫ is some small number. Similarly

∂f

∂w3
≈

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
. (87)

So, the formulation of the problem includes eleven equations for subdomains: ten
partial differential equations (68) – (77) and one algebraic equation of constraint (36b)
for Zone 2. The number of unknown functions is also eleven. The unknown functions
are: µ(x, t), wk(x, t), φk(x, t) (k = 0, 1, 2, 3, 4). The total order of spatial derivatives
of the partial differential equations is twenty, and the number of boundary conditions
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is also twenty: twelve essential boundary conditions (Equations (35)) and eight natural
boundary conditions (Equations (78) – (85)).

The formulation of the problem in terms of partial differential equations can be sim-
plified, if the penalty function method [2] is used for the nonpenetration constraint, i.e.
if the Lagrange multiplier µ(x, t), associated with the nonpenetration constraint (36), is
written as

µ(x, t) = χf(x, t), (88)

where the function f(x, t) is defined by Equation (36b), and χ is some large number,
which has to be chosen by an analyst. Then, Equation (72) takes the form

KG2(w
′′
2 + φ′

2)−B2ẅ2 −χ(w3 −w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
= 0 in x ∈ [α, β] , (89)

and Equation (74) takes the form

KG3(w
′′
3 + φ′

3)−B3ẅ3 + χ(w3 −w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
= 0 in x ∈ [α, β] . (90)

In transition from Equations (72) and (74) to Equations (89) and (90) respectively, the
following transformation was used

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)2

= (1 − H0(w3 − w2))
2

= 1 − H0(w3 − w2) =
1

2
−

1

π
arctan

w3 − w2

ǫ
.

(91)

Now, the formulation of the problem contains ten partial differential equations (68) –
(71), (89), (73), (90), (75) – (77) with ten unknown functions wk(x, t), φk(x, t), (k =
0, 1, 2, 3, 4).

The natural boundary condition (79) is nonhomogeneous, because the externally ap-
plied voltage V (a, t) enters into it. To avoid having the nonhomogeneous boundary
condition, one can consider that the voltage, applied to the actuator, is distributed not
over the subdomain x ∈ [0, a], but over the subdomain x ∈ [0, a − ε], where ε is some
very small positive number. Then the physics of the problem is not changed, and the
voltage V (a, t) does not enter into the boundary condition (79), i.e. this boundary
condition takes a simpler homogeneous form

A0φ
′
0 − A1φ

′
1 = 0 at x = a. (92)

Let us consider, for example, the voltage distributed uniformly over the length of the
actuator , i.e.

V (x, t) = V (t) in x ∈ [0, a]. (93a)

Then, without altering the physical formulation of the problem, we can write

V (x, t) = V (t) in x ∈ [0, a − ε]. (93b)

Then, the voltage V (x, t) can be presented in the form

V (x, t) = [1 − Ha−ε(x)] V (t) in x ∈ [0, a] (94)
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where Ha−ε(x) is the Heaviside function (Appendix B). Then, the right side of the
differential equation (69) takes the form

IpV
′ = −IpV (t) H

′
a−ε(x) = −IpV (t) δa−ε(x), (95)

where δa−ε(x) is the delta-function (Appendix B).
In computation of the example problems for the clamped-free beams, presented below,

the formulation based on the penalty function method will be used, and the voltage will be
distributed uniformly along the length of the actuator. For convenience, this formulation
is summarized below.

Partial differential equations:

KG0(w
′′
0 + φ′

0) − B0ẅ0 = 0 in x ∈ [0, a], (96)

A0φ
′′
0 − KG0(w

′
0 + φ0) − C0φ̈0 = −IpV (t)δa−ε(x) in x ∈ [0, a], (97)

KG1(w
′′
1 + φ′

1) − B1ẅ1 = 0 in x ∈ [a, α], (98)

A1φ
′′
1 − KG1(w

′
1 + φ1) − C1φ̈1 = 0 in x ∈ [a, α], (99)

KG2(w
′′
2 + φ′

2) − B2ẅ2 − χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)

− H2φ
′
2w

′′
2 −

3

2
Q2(w

′
2)

2w′′
2 = 0 in x ∈ [α, β], (100)

A2φ
′′
2 − KG2(w

′
2 + φ2) − C2φ̈2 − H2w

′
2w

′′
2 = 0 in x ∈ [α, β], (101)

KG3(w
′′
3 + φ′

3) − B3ẅ3 + χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)

− H3φ
′
3w

′′
3 −

3

2
Q3(w

′
3)

2w′′
3 = 0 in x ∈ [α, β]. (102)

A3φ
′′
3 − KG3(w

′
3 + φ3) − C3φ̈3 − H3w

′
3w

′′
3 = 0 in x ∈ [α, β], (103)

KG4(w
′′
4 + φ′

4) − B4ẅ4 = 0 in x ∈ [β, L], (104)

