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where w is the sought-for function in the space C[−τ,T ] = C([0, π]×[−τ, T ]), for arbitrarily
fixed 0 < T < ∞, of all continuous functions endowed the supremum norm, h is a
function defined from the space C[−τ,0] into itself, φ ∈ C[−τ,0], the function w|[−τ,0] ∈
C[−τ,0] is the restriction of w ∈ C[−τ,T ] on [0, π]× [−τ, 0], a > 0 is a constant.

Let X be the Banach space C[0, π] of all real-valued continuous functions on [0, π]
endowed with the supremum norm

‖ξ‖X = sup
0≤x≤π

|ξ(x)|, ξ ∈ X,

and for t ∈ [0, T ], 0 < T < ∞, let Ct = C([−τ, t]; X), 0 < τ < ∞, be the Banach space
of all continuous functions from [−τ, t] into X endowed with the supremum norm

‖ψ‖t = sup
−τ≤θ≤t

‖ψ(θ)‖X , ψ ∈ Ct.

Let C0(χ) = {χ̄ ∈ C0 : χ̄(0) = χ(0)}. Define a function F from C0(χ) into X by

F (χ) = f(χ(0), χ(−τ)), χ ∈ C0.

Then (1.1) can be written as the following nonlocal history-valued functional differential
equation

u′(t) + Au(t) = F (ut), t ∈ (0, T ],

H(u0) = φ on [−τ, 0],
(1.2)

where A is a linear operator defined on D(A) = {ξ ∈ C[0, π] : ξ′′ ∈ C[0, π], ξ(0) =
ξ(π) = 0} with Aξ = −aξ′′ for ξ ∈ D(A), for u ∈ CT and t ∈ [0, T ], ut ∈ C0 given by
ut(θ) = u(t + θ), θ ∈ [−τ, 0], the map H is defined from C0 into itself and φ ∈ C0.

For the earlier works on existence, uniqueness and stability of various types of so-
lutions of differential and functional differential equations with nonlocal conditions we
refer to Byszewski and Akca [2], Byszewski and Lakshmikantham [4], Byszewski [5], Bal-
achandran and Chandrasekaran [3], Lin and Liu [7] and references cited in these papers.

Our main aim is to consider various types of nonlocal history conditions H and their
applications. We use the ideas and techniques used by Bahuguna [1] to study such
conditions and their applications.

A few examples of H are the following. Let g be map from C0 into X be a map given
by one of the following.

(I) Let k ∈ L1(0, τ) such that κ =
τ
∫

0
k(s) ds 6= 0. Let

g(ξ) =

0
∫

−τ

k(−s)ξ(s) ds, ξ ∈ C0.

(II) Let −τ ≤ t1 < t2 < · · · < tl ≤ 0, ci ≥ 0 with C =
l

∑

i=1
ci 6= 0. Let

g(ξ) =
l

∑

i=1

ciξ(ti), ξ ∈ C0.
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(III) Let ti and ci be as in (II) and let εi > 0, i = 1, 2, . . . , l. Let

g(ξ) =
l

∑

i=1

ci

εi

ti
∫

ti−εi

ξ(s)ds, ξ ∈ C0.

If we define φ ∈ C0 given by φ(θ) ≡ x for all θ ∈ [−τ, 0] and H : C0 → C0 given
by H(ξ)(θ) ≡ g(ξ) for all θ ∈ [−τ, 0] and all ξ ∈ C0, then the condition g(ξ) = x is
equivalent to the condition H(ξ) = φ.

