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Abstract: The aim of this paper is to formulate and illustrate a duality prin-
ciple for dynamical systems. There is a one-to-one correspondence between
causal (nonanticipative) systems, and the anticipative ones. Several cases are
dealt with, based on the nature of the functional equations describing the
dynamics.
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1 Introduction

The dynamical systems we shall consider in this paper will be described by functional
equations of various types.

The duality principle we are going to formulate and illustrate establishes a one-to-one
correspondence between the class of causal systems, and the class of anticipative systems.
The first class is also known as abstract Volterra systems, while the second class contains
the so-called anti-Volterra systems.

The principle of duality states that: to any causal system, one can associate an an-

ticipative systems, and vice-versa.

Moreover, the mathematical treatment is basically the same for causal/ anticipative
couples which are in correspondence.

The idea of formulating this duality principle came from writing our joint paper [3],
in which the mathematical apparatus used in dealing with anticipative systems (the
corresponding describing equations are with advanced argument), has revealed a striking
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resemblance with the one used when investigating causal systems (usually described by
functional equations of Volterra type).

As we can expect, the initial state in the causal system becomes the terminal state in
the anticipative systems, and vice-versa.

Apparently, the anticipative systems, which sometimes (see, for instance, Dubois [4, 5])
are called anticipatory systems, present interest in various applied areas, including some
economic problems. Several proceedings volumes have been published, under the edi-
torship of Dubois [4, 5]. They illustrate the significance of various types of anticipative
systems, both theoretically and from the point of view of applications.

2 A Class of Discrete Systems

Let us consider a dynamical system with a finite number of states, say x(ti), i =
1, 2, . . . , n, with ti an increasing sequence of reals. We assume x(ti) ∈ R, i = 1, 2, . . . , n,
even though we could deal with more general spaces than R, e.g., a Banach space E. We
shall denote, for brievety, x(ti) = xi, i = 1, 2, . . . , n.

Let us further assume that the dynamics of the system is described by n equations of
the form

x1 = f1(x1),

x2 = f2(x1, x2),

. . . . . . . . . . . . . . . . .

xn = fn(x1, x2, . . . , xn).

(1)

The particular form of the system (1) expresses the fact that we deal with a causal system.
As each equation shows, the state of the system at the moment tk, 1 ≤ k ≤ n, depends
only on the states at moments preceding or equal to tk.

Now let us operate a change of variables tk = −τn−k+1, xk = yn−k+1, k = 1, 2, . . . , n.
Then, the system (1) becomes

y1 = fn(yn, yn−1, . . . , y1),

y2 = fn−1(yn, yn−1, . . . , y2),

. . . . . . . . . . . . . . . . . . . .

yn = f1(yn).

(2)

From (2), we see that the system is of anticipative type (or, as sometimes called, antici-

patory).
Since the times tk, 1 ≤ k ≤ n, form an increasing sequence, there follows that the

new times τk, 1 ≤ k ≤ n, also form an increasing sequence: τ1 < τ2 < · · · < τn.
It is obvious that the systems (1) and (2) are identical, which tells us that from

mathematical point of view, we have to solve the same problem for either of the associated
causal and anticipative systems.

There are several questions rising from the above discussion related to the system
(1), (2). Namely, the equations describing the dynamics of the system have been chosen
in such a way that we deal with a “determined” system. In other words, we assume that
the system (1) has a unique solution. This situation can be easily achieved. To take just
an elementary example, we will assume that |∂fk/∂xk| ≤ mk < 1, k = 1, 2, . . . , n. This
implies the existence of a unique real solution to the first equation; then substituting
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in the second equation this value for x1, we will again determine a unique value for x2,
and so on. At each step we have to apply the Banach contraction mapping principle, in
order to determine the unique value of the variable characterizing the state of the system.
Many other conditions can be imposed in order to achieve the existence result specified
above.

In case the system (1) has several solutions, say (x̄1, x̄2, . . . , x̄n) and (
=
x1,

=
x2, . . . ,

=
xn),

then we can define two anticipative systems the same way we have proceeded in the
case of a unique solution. In other words, if there exist two (or several) causal systems
described by the equations (1), we can accordingly associate two (or several) anticipative
systems with “reverse” dynamics.