A4φ
′′
4 − KG4(w

′
4 + φ4) − C4φ̈4 = 0 in x ∈ [β, L]. (105)

Essential boundary conditions:

Ri = 0 (i = 1, 2, . . . , 12), (106a)

where
R1 ≡ w0(0, t), R2 ≡ φ0(0, t),

R3 ≡ w0(a, t) − w1(a, t), R4 ≡ φ0(a, t) − φ1(a, t),

R5 ≡ w1(α, t) − w2(α, t), R6 ≡ φ1(α, t) − φ2(α, t),

R7 ≡ w1(α, t) − w3(α, t), R8 ≡ φ1(α, t) − φ3(α, t),

R9 ≡ w2(β, t) − w4(β, t), R10 ≡ φ2(β, t) − φ4(β, t),

R11 ≡ w3(β, t) − w4(β, t), R12 ≡ φ3(β, t) − φ4(β, t).

(106b)

Natural boundary conditions:

G0(φ0 + w′
0) − G1(φ1 + w′

1) = 0 at x = a, (107)
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A0φ
′
0 − A1φ

′
1 = 0 at x = a, (108)

KG1(φ1 + w′
1) − KG2(φ2 + w′

2) − H2w
′
2φ

′
2 −

1

2
Q2(w

′
2)

3

− KG3(φ3 + w′
3) − H3w

′
3φ

′
3 −

1

2
Q3(w

′
3)

3 = 0 at x = α,

(109)

A1φ
′
1 − A2φ

′
2 −

1

2
H2(w

′
2)

2 − A3φ
′
3 −

1

2
H3(w

′
3)

2 = 0 at x = α, (110)

KG2(φ2 + w′
2) + H2w

′
2φ

′
2 +

1

2
Q2(w

′
2)

3 + KG3(φ3 + w′
3)

+ H3w
′
3φ

′
3 +

1

2
Q3(w

′
3)

3 − KG4(φ4 + w′
4) = 0 at x = β,

(111)

A2φ
′
2 + A3φ

′
3 − A4φ

′
4 = 0 at x = β, (112)

φ4 + w′
4 = 0 at x = L, (113)

φ′
4 = 0 at x = L. (114)

4 Finite Element Formulation

The finite element formulation is made on the basis of weak forms for the derived partial
differential equations (96) – (105).

Finite element within Zone 0 (Part 0), i.e. within a subdomain x ∈ [0, a].
The weak form for a finite element within Zone 0 is obtained by multiplying equations

(96) and (97) by weight functions (variations) δw0 and δφ0 respectively, integrating
them over an element’s length, performing integration by parts and adding the resulting
equations. The weak form thus obtained is

0 =

XB∫

XA

[
A0φ

′
0 δφ′

0 + KG0(w
′
0 + φ0) δw′

0 + KG0(w
′
0 + φ0) δφ0

+ B0ẅ0 δw0 + C0φ̈0 δφ0 − IpV (t) δa−ε(x) δφ0

]
dx

+
[
KG0(w

′
0 + φ0) δw0

]

x=XA

−
[
KG0(w

′
0 + φ0) δw0

]

x=XB

+
(
A0φ

′
0 δφ0

)

x=XA

−
(
A0φ

′
0 δφ0

)

x=XB

,

(115)

where XA and XB are coordinates of the element’s left and right boundary points.
In the boundary terms of the weak form, variations of the unknown functions w0 and
φ0 themselves (not their derivatives) are present, therefore, the Lagrange interpolation
polynomials are appropriate for approximation of the unknown functions within a finite
element [3]. In this analysis, the author chose to approximate both unknown functions
w0(x, t) and φ0(x, t), within a finite element, by the Lagrange interpolation polynomials
of a fifth degree:

w0(x, t) ≈
6∑

i=1

Ni(x)w0i(t), φ0(x, t) ≈
6∑

i=1

Ni(x)φ0i(t), (116)



76 V.Y. PEREL

where

w0i(t) ≡ w0(xi, t), φ0i(t) ≡ φ0(xi, t), (117)

Ni(x) =

6∏

j=1
j 6=i

x − xj

xi − xj
, (118)

x1 ≡ XA, x6 ≡ XB. (119)

So, the finite element has six nodes, and two unknown nodal parameters w0i and φ0i are
associated with each i-th node. The nodes are chosen to be equidistant. Denoting the
element’s length as l, the nodal coordinates, in the local element coordinate system (the
origin of which coincides with the left boundary point of the element), can be written as

xi =
(i − 1)l

5
(i = 1, . . . , 6). (120)

Explicit expressions for the shape functions are written below

N1(x) = −
625

24l5
x5 +

625

8l4
x4 −

2125

24l3
x3 +

375

8l2
x2 −

137

12l
x + 1,

N2(x) =
3125

12

x5

l5
− 625

x4

l4
+

6625

12

x3

l3
−

425

2

x2

l2
+ 30

x

l
,

N3(x) = −
3125

12

x5

l5
+

8125

12

x4

l4
−

7375

12

x3

l3
+

2675

12

x2

l2
− 25

x

l
,

N4(x) =
3125

12

x5

l5
− 625

x4

l4
+

6125

12

x3

l3
−

325

2

x2

l2
+

50

3

x

l
,

N5(x) = −
3125

24

x5

l5
+

6875

24

x4

l4
−

5125

24

x3

l3
+

1525

24

x2

l2
−

25

4

x

l
,

N6(x) =
625

24

x5

l5
−

625

12

x4

l4
+

875

24

x3

l3
−

125

12

x2

l2
+

x

l
.