Let χ ∈ C0 be such that H(χ) = φ. The function u ∈ CeT , 0 < ˜T ≤ T , such that

u(t) =







χ(t) t ∈ [−τ, 0]

S(t)χ(0) +
t
∫

0
S(t− s)F (us) ds, t ∈ [0, ˜T ],

(1.3)

is called a mild solution of (1.2) on [−τ, ˜T ]. If a mild solution u of (1.2) on [−τ, ˜T ] is
such that u(t) ∈ D(A) for a.e. t ∈ [0, ˜T ], u is differentiable a.e. on [0, ˜T ] and

u′(t) + Au(t) = F (ut), a.e. on [0, ˜T ],

it is called a strong solution of (1.2) on [−τ, ˜T ]. If a mild solution u of (1.2) on [−τ, ˜T ]
is such that u ∈ C1((0, ˜T ]; X), u(t) ∈ D(A) for t ∈ (0, ˜T ] and satisfies

u′(t) + Au(t) = F (ut), t ∈ (0, ˜T ],

then it is called a classical solution of (1.2) on [−τ, ˜T ].
We first establish the existence of a mild solution u ∈ CeT of (1.2) for some 0 <

˜T ≤ T and its continuation to the whole of [−τ,∞). Under the additional assumption
of Lipschitz continuity on ψ on [−τ, 0], we show that the mild solution u is a strong
solution of (1.2) on the interval of existence and it is Lipschitz continuous. Under further
additional assumption that S(t) is analytic, we show that u is a classical solution of (1.2)
on the interval of existence. We also show that u is unique if and only if χ satisfying
H(χ) = φ is unique. Next, we establish a global existence result. Finally, we study the
finite dimensional approximation of solutions in a Hilbert space.

2 Local Existence of Mild Solutions

We first prove the following result establishing the local existence and uniqueness of a
mild solution of (1.2).

Theorem 2.1 Suppose that −A is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0 of bounded linear operators in X. Let H : C0 → C0 be such that there exists
a function χ ∈ C0 such that H(χ) = φ. Let C0(χ) = {χ̄ ∈ C0 : χ̄(0) = χ(0)}. Let
F : C0(χ) → X satisfy a Lipschitz condition

‖F (χ1)− F (χ2)‖X ≤ LF ‖χ1 − χ2‖0,
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for all χi ∈ C0(χ), i = 1, 2, where LF is a non-negative constant. Then there exists a
mild solution u of (1.2) on [−τ, T0] for some 0 < T0 ≤ T . Moreover, the mild solution
u is unique if and only if χ is unique.

Proof Let M ≥ 1 and ω ≥ 0 be such that ‖S(t)‖B(X) ≤ Meωt for t ≥ 0. Here
B(X) is the space of all bounded linear operators from X into itself. We choose 0 <
T0 ≤ T be such that

T0MeωT LF ≤ 3/4.

Define a map F : CT0(χ) → CT0(χ) by

Fw(t) =







χ(t) t ∈ [−τ, 0],

S(t)χ(0) +
t
∫

0
S(t− s)F (ws) ds, t ∈ [0, T0].

(2.1)

Here and subsequently, any function in CT (χ) = {ψ ∈ CT : ψ(0) = χ(0)} is also in
CeT (χ), 0 ≤ ˜T ≤ T , as its restriction on the subinterval. Also, for wi ∈ CT0(χ), i = 1, 2,
we have

‖Fw1(t)−Fw2(t)‖X ≤ T0MeωT LF ‖w1 − w2‖T0 .

Since T0MeωT LF ≤ 3/4, F is a strict contraction on CT0(χ) and hence has a unique
fixed point u ∈ CT0(χ).

Clearly, if χ ∈ CT satisfying H(χ) = φ on [−τ, 0] is unique on [−τ, 0], then u is
unique. If there are two χ and χ̃ in C0 satisfying H(χ) = H(χ̃) = φ on [−τ, 0], with
χ 6= χ̃ on [−τ, 0], then the corresponding solutions u and ũ of (1.2) belonging to CT0(χ)
and CT̃0

(χ̃) are different. This completes the proof of Theorem 2.1.

3 Global Existence of Solutions

Theorem 3.1 Assume the hypotheses of Theorem 2.1. Then the local mild solution
u of (1.2) exists on the whole interval [−τ,∞).