Another aspect to be considered corresponds to the situation when the system (1) is
not determined, in the sense that some of the variables can be chosen arbitrarily (for
instance, the n equations are not independent). What is, in such a case, the adequate
manner to attach to (1) an anticipative system? Apparently, this is possible because
if we assign values to some of the xk’s, the remaining equations still describe a causal
system.

Finally, we would like to formulate an open problem (apparently) related to the topics
discussed above. Namely, if the system (1) is replaced by a more general system of
equations like fk(x1, x2, . . . , xn) = 0, k = 1, 2, . . . , n, under what conditions can we state

that they describe the dynamics of a causal system?

3 Systems Described by Integral Equations

In this section we shall illustrate the duality principle in the case the dynamics of the
system is described by an integral equation of anti-Volterra type. Therefore, we shall
start with an anticipative system, and construct the causal system whose dynamics is
determined by the same data as those of the given anticipative system.

The dynamical system under consideration in this section is defined by means of a
function x = x(t), 0 ≤ t ≤ T , the values of x being taken in a Banach space E. The
describing equation for the dynamics is of the form

x(t) = f(t) +

T∫

t

k(t, s, x(s)) ds, (3)

with f ∈ C([0, T ], E), and k(t, s, x) defined and continuous on ∆ × E, with values in
E, where ∆ = {(t, s) : 0 ≤ t ≤ s ≤ T } ⊂ R2. If we also admit for k(t, s, x) a Lipschitz
type condition in ∆ × E,

‖k(t, s, x) − k(t, s, y)‖ ≤ L‖x − y‖, L > 0, (4)

then we get existence and uniqueness of the solution x = x(t), 0 ≤ t ≤ T , which is
in C([0, T ], E).

The proof of existence and uniqueness of the solution to (3) can be conducted on the
classical pattern, by the method of successive approximations

xn+1(t) = f(t) +

T∫

t

k(t, s, xn(s)) ds, n ≥ 0, (5)
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with x0(t) = f(t), t ∈ [0, T ]. It has been carried out in our paper [3].
The case when we have existence on the whole interval [0, T ], but not necessary unique-

ness, has been also discussed in [3].
Now let x = x(t) be a solution of (3) defined on [0, T ], in either case of uniqueness

or nonuniqueness. In order to define the causal system corresponding to the anticipative
system described by (3), we shall proceed as follows: we operate the change of variables

t = −τ, s = −u, and denote f(−τ) = f̃(τ), x(−τ) = y(τ), τ ∈ [−T, 0]. Then (3)
becomes

y(τ) = f̃(τ) +

τ∫

−T

k(−τ,−u, y(u)) du, (6)

with f̃ ∈ C([−T, 0], E), and k defined on ∆×E, with values in E, where ∆ = {(τ, u) :
−T ≤ u ≤ τ ≤ 0} ⊂ R2. Obviously, k(−τ,−u, y) satisfies a Lipschitz condition derived
from (4).

It is obvious from (6) that the dynamics described by this equation is of causal type. It
is possible to “shift” the considerations from the interval [−T, 0], to any interval [a, b] ⊂ R.

We have again illustrated the duality principle, this time for continuous time dynamical
systems for which the law of the dynamics is given by means of an integral equation of
anti-Volterra type.

We shall see below that other types of dynamical systems can be reduced, in principle,
to the case examined in this section.

4 A Case with General Causal Operators

In this section we will consider a Cauchy type problem, for a differential equation involv-
ing a linear causal operator, as well as a nonlinear part. More precisely, we shall deal
with the equation

ẋ(t) = (Lx)(t) + (fx)(t), t ∈ [0, T ], (7)

with the initial condition
x(0) = x0 ∈ Rn, n ≥ 1. (8)

The linear causal operator L is acting continuously on the space L2([0, T ], Rn), while
f : L2([0, T ], Rn) → L2([0, T ], Rn) is a continuous causal operator, generally nonli-
near. It is understood that any solution we consider is of Carathéodory type, i.e., is
in AC([0, T ], Rn) and satisfies the differential equation (7) a.e. on [0, T ].

For general properties of such equations we send the reader to the book [2] by C. Cor-
duneanu. The formula of variation of parameters is given in the paper [6] by Yizeng Li.