(121)

The column-matrix of element nodal parameters is introduced as follows

{θ}
(12×1)

≡ ⌊w01 φ01 w02 φ02 w03 φ03 w04 φ04 w05 φ05 w06 φ06 ⌋
T

. (122)

Then, in view of formulas (116), the unknown functions w0(x, t) and φ0(x, t) can be
expressed in terms of the column-matrix of nodal parameters {θ} by the formulas

w0 = ⌊Φ⌋
(1×12)

{θ} , φ0 = ⌊Ψ⌋
(1×12)

{θ} , (123)

where

⌊Φ⌋
(1×12)

≡ ⌊N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 ⌋ , (124a)

⌊Ψ⌋
(1×12)

≡ ⌊ 0 N1 0 N2 0 N3 0 N4 0 N5 0 N6 ⌋ . (124b)
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Substitution of equations (124) into the integral part of the weak form (115) produces
the result

{δθ}
(1×12)

T
(

[m]
(12×12)

{
θ̈
}

(12×1)

+ [k]
(12×12)

{θ}
(12×1)

− {f}
(12×1)

)
= 0, (125)

where {δθ} is a column-matrix of variations of the nodal parameters, and the other
matrices are defined as follows:

element mass matrix:

[m]
(12×12)

= B0

l∫

0

⌊Φ⌋
(12×1)

T ⌊Φ⌋
(1×12)

dx + C0

l∫

0

⌊Ψ⌋
(12×1)

T ⌊Ψ⌋
(1×12)

dx, (126)

element stiffness matrix:

[k]
(12×12)

= A0

l∫

0

(
d

dx
⌊Ψ⌋

(12×1)

T

)(
d

dx
⌊Ψ⌋

(1×12)

)
dx

+ KG0

l∫

0

(
d

dx
⌊Φ⌋ + ⌊Ψ⌋

)

(12×1)

T

(
d

dx
⌊Φ⌋ + ⌊Ψ⌋

)

(1×12)

dx,

(127)

element force vector for the element adjacent to the right boundary of Zone 0:

{f}
(12×1)

=

{
{0}

(11×1)

IpV (t)

}
, (128a)

element force vector for all other elements of Zone 0:

{f}
(12×1)

= {0}
(12×1)

. (128b)

Similar derivations can be used for deriving equations of motion of a finite element within
Zone 1 (Part 1) and Zone 3 (Part 4).

Finite element within Zone 2 (Part 2 and Part 3), i.e. within a subdomain x ∈ [α, β]
and z ∈ [−h/2, γ].

The weak form for a finite element within Zone 2 is obtained by multiplying equations
(100) and (101) by weight functions (variations) δw2 and δφ2 respectively, multiplying
equations (102) and (103) by δw3 and δφ3 respectively, integrating them over an element’s
length, performing integration by parts and adding the resulting equations. The integral



78 V.Y. PEREL

part of the weak form thus obtained is

0 =

l∫

0

[A2φ
′
2 δφ′

2 + KG2(w
′
2 + φ2) δw′

2 + KG2(w
′
2 + φ2) δφ2

+ B2ẅ2 δw2 + C2φ̈2 δφ2] dx

+

l∫

0

[A3φ
′
3 δφ′

3 + KG3(w
′
3 + φ3) δw′

3 + KG3(w
′
3 + φ3) δφ3

+ B3ẅ3 δw3 + C3φ̈3 δφ3] dx

−

l∫

0

[(
H2φ

′
2 +

3

2
Q2(w

′
2)

2

)
w′′

2 δw2 + H2w
′
2w

′′
2 δφ2

]
dx

−

l∫

0

[(
H3φ

′
3 +

3

2
Q3(w

′
3)

2

)
w′′

3 δw3 + H3w
′
3w

′′
3 , δφ3

]
dx

−

l∫

0

χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
δw2 dx

+

l∫

0

χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
δw3 dx.

