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316 DERONG LIU

theory of hybrid and discontinuous dynamical systems. Throughout, he has demon-
strated the significance of his work with specific applications to signal processing, power
systems, artificial neural networks, digital control systems, systems with state saturation
constraints, and other areas.

On the topic of finite-time and practical stability, in contrast to other workers, Michel
utilizes prespecified time-varying sets in formulating a notion of set stability. His Lyapu-
nov-like results for set stability yield estimates for system trajectory behavior, obtained
from the boundaries of prespecified sets [9, 10]. As a radical departure from the existing
practices, this approach was subsequently adopted and extended by others.

To circumvent difficulties encountered in the analysis of large-scale systems with com-
plex structure, Michel views such systems as interconnections of several simpler subsys-
tems. The analysis is then accomplished in terms of the qualitative properties of the
subsystems and the interconnecting structure. Michel advocates the use of scalar Lya-
punov functions [1, 11, 13, 15, 20, 21] consisting of weighted sums of Lyapunov functions
for the free subsystems. This approach has resulted in significantly less conservative
results than the weak-coupling M -matrix results obtained by others who employ vec-
tor Lyapunov functions. These results in turn are applied by Michel in the analysis
and synthesis of artificial neural networks [8, 23], and he also uses them as the basis of
further results involving computer generated norm-Lyapunov functions which then are
applied successfully in the analysis of interconnected power systems and digital filters
[20]. The theory developed in this work is applicable to continuous-time and discrete-
time systems, finite-dimensional and infinite-dimensional systems, and deterministic and
stochastic systems [1].

Using the same philosophy as in [1, 11, 13, 15, 20, 21], Michel discovered the first results
for the input-output stability of interconnected systems [12], which subsequently were ex-
panded by many into all kinds of directions [1, 14, 16]. These results make possible the
systematic analysis of multi-loop nonlinear feedback systems (consisting of interconnec-
tions of subsystems that satisfy, e.g., the small gain theorem, the circle criterion, the
passivity theorem, or Popov-like conditions). In the same spirit, Michel established also
results for the response (due to periodic inputs) of nonlinear single-loop and multi-loop
feedback systems [17, 18], and results for the existence, nonexistence, and stability of limit
cycles for such systems [1, 19, 22]. The proofs of the above results are rather technical and
require extensive use of functional analysis results and fixed-point theorems in abstract
spaces.

For his work on qualitative analysis of interconnected systems, Michel has received sub-
stantial recognition. In response to an invitation by Professor Richard Bellman, Michel
co-authored with R.K. Miller the book on qualitative analysis of large-scale dynamical
systems [1], which appeared in the Bellman Series in Mathematics in Science and En-
gineering (Academic Press). This book is widely referred to and has had an impact on
other areas of large-scale systems (e.g., power systems).

Michel has also conducted extensive research in artificial neural networks with ap-
plications to associative memories [8, 23, 24, 30, 31, 35, 36]. This work, which addresses
network architectures, qualitative analysis, synthesis procedures, and implementation is-
sues for several classes of continuous and discrete recurrent neural networks, is widely
referred to and one of their paradigms [24], “LSSM-linear systems in a saturated mode,”
has been used in the software tool MATLAB.

Michel has contributed significantly to robust stability analysis, most notably, for
systems with interval matrices and perturbed systems with perturbed equilibria. He has
established several (Hurwitz and Schur) stability, controllability, and observability results
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for linear systems with interval plants [27, 33, 34], while for nonlinear systems, he ad-
dresses the effects of parameter perturbations on the locations (and even existence) of
equilibria, along with their stability properties, using fixed point theorems and the notion
of “extreme systems” [28, 32, 37]. The work in [33] was the first to provide necessary and
sufficient conditions for the Hurwitz and Schur stability of interval matrices with a prac-
tical computer algorithm. Michel has further extended the results in [28] to the robust
stability analysis of recurrent neural networks [8, 30, 36, 37].

Michel has conducted fundamental research in qualitative analysis of dynamical sys-
tems using stability preserving mappings. He utilizes stability preserving mappings to
develop a comparison theory for Lyapunov and Lagrange stability of general dynamical
systems defined on metric space [5, 44], applicable to systems determined by all types
of classical equations encountered in science, as well as to contemporary systems that
cannot be described in this way (e.g., discrete event systems [29]). Some of this work
has been published in Russian (in Avtomatika i Telemekhanika) and in a highly original
book [5] (co-authored with K. Wang), where the entire Lyapunov and Lagrange stability
theory is developed for general dynamical systems, making use of stability preserving
mappings.