Proof Let 0 < T < ∞ be arbitrarily fixed. If T0 < T , consider the functional
differential equation

v′(t) + Av(t) = F (vt), 0 < t ≤ T − T0,

˜H(v0) = φ̃,
(3.1)

where ˜H : C0(χ) → C0(χ) given by ˜Hχ = χ for χ ∈ C0(χ) and φ̃(θ) = u(T0 + θ) for
θ ∈ [−τ, 0]. Since all the hypotheses of Theorem 2.1 are satisfied for problem (3.1), we
have the existence of a mild solution w ∈ CT1(χ), 0 < T1 ≤ T − T0 of (3.1). This mild
solution w is unique as ˜H in (3.1) is the identity map on C0(χ). We define

ū(t) =
{

u(t), t ∈ [−τ, T0]

w(t− T0), t ∈ [T0, T0 + T1].
(3.2)

Then ū is a mild solution of (1.2) on [−τ, T0 + T1], unique for fixed χ. Continuing
this way, we get the existence of a mild solution u either on the whole interval [−τ, T ]
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or on the maximal interval [−τ, tmax) of existence. In the later case we may use the
arguments similar in the proof of Theorem 6.2.2 in Pazy [9, P.193–194], to conclude
that lim

t→tmax−
‖u(t)‖X = ∞.

In order to show the global existence, we show that ‖u(t)‖X ≤ C for t ≥ 0. Let
M1 = max{M, eωτ , (M/ω)‖F (0)‖X , ‖χ‖0}. For t ∈ [−τ, 0], e−ωt‖u(t)‖X ≤ M1 and for
t ∈ [0, T ), we have

e−ωt‖u(t)‖X ≤ M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds. (3.3)

From (3.3), for any 0 ≤ r ≤ t, we have

e−ωt‖u(r)‖X ≤ M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds. (3.4)

Putting r = t + η, −t ≤ η ≤ 0, in (3.4), we get

e−ωt‖u(t + η)‖X ≤ M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds. (3.5)

Now, if −τ ≤ −t, then

e−ωt sup
−τ≤η≤0

‖u(t + η)‖X ≤ e−ωt sup
−τ≤η≤−t

‖u(t + η)‖X + e−ωt sup
−t≤η≤0

‖u(t + η)‖X

≤ 2M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds,

and for the case −t ≤ −τ , we have

e−ωt sup
−τ≤η≤0

‖u(t + η)‖X ≤ e−ωt sup
−t≤η≤0

‖u(t + η)‖X

≤ 2M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds.

Thus,

e−ωt sup
−τ≤η≤0

‖u(t + η)‖X ≤ 2M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds.

Gronwall’s inequality implies that

e−ωt sup
−τ≤η≤0

‖u(t + η)‖X ≤ 2M1 + MLF

t
∫

0

f(s) exp {2M‖F (0)‖X(t− s)} ds. (3.6)

Inequality (3.6) implies that ‖u(t)‖X is bounded by a continuous function and therefore
‖u(t)‖X is bounded on every compact interval [−τ, T ], 0 < T < ∞. Since T is arbitrary,
the global existence follows.
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4 Regularity of Solutions

Theorem 4.1 Assume the hypotheses of Theorem 2.1. If, in addition, χ ∈ C0

satisfying H(χ) = φ is Lipschitz continuous on [−τ, 0] and χ(0) ∈ D(A), then the
solution u corresponding to χ is Lipschitz continuous on every compact subinterval of ex-
istence. If, in addition, X is reflexive, then u is a strong solution of (1.2) on the interval
of existence and this strong solution is a classical solution of (1.2) provided S(t) is an
analytic semigroup.

Proof We shall prove the result for the first case when the mild solution u exists on
the whole interval. The proof can be modified easily for the second case.