(129)

The same interpolation polynomials are used for the Zone 2 as for the Zone 0, i.e.

w2(x, t) ≈

6∑

i=1

Ni(x)w2i(t), w3(x, t) ≈

6∑

i=1

Ni(x)w3i(t),

(130)

φ2(x, t) ≈
6∑

i=1

Ni(x)φ2i(t), φ3(x, t) ≈
6∑

i=1

Ni(x)φ3i(t),

where

w2i(t) ≡ w2(xi, t), w3i(t) ≡ w3(xi, t), φ2i(t) ≡ φ2(xi, t), φ3i(t) ≡ φ3(xi, t), (131)

and shape functions Ni(x) are defined by equations (121).
The column-matrix of the element nodal parameters for Zone 2 are introduced as

follows:

{θ}
(24×1)

=






{θ}
(2)

(12×1)

{θ}(3)

(12×1)





, (132)

where

{θ}(2) ≡ ⌊w21 φ21 w22 φ22 w23 φ23 w24 φ24 w25 φ25 w26 φ26 ⌋
T

,
(133)

{θ}(3) ≡ ⌊w31 φ31 w32 φ32 w33 φ33 w34 φ34 w35 φ35 w36 φ36 ⌋
T

(134)
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are column-matrices of nodal parameters of Part 2 and Part 3 respectively (of lower and
upper delaminated parts of Zone 2). Then, using the weak form (equation (129)) and
following the same procedures as for an element in Zone 0, the following expressions for
the element mass and stiffness matrices of Zone 2 are obtained.

Element mass matrix for Zone 2:

[m]
(24×24)

=




[m](2)

(12×12)

[0]
(12×12)

[0]
(12×12)

[m](3)

(12×12)


 , (135)

where

[m](i)

(12×12)

= Bi

l∫

0

⌊Φ⌋
(12×1)

T ⌊Φ⌋
(1×12)

dx + Ci

l∫

0

⌊Ψ⌋
(12×1)

T ⌊Ψ⌋
(1×12)

dx (i = 2, 3), (136)

and row-matrices ⌊Φ⌋ and ⌊Ψ⌋ are defined by equations (124).

Element stiffness matrix for Zone 2:

[k]
(24×24)

=




[k](2)

(12×12)

[0]
(12×12)

[0]
(12×12)

[k](3)

(12×12)


 , (137)

where

[k](i)

(12×12)

= Ai

l∫

0

(
d

dx
⌊Ψ⌋

(12×1)

T

)(
d

dx
⌊Ψ⌋

(1×12)

)
dx

+ KGi

l∫

0

(
d

dx
⌊Φ⌋ + ⌊Ψ⌋

)

(12×1)

T

(
d

dx
⌊Φ⌋ + ⌊Ψ⌋

)

(1×12)

dx (i = 2, 3).

(138)

The last two integrals in the weak form (129) represent virtual works of forces of mutual
impact of the crack’s faces, acting, correspondingly, on the lower and upper crack’s face.
The computation of contribution of these integrals to the discretized equations of motion
of a finite element within Zone 2 is presented below. Let us consider one of these integrals

I2 ≡

l∫

0

χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
(δw2) dx, (140)

which represent virtual work of force of impact acting on the lower face of the crack. Sub-
stitution of functions w2(x, t) and w3(x, t) by their polynomial approximation (equa-
tions (130)) yields

I2 =

l∫

0

χ

( 6∑

i=1

(δw2i)Ni

)( 6∑

j=1

(w3j − w2j)Nj

)

×

(
1

2
−

1

π
arctan

(
ǫ−1

6∑

m=1

(w3m − w2m)Nm

))
dx.

(141)
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Let the function under the integral sign in the last integral be denoted as g(x). Then,
using the trapezoidal rule of numerical integration, with evaluation of the function g(x)
at the nodal points x1 = 0, x2, x3, x4, x5, x6 = l of the finite element,

l∫

0

g(x) dx ≈
l

10

[
g(0) + g(l) + 2

5∑

k=2

g(xk)

]
, (142)

and using the property Ni(xj) = δij of the shape functions, defined by equation (118),
one can obtain

I2 = χ
{

δθ(2)
}

(1×12)

T {f}
(12×1)

, (143)

where

fi =
l

10
(w3i − w2i)

(
1

2
−

1

π
arctan

w3i − w2i

ǫ

)
for i = 1, 11,

fi =
l

5
(w3i − w2i)

(
1

2
−

1

π
arctan

w3i − w2i

ǫ

)
for i = 3, 5, 7, 9,

fi = 0 for i = 2, 4, 6, 8, 10, 12.