Michel’s more recent research addresses stability analysis of hybrid and discontinuous
dynamical systems. For such systems, he formulates a general model suitable for stabil-
ity analysis (involving a notion of generalized time), which contains most of the hybrid
and discontinuous systems considered in the literature as special cases. For this model,
he establishes the Principal Lyapunov and Lagrange stability results, including Converse
Theorems [7, 39, 42, 43, 45] and he applies these results in the analysis of several special
classes of systems, including switched systems [7], digital control systems [7, 38], impul-
sive systems [7, 41], pulse-width-modulated feedback control systems [7, 46], systems with
saturation constraints [4, 7, 25, 26, 40], and others.

Currently, Michel is working on stability issues of infinite dimensional discontinuous
dynamical systems. In particular, he is concerned with discontinuous systems determined
by differential equations in Banach space and by linear and nonlinear semigroups. Spe-
cific classes of systems that are considered in this work are those that can be described by
functional differential equations, Volterra integro-differential equations, certain classes of
partial differential equations, and others [47, 48].

Michel has played a significant role as an educator. His eight books [1– 8] which have
been well received in the systems and control community around the world, and in many
instances have blazed new trails when first introduced, demonstrate his contributions as
a teacher. Furthermore, his record of maintaining a highly productive research program
while simultaneously serving as an effective administrator at Notre Dame, first as De-
partment Chair (1984–1988) and then as Dean (1988–1998), puts him in rare company.
Michel has served as mentor to many outstanding graduate students. Equal numbers of
these are in academe and in industry, attesting to the fine balance Michel maintains in
his research program between theory and practice. These former students have all out-
standing careers. (For example, one of them was the Dean of Engineering at Washington
State University.)

Anthony N. Michel has sustained a high level of significant research, mostly in control
systems. His work is characterized by great depth, as exemplified by his contributions
to stability theory of dynamical systems, and by great breadth, as demonstrated by the
wide range of problems that he addresses. He has proved to be an excellent teacher and
mentor, he has demonstrated to be an effective administrator, and he has rendered more
than his share of service to his profession.
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3 Service to the Profession Anthony N. Michel served as an Associate Editor of
the IEEE Transactions on Circuits and Systems from 1977 to 1979, the Editor of the
IEEE Transactions on Circuits and Systems from 1981 to 1983, and the President of the
IEEE Circuits and Systems Society in 1989. He also served as an Associate Editor of the
IEEE Transactions on Automatic Control in 1981 and 1982, an Associate Editor at Large
of the IEEE Transactions on Automatic Control from 1991 to 2000, the Vice President
of Technical Affairs (1994, 1995) and the Vice President of Conference Activities (1996,
1997) of the IEEE Control Systems Society. In addition, he served as an Associate Editor
of IEEE Transactions on Neural Networks from 1989 to 1991. He currently serves as the
Associate Editor for Book Reviews of IEEE Transactions on Automatic Control. He was
Program Chair of the 1985 IEEE Conference on Decision and Control, Co-General Chair
of the 1990 IEEE Symposium on Circuits and Systems, and General Chair of the 1997
IEEE Conference on Decision and Control.

4 Student Supervision Anthony N. Michel guided the work of 13 Ph.D. students at
Iowa State University and 12 Ph.D. students at the University of Notre Dame. He also
supervised 10 Master’s degree students.

List of Doctoral Dissertations Supervised

(1) Cornick, D.E. Numerical Optimization of Distributed Parameter Systems by Gradient
Methods. Ph.D. Dissertation, Iowa State University, 1970.

(2) Porter, D.W. Stability of Multiple-Loop Nonlinear Time-Varying Systems. Ph.D. Disser-
tation, Iowa State University, 1972.

(3) Bose, A.B. Stability and Compensation of Systems with Multiple Nonlinearities. Ph.D.
Dissertation, Iowa State University, 1974.

(4) Oppenheimer, E.P.Application of Interval Analysis to Problems of Linear Control Systems.
Ph.D. Dissertation, Iowa State University, 1974.

(5) Lasley, E.L. The Qualitative Analysis of Composite Systems. Ph.D. Dissertation, Iowa
State University, 1975.

(6) Rasmussen, R.D. Lyapunov Stability of Large-Scale Dynamical Systems. Ph.D. Disserta-
tion, Iowa State University, 1976.