We need to show the Lipschitz continuity of u only on [0, T ]. In what follows, Ci’s are
positive constants depending only on R, T and ‖χ‖0. Let t ∈ [0, T ] and h ≥ 0. Then

‖u(t + h)− u(t)‖X ≤ ‖(S(h)− I)S(t)χ(0)‖X +

0
∫

−h

‖S(t− s)F (us+h)‖X ds

+

t
∫

0

‖s(t− s)[F (us+h)− F (us)]‖Xds

≤ C1

[

h +

t
∫

0

[‖us+h − us‖C0 ] ds

]

≤ C1

[

h +

t
∫

0

sup
−τ≤θ≤0

‖u(s + h + θ)− u(s + θ)‖X

]

ds.

(4.1)

For the case when −τ ≤ t < 0 and 0 ≤ t + h (clearly, t + h ≤ h in this case), we have

‖u(t + h)− u(t)‖X ≤ ‖(S(t + h)− I)χ(0)‖X + ‖χ(t)− χ(0)‖X

+

h
∫

0

‖S(t + h− s)F (us)‖Xds ≤ C2h.
(4.2)

Combining the inequalities (4.1) and (4.2), we have for −τ ≤ t̄ ≤ t,

‖u(t̄ + h)− u(t̄)‖X ≤ C3

[

h +

t
∫

0

sup
−τ≤θ≤0

‖u(s + h + θ)− u(s + θ)‖Xds

]

. (4.3)

Putting t̄ = t + θ̄, −t− τ ≤ θ̄ ≤ 0, in (4.3), and taking supremum over θ̄ on [−τ, 0], we
get

sup
−τ≤θ≤0

‖u(t+h+θ)−u(t+θ)‖X ≤ 2C3

[

h+

t
∫

0

sup
−τ≤θ≤0

‖u(s+h+θ)−u(s+θ)‖Xds

]

. (4.4)
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Applying Gronwall’s inequality in (4.4), we obtain

‖u(t + h)− u(t)‖X ≤ sup
−τ≤θ≤0

‖u(t + h + θ)− u(t + θ)‖X ≤ C4h.

Thus, u is Lipschitz continuous on [−τ, T ].
The function F : [0, T ] → X given by F (t) = F (ut), is Lipschitz continuous and

therefore differentiable a.e. on [0, T ] and F
′
is in L1((0, T ); X). Consider the Cauchy

problem
v′(t) + Av(t) = F (t), t ∈ (0, T ],

v(0) = u(0),
(4.5)

By the Corollary 2.10 on page 109 in Pazy [9], there exists a unique strong solution v of
(4.5) on [0, T ]. Clearly, v̄ defined by

v̄(t) =
{

u(t), t ∈ [−τ, 0]

v(t), t ∈ [0, T ],

is a strong solution of (1.2) on [−τ, T ]. But this strong solution is also a mild solution of
(1.2) and v̄ ∈ CT (χ). By the uniqueness of such a function in CT (χ), we get v̄(t) = u(t)
on [−τ, T ]. Thus u is a strong solution of (1.2). If S(t) is analytic semigroup in X then
we may use Corollary 3.3 on page 113 in Pazy [9] to obtain that u is a classical solution
of (1.2). This completes the proof of Theorem 4.1.

5 Finite Dimensional Approximations

In this section we assume that X is a separable Hilbert space. Furthermore, we assume
that in (1.2), the linear operator A satisfies the following hypothesis.