(144)

Similarly, the last integral in equation (129) can be written as

I3 ≡

l∫

0

χ(w3 − w2)

(
1

2
−

1

π
arctan

w3 − w2

ǫ

)
(δw3) dx = χ

{
δθ(3)

}

(1×12)

T {f}
(12×1)

. (145)

The nonlinear terms

−

l∫

0

[(
H2φ

′
2 +

3

2
Q2(w

′
2)

2

)
w′′

2 δw2 + H2w
′
2w

′′
2 δφ2

]
dx

−

l∫

0

[(
H3φ

′
3 +

3

2
Q3(w

′
3)

2

)
w′′

3 δw3 + H3w
′
3w

′′
3 δφ3

]
dx

in the weak form (129), which are due to taking account of longitudinal force resultants in
the delaminated parts (i.e. due to the von Karman nonlinearity of the strain-displacement
relations), lead to the presence of a column-matrix in the equations of motion of a finite
element, the components of which depend nonlinearly on the nodal parameters w2i and
w3i (i = 1, 2, . . . , 6). This column-matrix will be denoted as

{g}
(24×1)

≡






{g}(2)

(12×1)

{g}(3)

(12×1)





, (146)

where {g}(2) is a column-matrix the components of which depend nonlinearly on nodal

parameters w2i (associated with the lower delaminated part), and {g}(3) is a column-
matrix the components of which depend nonlinearly on nodal parameters w3i (associated
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with the upper delaminated part). Components of {g}(2) and {g}(3) are not written here
explicitly, because of their large size.

So, equations of motion of a finite element in the delaminated zone of the beam
(Zone 2) have the form




[m](2)

(12×12)

[0]
(12×12)

[0]
(12×12)

[m](3)

(12×12)








{
θ̈
}(2)

(12×1){
θ̈
}(3)

(12×1)





+




[k](2)

0(12×12)

[0]
(12×12)

[0]
(12×12)

[k](3)

(12×12)








{θ}(2)

(12×1)

{θ}(3)

(12×1)





+ χ





− {f}
(12×1)

{f}
(12×1)



+





{g}(2)

(12×1)

{g}(3)

(12×1)





= {0}
(24×1)

.

(147)

In Equation (147), the nonlinear internal force vector χ ⌊−{f}T {f}T ⌋
T

depends on
nodal parameters, associated with both lower and upper delaminated parts (Part 2 and

Part 3). Therefore, in the system of equations (147), the nodal parameters {θ}(2),
associated with the lower delaminated part (Part 2) are coupled to the nodal parameters

{θ}(3), associated with the upper delaminated part.
So, the derivation of the finite element matrices is completed, and an example problem

will be considered next.

5 Solution of Example Problems

As an example problem, a clamped-free wooden beam with the following characteristics
(Figure 2.1) is considered: length L = 20 × 10−2m, width b = 2.76 × 10−2m, thickness

h = 0.99 × 10−2m, wood density ρ(0) = 418.02 kg
m3 , Young’s modulus of the wood in

the direction of fibers E
(0)
1 = 1.0897 × 1010 N

m2 . The piezoelectric actuator is QP10W

(Active Control Experts). Thickness of the actuator is τ = 3.81 × 10−4m, its length
is a = 5.08 × 10−2m , the piezoelectric constant in the range of applied voltage (from

0 to 200V ) is d31 ≈ −1.05 × 10−9 m
V , the Young’s modulus of the actuator with its

packaging is E
(p)
1 = 2.57 × 1010 N

m2 , mass density of the actuator with its packaging is

ρ(p) = 6151.1 kg
m3 . The voltage V (t), applied to the piezoelectric actuator, is distributed

uniformly along the length of the actuator and varies with time as

V (t) = Va sin(Ωt),

where Va = 200 V , Ω = 600 1
s . The wooden beam is cut along its fibers, so that the angle

θ in the formula (6) is equal to zero, and, therefore, the elastic compliance coefficient

S11 for the wood is equal to S
(0)

11 = 1

E
(0)
1

= 9.1768 × 10−11 m2

N . For the piezoelectric

actuator, the material coordinate system coincides with the problem coordinate system,
so that the elastic compliance coefficient S11 for the material of the piezo-actuator is

S
(p)

11 = 1

E
(p)
1

= 3.8911 × 10−11 m2

N . Coordinates of the crack tips are: α = 10 × 10−2m,

β = 15 × 10−2m, γ = 0.66 × 10−2 − h
2 = 1.65 × 10−3m . Then the constants, entering

into the variational formulation and the differential equations of the problem, have the
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following values in SI units: A0 = 31.463, B0 = 0.178 9, C0 = 2.642 9 × 10−6, G0 =
1.299 10× 106, A1 = 24.319, B1 = 0.114 22, C1 = 9.328 9× 10−7, G1 = 1.190999× 106,
A2 = 12.61, B2 = 7.614 7×10−2, C2 = 4.837 2×10−7, G2 = 7.93999×105, A3 = 11.709,
B3 = 3.807 3 × 10−2, C3 = 4.491 7 × 10−7, G3 = 3.969995 × 105 , A4 = 24.319,
B4 = 0.114 22, C4 = 9.328 9 × 10−7, G4 = 1.190999 × 106, Ip = −3.828 5 × 10−3,

a = 5.08 × 10−2, Va = 200, Ω = 600, α = 10 × 10−2, β = 15 × 10−2, γ = 1.65 × 10−3,
b = 2.76 × 10−2, h = 0.99 × 10−2, Q2 = 1.985005666× 106, Q3 = 9.925028332× 105,
H2 = −3275.25935, H3 = 3275.25935. The small constant ǫ and the large constant χ
are chosen to be ǫ = 1 × 10−3 and χ = 1 × 106.