As shown in the above mentioned references, the problem (7), (8) is equivalent to the
integral equation of Volterra type

x(t) = X(t, 0)x◦ +

t∫

0

X(t, s)(fx)(s) ds, (9)

where X(t, s), 0 ≤ s ≤ t ≤ T, is the Cauchy operator attached to the linear operator L
in (7). In [2, 3], it is dealt with existence, and some properties are emphasized. See also
the paper [7] by Mahdavi, in which L2 is substituted by any Lp, 1 < p < ∞.
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The integral equation (9) is not exactly of the classical Volterra type, due to the
presence of the operator f under the integral. In order to place ourselves in the classical
framework, we shall assume that the operator f is a Niemytskii operator, i.e.,

(fx)(t) = F (t, x(t)), t ∈ [0, T ]. (10)

In order to assure the fact that F is acting on L2([0, T ]; Rn), we can impose the growth
condition

‖F (t, x)‖ ≤ c‖x‖ + a(t), (11)

with c > 0 and a ∈ L2([0, T ]; R). Of course, we need some measurability conditions on
F , and the Carathéodory assumptions are just adequate (i.e., continuity in x for almost
all t ∈ [0, T ], and measurability in t for all x ∈ Rn).

With the choice (10) for the operator f in the equation (7), the integral equation (9)
becomes

x(t) = X(t, 0)x◦ +

t∫

0

X(t, s)F (s, x(s)) ds. (12)

Equation (12) is of classical Volterra type, and we can compare it with the equa-
tion (6). Due to the properties of X(t, s), any solution of (12) belongs to the space
AC([0, T ], Rn) of absolutely continuous maps, and satisfies the differential equation (7)
almost everywhere on [0, T ].

There remains to write the integral equation of anticipative type, which describes the
dynamics of the dual system associated to the system described by the equation (9), with
f = F .

By the same substitution used in the preceding section, namely t = −τ , s = −u,
x(−τ) = y(τ), the equation (12) leads to the integral equation of anticipative type
on [−T, 0],

y(τ) = X(−τ, 0)x◦ +

0∫

τ

X(−τ,−u)F (−u, y(u)) du. (13)

Conditions for existence/uniqueness of solution to the equation (13) can be found in
the above mentioned references [2, 3].

Our aim was to illustrate once again the validity of the duality principle stated in this
paper. In this case, the equations (12) and (13) describe the dynamics of the associated
systems (causal and anticipative). At the same time, we have presented an example
which relies on the use of general causal operators.

5 Conclusions and Open Problems

The examples discussed above show that whole classes of dynamical system can be used to
illustrate the duality principle enunciated in this paper. What is really interesting, from
mathematical point of view, is the fact that the mathematical apparatus is, basically,
the same for the couple of associated systems. Moreover, from any result concerning the
causal systems, one can derive a similar result for the associated anticipative systems.

We propose to the reader the following exercise: start with a result on causal systems
in the book [2], and describe the corresponding result for the associated anticipative
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system. A first step would be to find the functional equation describing the dynamics of
the anticipative system.

There seems to be a problem in dealing with the duality principle when we have infinite
time in our initial system (causal or anticipative). In other words, when the time interval
[0, T ] is replaced by the semi-axis R+ = [0,∞). If for the describing functional equation
we look for the so-called transient solutions, tending at infinity towards a stationary
state, then the duality principle appears to be easy to be formulated. Another venue
should be found when, for instance, we deal with an oscillatory solution of the describing
functional equation. We mention this situation as an open problem.

Another open problem is to check the validity of the duality principle in case of
dynamical systems whose dynamics is described by functional equations of the form
x(t) = f(t, xt), with the usual notation xt(s) = x(t + s), s ∈ [−T, 0]. The case of
differential equations with delay

ẋ(t) = f(t, xt), x(s) = x0(s), s ∈ [−T, 0],

is covered by the above mentioned functional equation x(t) = f(t, xt), with x0(s)
assigned on [−T, 0]. One may succeed in this respect, by considering “dual” equations of

the form y(t) = f̃(t, yt), with obvious meaning for yt, namely yt(s) = y(t+s), s ∈ [0, T ].
A comprehensive approach, in order to produce an adequate framework for the state-

ment and illustration of the duality principle, will require a more general concept of
dynamical systems, in which the terms causal and anticipative make sense.
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