(H1) A is a closed, positive definite, self-adjoint linear operator from the domain
D(A) ⊂ X into X such that D(A) is dense in X, A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ . . .

and a corresponding complete orthonormal system of eigenfunctions {ui}, i.e.,

Aui = λiui and (ui, uj) = δij ,

where δij = 1 if i = j and zero otherwise.
If (H1) is satisfied then the semigroup S(t) generated by −A is analytic in X. It

follows that the fractional powers Aα of A for 0 ≤ α ≤ 1 are well defined from D(Aα) ⊆
X into X (cf. Pazy [9], pp. 69 – 75). D(Aα) is a Banach space endowed with the norm

‖x‖α = ‖Aαx‖X , x ∈ D(Aα). (5.1)

For t ∈ [0, T ], we denote by Cα
t = C([−r, t]; D(Aα)) endowed with the norm

‖ζ‖t,α = sup
−r≤η≤t

‖ζ(η)‖α, ζ ∈ Cα
t .
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In addition, we assume the following hypotheses.
(H2) There exists a function χ ∈ Cα

0 satisfying H(χ) = φ.
(H3) The map F is defined from Cα

0 (χ) = {χ̄ ∈ Cα
0 : χ̄(0) = χ(0)} into D(Aβ) for

0 < β ≤ α < 1 and there exists a non-negative constant LF such that

‖F (ζ1)− f(ζ2)‖X ≤ LF ‖ζ1 − ζ2‖0,α,

for ζi ∈ Cα
0 (χ), for i = 1, 2.

Let Xn denote the finite dimensional subspace of X spanned by {u0, u1, . . . , un} and
let Pn : X → Xn be the corresponding projection operator for n = 0, 1, 2, . . . . Let
χ ∈ C0 be such that H(χ) = φ. Let χ̄ be the extension of χ by the constant value χ(0)
on [0, T ]. We set

T0 = min
{

T,
(

3(1− α)
8LF Cα

)1−α }

,

where Cα is a positive constant such that ‖AαS(t)‖ ≤ Cαt−α for t > 0.
We define

Fn : C0(χ) → Xn,

given by
Fn(ζ) = PnF (Pnζ), ζ ∈ C0(χ),

where (Pnζ)(θ) = Pnζ(θ), −τ ≤ θ ≤ 0. We denote ψn = Pnψ for any ψ ∈ CT .
Let Aα : Cα

t → Ct be given by (Aαψ)(s) = Aα(ψ(s)), s ∈ [−r, t], t ∈ [0, T0]. We
define a map Fn : CT0(χ) → CT0(χ) as follows:

(Fnξ)(t) =







Aαχn(t), t ∈ [−τ, 0],

S(t)Aαχn(0) +
t
∫

0
AαS(t− s)Fn(A−αξs) ds, t ∈ [0, T0],

(5.2)

for ξ ∈ CT0(χ).

Proposition 5.1 There exists a unique wn ∈ CT0(χ) such that Fnwn = wn on [−r, T0].

Proof For ξ1, ξ2 ∈ CT0(χ), (Fnξ1)(t)− (Fnξ2)(t) = 0 on [−τ, 0] and for t ∈ [0, T0],
we have

‖(Fnξ1)(t)− (Fnξ2)(t)‖X ≤ 2LF Cα
T 1−α

0

1− α
‖ξ1 − ξ2‖T0 ≤

3
4
‖ξ1 − ξ2‖T0 .

Taking the supremum over [−τ, T0], it follows that Fn is a strict contraction on CT0(χ)
and hence there exits a unique wn ∈ CT0(χ) with wn = Fnwn on [−τ, T0]. This
completes the proof of Proposition 5.1.

Let un = A−αwn. Then un ∈ Cα
T0

and satisfies

un(t) =







χn(t), t ∈ [−τ, 0],

S(t)χn(0) +
t
∫

0
S(t− s)Fn(us) ds, t ∈ [0, T0].

(5.3)
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Proposition 5.2 The sequence {un} ⊂ CT0(χ) is a Cauchy sequence and therefore
converges to a function u ∈ CT0(χ).

Proof For n,m ∈ N , n ≥ m, t ∈ [−τ, 0], we have

‖un(t)− um(t)‖α ≤ ‖Aα(χn(t)− χm(t))‖X ≤ ‖(Pn − Pm)Aαχ(t)‖X → 0 as m →∞.