5.1 Time-domain response to dynamic excitation

Time integration of a system of ordinary differential equations of a global (assembled)
semi-discrete finite element model

[M ]
{
Θ̈
}

+ [K]{Θ} + {R}nonlin = {F}

was performed with the use of the backward-difference method [4]. In the last equation,
{R}nonlin is a column-matrix, which contains components that depend nonlinearly on
the unknown nodal parameters Θi. Transverse displacements as functions of time at free
ends of delaminated and undelaminated beams are shown in graphs of Figure 5.1. These
graphs are noticeably different. Numerical experiments show that neglecting nonlinear
terms in the strain-displacement relations (19a), and, therefore, neglecting the longitu-

dinal force resultants N
(2)
x and N

(3)
x in the delaminated parts of the beam (equations

(25) and (29)), produces much smaller effect on the transverse displacement of the de-
laminated beam than neglecting the force of contact interaction of the crack faces.

5.2 Eigenvalue analysis

For the same beam, natural frequencies and mode shapes were computed from a linear
eigenvalue analysis. Results of calculation of frequencies for beams with different crack
lengths are presented in tables below. For some crack lengths, comparison is made
between frequencies computed on the basis of the first order shear deformation theory,
presented in this paper, and the frequencies computed on the basis of the Euler-Bernoulli
beam theory, presented in Reference [1]. Rotary inertia terms are taken into account in
both types of solutions.

Let us consider, at first, the first seven circular frequencies of a clamped-free beam
without the delamination and with the actuator, obtained by setting equal the x-
coordinates of the crack tips. The frequencies for this case are presented below. Notation
FOSDT stands for the First Order Shear Deformation Theory of the beam, notation E-B
stands for the Euler-Bernoulli beam theory.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.535 8130.531 21436.8 40361.9 64915.31 9.36739 × 104 1.25461 × 105

E-B 1397.435 8217.911 21986.6 42205.0 69331.23 1.02371 × 105 1.40641 × 105
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Figure 5.1. Transverse displacement of free end of delaminated beam (solid line)

and undelaminated beam (dashed line). Coordinates of the crack tips of the delam-

inated beam are α = 0, 1m, β = 0, 15m, γ = 1, 65× 10−3m.

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.11m,
γ = 1.65 × 10−3m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.5 8130.5 21436.0 40361.5 64909.9 9.3669 × 104 1.2545 × 105

E-B 1397.435 8217.909 21986.1 42204.9 69331.2 1.02371 × 105 1.40641 × 105

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.12m,
γ = 1.65 × 10−3m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.5 8130.5 21433.6 40356.8 64900.7 9.3629 × 104 1.2544 × 105

E-B 1397.433 8217.9 21986.0 42200.0 69330.0 1.02368 × 105 1.40625 × 105

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.13m,
γ = 1.65 × 10−3m.
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ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.49 8130.46 21431.655 40345.03 64894.09 9.3576 × 104 1.2535 × 105

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.14m,
γ = 1.65 × 10−3m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.47 8130.28 21430.371 40330.58 64850.16 9.3541 × 104 1.2504 × 105

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.15m,
γ = 1.65 × 10−3m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.456 8129.95 21427.848 40320.39 64719.1 9.31501 × 104 1.10100 × 105

E-B 1397.432 8217.62 21980.0 42201.0 69094.0 1.01932 × 105 1.33019 × 105

So, the frequencies decrease as the crack length increases. This phenomenon is more
pronounced for higher frequencies.

The first four mode shapes of delaminated beams are nearly the same as the corre-
sponding mode shapes of the undelaminated beams, so that the difference is not notice-
able on graphs. But the higher mode shapes of the delaminated beams, beginning from
the fifth mode shape, show the crack opening and closure during the vibration, as can
be seen in Figures 5.2, 5.3 and 5.4.

Figure 5.2a. Fifth mode shape of clamped-free beam without delamination.
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Figure 5.2b. Fifth mode shape of clamped-free beam with delamination.

Figure 5.3a. Sixth mode shape of clamped-free beam without delamination.

Figure 5.3b. Sixth mode shape of clamped-free beam with delamination.

Figure 5.4a. Seventh mode shape of clamped-free beam without delamination.
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Figure 5.4b. Seventh mode shape of clamped-free beam with delamination.

Experimental verification of the developed theory and the finite element program will
be presented in a subsequent publication. The theory, presented in this work, and the
finite element program, based on this theory, are developed for the purpose of their sub-
sequent use in nondestructive detection of delamination cracks in composite structures.

Appendix A
Constitutive Equations for a Piezoelectric Orthotropic Layer of a Thin
Composite Beam

The constitutive equations of a generally anisotropic piezoelectric material can be writ-
ten in a matrix form as follows (in these equations, the bars over characters are put to
emphasize that the quantities are presented in a problem coordinate system, the coordi-
nate planes of which do not necessarily coincide with the planes of elastic or dielectric
symmetry)

{ε}
(6×1)

= [S]
(6×6)

{σ}
(6×1)

+ [d]
(6×3)

T {E}
(3×1)

, (A-1)

{D}
(3×1)

= [d]
(3×6)

{σ}
(6×1)

+ [ζ]
(3×3)

{E}
(3×1)

, (A-2)

where
{ε}

(6×1)

= ⌊ εxx εyy εzz 2εyz 2εxz 2εxy ⌋
T (A-3)

is a column-matrix of components of the strain tensor,

{σ}
(6×1)

= ⌊σxx σyy σzz σyz σxz σxy ⌋
T

(A-4)

is a column-matrix of components of the stress tensor,

{E}
(3×1)

= ⌊ Ex Ey Ez ⌋
T

(A-5)
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is a column-matrix of components of the electric field intensity vector, [S]
(6×6)

is a matrix of

elastic coefficients (compliance coefficients) and [d]
(3×6)

and [ζ]
(3×3)

are matrices of material

constants that characterize electrical properties.
For an orthotropic material, in the principal material coordinate system (whose co-

ordinate planes coincide with the planes of elastic symmetry), the matrix of compliance
coefficients is denoted as [S] (without a bar) and has the form

[S] =




S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66




(A-6)

where the compliance coefficients Sij are expressed in terms of engineering constants by
the formulas

S11 =
1

E1
, S12 = −

ν12

E1
, S13 = −

ν13

E1
, S22 =

1

E2
, S23 = −

ν23

E2
,

S33 =
1

E3
, S44 =

1

G23
, S55 =

1

G13
, S66 =

1

G12
.

(A-7)

The matrices, characterizing electric properties of the material, in the principle material
coordinate system, will be denoted without the bar also, i.e. as [d]

(3×6)

and [ζ]
(3×3)

.

In the laminate (problem) coordinate system, rotated clockwise by an angle θ with
respect to the principle material coordinate system, the matrix of compliance coefficients
and the matrices, characterizing electric properties of the material, [d]

(3×6)

and [ζ]
(3×3)

, have

the form

[S]
(6×6)

= [T ]
(6×6)

T [S]
(6×6)

[T ]
(6×6)

, (A-8)

[ζ]
(3×3)

= [R]
(3×3)

T [ζ]
(3×3)

[R]
(3×3)

, (A-9)

[d]
(3×6)

= [R]
(3×3)

T [d]
(3×6)

[T ]
(6×6)

, (A-10)

where the transformation matrices [T ] and [R] are defined as follows (with the use of
notation c = cos θ, s = sin θ):

[T ]
(6×6)

=




c2 s2 0 0 0 2sc
s2 c2 0 0 0 −2sc
0 0 1 0 0 0
0 0 0 c −s 0
0 0 0 s c 0

−sc sc 0 0 0 c2 − s2




, (A-11)

[R]
(3×3)

=




c s 0
−s c 0
0 0 1



 . (A-12)



88 V.Y. PEREL

For the composite piezoelectric layer of a thin and narrow composite beam, which bends
in the x-z plane, the following assumptions can be adopted

σzz = σxz = σyz = σyy = 0. (A-13)

Besides, in the problem under consideration, the electrical field is applied to the actuator
only in the thickness direction (in the direction of the z-axis), i.e.

Ex = Ey = 0. (A-14)

If equations (A-13) and (A-14) are substituted into the constitutive equations (A-1) and
(A-2) with account of transformation relations (A-8), (A-9) and (A-10) and with account
of equations (A-6) and (A-7) for compliance matrix in the principle material coordinate
system, then the constitutive equations take the form

{
εxx

2εxz

}
=

[
S11 0
0 S55

]{
σxx

σxz

}
+

[
d31

d35

]
{ Ez } , (A-15)

{Dz } = [ d31 d35 ]

{
σxx

σxz

}
+ [ ζ33 ] { Ez } . (A-16)

From the constitutive equations (A-15) and (A-16), one can obtain the constitutive equa-
tions in a different form:






σxx

σxz

Dz




 =




1

S11

0 −
d31

S11

0
1

S55

−
d35

S55

d31

S11

d35

S55

(
ζ33 −

d
2

31

S11

−
d
2

35

S55

)









εxx

2εxz

Ez




 , (A-17a)

or, in view of the relationship Ez = −∂ϕ
∂z , where ϕ is the electric potential,






σxx

σxz

Dz




 =




1

S11

0
d31

S11

0
1

S55

d35

S55

d31

S11

d35

S55

(
− ζ33 +

d
2

31

S11

+
d
2

35

S55

)









εxx

2εxz
∂ϕ
∂z




 . (A-17b)

According to equations (A-7) and (A-8), the compliance coefficients S11 and S55 in
the problem coordinate system that enter into equations (A-17), are expressed in terms
of the engineering constants by the formulas

S55 =
1

G23
s2 +

1

G13
c2,

S11 =
1

E1
c4 +

1

E2
s4 +

(
1

G12
− 2

ν12

E1

)
s2c2.