For t ∈ (0, T0] and n, m as above, we have

‖un(t)− um(t)‖α ≤ ‖(Pn − Pm)S(t)Aαχ(0)‖X

+

t
∫

0

‖AαS(t− s)[Fn((un)s)− Fm((um)s))]‖X ds.

Now, using the fact that F ((um)s) ∈ D(Aβ), m ≥ n0 and 0 < α < β < 1, we have

‖Fn((un)s)− Fm((um)s)‖X ≤ ‖(Pn − Pm)F (Pm(um)s)‖X

+ LF [‖(Pm − Pm)Aα(um)s‖0] + LF ‖un − um‖s,α

≤ C1
1

λβ
m

+ C2‖un − um‖s,α,

for some positive constants C1 and C2 independent of n and m. Thus, we have the
following estimate

‖un(t)− um(t)‖α ≤ C0‖(Pn − Pm)Aαχ(0)‖X

+
C1T γ

λβ
m

+ C2

t
∫

0

(t− s)α‖un − um‖s,α ds,
(5.4)

where C0 = MeωT . Since un − um = χn − χm on [−τ, 0], we have for 0 ≤ t̄ ≤ t,

‖un(t̄)− um(t̄)‖α ≤ ‖χn − χm‖0,α + C0‖(Pn − Pm)Aαχ(0)‖X

+
C1T

λβ
m

+ C2

t̄
∫

0

(t̄− s)α‖un − um‖s,α ds.
(5.5)

We put t̄ = t + η, −t ≤ η ≤ 0, to obtain

‖un(t + η)− um(t + η)‖α ≤ ‖χn − χm‖0,α + C0‖(Pn − Pm)Aαχ(0)‖X+

C1T

λβ
m

+ C2

t+η
∫

0

(t + η − s)α‖un − um‖s,α ds.
(5.6)

Now, we put s− η = s̄ to get

‖un(t + η)− um(t + η)‖α ≤ ‖χn − χm‖0,α + C0‖(Pn − Pm)Aαχ(0)‖X

+
C1T

λβ
m

+ C2

t
∫

−η

(t− s̄)α‖un − um‖s̄+η,α ds̄

≤ ‖χn − χm‖α,0 + C0‖(Pn − Pm)Aαχ(0)‖

+
C1T

λβ
m

+ C2

t
∫

0

(t− s̄)α‖un − um‖s̄,α ds̄.

(5.7)
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For t ≥ τ , we have

sup
−τ≤η≤0

‖un(t + η)− um(t + η)‖α ≤ sup
−t≤η≤0

‖un(t + η)− um(t + η)‖α

≤ ‖χn − χm‖α,0 + C0‖(Pn − Pm)Aαχ(0)‖+
C1T

λβ
m

+ C2

t
∫

0

(t− s̄)α‖un − um‖s̄,α ds̄.

(5.8)
Since un(t + η) = χ(t + η) for t + η ≤ 0 for all n ≥ n0, for 0 ≤ t ≤ τ , we have

sup
−τ≤η≤0

‖un(t + η)− um(t + η)‖α

≤ sup
−τ≤η≤−t

‖un(t + η)− um(t + η)‖α + sup
−t≤η≤0

‖un(t + η)− um(t + η)‖α

≤ ‖χn − χm‖α,0 + C0‖(Pn − Pm)Aαχ(0)‖+
C1T

λβ
m

+ C2

t
∫

0

(t− s̄)α‖un − um‖s̄,α ds̄.

(5.9)
Combining (5.8) and (5.9), we have

‖un − um‖t,α ≤ ‖χn − χm‖α,0 + C0‖(Pn − Pm)Aαχ(0)‖

+
C1T

λβ
m

+ C2

t
∫

0

(t− s̄)α‖un − um‖s̄,α ds̄.
(5.10)

Application of Lemma 5.6.7 on page 159 in Pazy [9] gives the required result. This
completes the proof of Proposition 5.2.

With the help of Propositions 5.1 and 5.2, we may state the following existence,
uniqueness and convergence result.

Theorem 5.3 Suppose that assumptions (H1) – (H3) hold. Then there exist functions
un ∈ ([−τ, T0]; Xn), n ∈ N , and u ∈ CT0 (0 < T0 ≤ T ) unique for a given χ ∈ C0 with
H(χ) = φ, such that

un(t) =







χn(t), t ∈ [−τ, 0],

S(t)χn(0) +
t
∫

0
S(t− s)Fn((un)s) ds, t ∈ [0, T0],

(5.11)

and

u(t) =







χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
t
∫

0
S(t− s)F (us) ds, t ∈ [0, T0],

(5.12)

such that un → u in CT0 as n → ∞, where ψn(t) = Pnψ(t) for ψ ∈ CT0 and
Fn(ζ) = PnF (Pnζ), ζ ∈ C0.

6 Applications

As an applicability of the theory developed in previous sections, we cite two examples of
partial differential equation with retarded arguments and a nonlocal history condition.
These problems are closely related to a mathematical model for population density with
a time delay and self regulation (cf. [6, 10]).
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Example 6.1

∂w
∂t

(x, t) = a
∂2w
∂x2 (x, t) + b w(x, t− τ)(1− w(x, t)),

t > 0, 0 < x < π,

w(0, t) = w(π, t) = 0, t > 0,

h(w|[−τ,0])(x, t) = φ(x, t), −τ ≤ t ≤ 0, τ > 0, 0 ≤ x ≤ π,

(6.1)

where w(·, t) is the population density at time t, b is the constant rate of growth for
the species. τ is a fixed positive constant and φ ∈ C[−τ,0] = C([0, π] × [−τ, 0]). Let
X = C[0, π]. For each t, define an operator A by

Au = −au′′,

for u ∈ D(A) = {u ∈ C([0, π]) : u′′ ∈ C([0, π]), u(0) = u(π) = 0}. It follows that −A
generates an analytic semigroup in X. The nonlinear map H can be defined as mentioned
in the first section.

Let C0(χ) be the set consisting of all continuous function χ̄ : [−τ, 0] → X such that
χ̄(0) = χ(0) and define F : C0(χ) → X by

F (χ) = bχ(−τ)(1− χ(0)), χ ∈ C0(χ).

It is easily verified that F satisfies Lipschitz condition. The problem (6.1) now take the
abstract form

u′(t) + Au(t) = F (ut), t ∈ (0, T ],

H(u0) = φ, on [−τ, 0],
(6.2)

Then the theorems ensure the existence of a unique solution of the problem (6.2) (hence
a unique solution of the problem (6.1)).

Example 6.2

∂w
∂t

(x, t) = a
∂2w
∂x2 (x, t) + bw(x, t)

[

1−
0

∫

−τ

wt(x, s) dη(s)

]

,

t > 0, 0 < x < π,

w(0, t) = w(π, t) = 0, t > 0,

h(w|[−τ,0])(x, t) = φ(x, t), −τ ≤ t ≤ 0, τ > 0, 0 ≤ x ≤ π,

(6.3)

which is a population model when diffusion occurs within the population. Here η(·) is
bounded, nondecreasing function on [−τ, 0], τ ≥ 0. All other functions and maps are as
described in Example 6.1.

Let X = C([0, π]). The linear operator A is defined as in the previous example. Also
we define F : C0(χ) → X by

F (χ) = bχ(0)

[

1−
0

∫

−τ

χ(s) dη(s)

]

, χ ∈ C0(χ).
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Then clearly F satisfies Lipschitz condition and problem (6.3) transforms into the ab-
stract form (6.2).

Since all the assumptions taken into account for establishing the existence and unique-
ness results are satisfied, we can apply these results to considered problem which shows
that there exists a unique solution of (6.3).
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