(A-18)
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The material constants d31 and d35, which characterize the piezoelectric properties in
the problem coordinate system, are expressed in terms of the piezoelectric constants dij

of the material coordinate system by the formulas (derived from matrix transformation
equations A-10)

d31 = d31c
2 + d32s

2 − d36sc, (A-19a)

d35 = −d34s + d35c, (A-19b)

and, according to the transformation equation (A-9),

ζ33 = ζ33. (A-20)

We consider a piezoelectric material with orthorhombic mm2 symmetry, such as
polyvinylidene (PVDF) or lead zirconate-titanate (PZT), in which the planes of elastic
symmetry are made, in the manufacturing process, the same as the planes of piezoelectric
symmetry. In this case, the piezoelectric constants d34 and d35 are equal to zero (see [5]

and [6]). Then, according to equation (A-19b), d35 = 0, and equation (A-17b) takes the
form






σxx

σxz

Dz




 =




1

S11

0
d31

S11

0
1

S55

0

d31

S11

0

(
− ζ33 +

d
2

31

S11

)









εxx

2εxz
∂ϕ
∂z




 . (A-21)

These are the constitutive equations for a layer of orthotropic piezoelectric material with
orthorhombic mm2 symmetry, in which the planes of elastic symmetry are the same as the
planes of piezoelectric symmetry, in a narrow and thin composite beam. Obviously, for
a layer of orthotropic material, in a thin narrow beam, which does not have piezoelectric
properties, the constitutive equations have the form

{
σxx

σxz

}
=




1

S11

0

0
1

S55



{

εxx

2εxz

}
. (A-22)

Appendix B
Properties of the Heaviside Function

It can be shown [7] that the Heaviside function (unit step-function) Hα(x), defined by
formula

Hα(x) =

{
0 for x < α,

1 for x > α,
(B-1)

has the following property
dHα(x)

dx
= δα(x), (B-2)
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where δα(x) is the Dirac’s delta-function, defined as a function that has the following
properties:

δα(x) =

{
0 for x 6= α,

∞ for x = α
(B-3)

and
x2∫

x1

f(x)δα(x) dx =

{
f(α) for x1 < α < x2,

0 for α < x1 and for α > x2.
(B-4)

The delta-function has several analytical representations, one of which has the form [8]:

δα(x) = lim
ǫ→0

1

π

ǫ

ǫ2 + (x − α)2
. (B-5)

According to formula (B-2), the analytical representation of the Heaviside function, cor-
responding to the analytical representation of the delta-function (B-5) is

Hα(x) = lim
ǫ→0

1

π
arctan

x − α

ǫ
+

1

2
=






0 for x < α,
1

2
for x = α,

1 for x > α.

(B-6)

Carrying out the Heaviside function Hα(x) beyond the integral sign in an indefinite
integral is done with the use of the formula

∫
Hα(x) f(x) dx = Hα(x)

x∫

α

f(η) dη. (B-7)

With the use of properties (B-2) and (B-4), it can be shown that

x2∫

x1

f(x)
d2Hα(x)

dx2
dx =

{
−

df

dx
(α) for x1 < α < x2,

0 for α < x1 and for α > x2.
(B-8)

References

[1] Perel, V.Y. A numerical-analytical solution for dynamics of composite delaminated beam
with piezoelectric actuator, with account of nonpenetration constraint for the delamination
crack faces. Journal of Composite Materials 39(1) (2005) 67–103.

[2] Reddy, J.N. Energy and Variational Methods in Applied Mechanics. John Wiley & Sons,
New York, 1984.

[3] Reddy, J.N. An Introduction to the Finite Element Method. McGraw-Hill, New York,
1993.

[4] Hairer, E., Norsett, S.P. and Wanner, G. Solving Ordinary Differential Equations. Vol. 2:

Stiff And Differential-Algebraic Problems. Springer, Berlin, 1996.
[5] Varadan, V.V., Roh, Y.R., Varadan, Y.R. and Tancrell, R.H. Measurement of all the

elastic and dielectric constants of poled PVDF films. In: 1989 Ultrasonics Symposium.
(http://www.ieee-uffc.org/archive/ul/a98.htm). IEEE, Montreal, Quebec, Canada, 1989,
727–730.

[6] Dunn, M.L. and Taya, M. Micromechanics predictions of the effective electroelastic moduli
of piezoelectric composites. Int. J. of Solids and Structures 30(2) (1993) 161–175.

[7] Dirac, P.A.M. The Principles of Quantum Mechanics. Clarendon Press, Oxford, 1978.
[8] Rubinowicz, A. Quantum Mechanics. Elsevier Pub. Co., 1968.