(7) Vitacco, W.R. Qualitative Analysis of Interconnected Dynamical Systems Containing Al-
gebraic Loops. Ph.D. Dissertation, Iowa State University, 1976.

(8) Gutmann, R.L. Input-Output Stability of Interconnected Stochastic Systems. Ph.D. Dis-
sertation, Iowa State University, 1976.

(9) Tang, W. Structure and Stability Analysis of Large Scale Systems using a New Graph-
Theoretic Approach. Ph.D. Dissertation, Iowa State University, 1978.

(10) Peterson, J.N. Wind Generator Network Methodology and Analysis. Ph.D. Dissertation,
Iowa State University, 1980.

(11) Sarabudla, N.R. Stability Analysis of Complex Dynamical Systems: Some Computational
Methods. Ph.D. Dissertation, Iowa State University, 1981.

(12) Nam, B.H. Asymptotic Stability of Large-Scale Dynamical Systems using Computer Gen-
erated Lyapunov Functions. Ph.D. Dissertation, Iowa State University, 1983.

(13) Erickson, K.T. Stability Analysis of Fixed-Point Digital Filters using a Constructive Al-
gorithm. Ph.D. Dissertation, Iowa State University, 1983.

(14) Li, J.-H. Qualitative Analysis and Synthesis of a Class of Neural Networks. Ph.D. Disser-
tation, University of Notre Dame, 1988.

(15) Farrell, J.A. Analysis and Synthesis Techniques for Two Classes of Nonlinear Dynamical
Systems: Digital Controllers and Neural Networks. Ph.D. Dissertation, University of
Notre Dame, 1989.
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(16) Sun, H.-F. Two Problems in Finite Dimensional Dynamical Systems: Qualitative Analysis
and Synthesis of a Class of Neural Networks and Linear Systems Subject to Parameter
Variations. Ph.D. Dissertation, University of Notre Dame, 1990.

(17) Gray, D.L. New Paradigms for Feedforward and Feedback Artificial Neural Networks.
Ph.D. Dissertation, University of Notre Dame, 1990.

(18) Si, J. Analysis and Synthesis of Discrete-Time Recurrent Neural Networks with High Order
Nonlinearities. Ph.D. Dissertation, University of Notre Dame, 1991.

(19) Yen, G. Learning, Forgetting, and Unlearning in Associative Memories: The Eigenstruc-
ture Method and the Pseudo Inverse Method with Stability Constraints. Ph.D. Dissertation,
University of Notre Dame, 1991.

(20) Kuo, C.-H. Robust Control Strategies for a Class of Large Scale Dynamical Systems: Con-
taminated Groundwater Remediation. Ph.D. Dissertation, University of Notre Dame, 1993.

(21) Liu, D. Qualitative Theory of Dynamical Systems with Saturation Nonlinearities. Ph.D.
Dissertation, University of Notre Dame, 1993.

(22) Ye, H. Stability Analysis of Two Classes of Dynamical Systems: General Hybrid Systems
and Neural Networks with Delays. Ph.D. Dissertation, University of Notre Dame, 1996.

(23) Hu, B. Qualitative Analysis of Hybrid Dynamical Systems. Ph.D. Dissertation, University
of Notre Dame, 1999.

(24) Hou, L. Qualitative Analysis of Discontinuous Deterministic and Stochastic Dynamical
Systems. Ph.D. Dissertation, University of Notre Dame, 2000.

(25) Y. Sun, Stability Analysis of Discontinuous Dynamical Systems. Ph.D. Dissertation, Uni-
versity of Notre Dame, 2004.

5 Awards Anthony N. Michel received numerous awards in his career including the
1978 Best Transactions Paper Award of the IEEE Control Systems Society (currently
called the Axelby Award) (with R.D. Rasmussen), the 1984 Guillemin-Cauer Prize Paper
Award of the IEEE Circuits and Systems Society (with R. K. Miller and B.H. Nam),
the 1985 Engineering Distinguished Professional Achievement Award of Marquette Uni-
versity, the 1993 Myril B. Reed Outstanding Paper Award of the IEEE Circuits and
Systems Society (with K. Wang), the 1995 Technical Achievement Award of the IEEE
Circuits and Systems Society, the 1997 Alexander von Humboldt Research Award (for
Senior U.S. Scientists) from the Federal Republic of Germany, the 1998 Distinguished
Member Award of the IEEE Control Systems Society, and the 2005 Distinguished Alum-
nus Award of Marquette University. He received an IEEE Centennial Medal in 1984, the
Golden Jubilee Medal of the IEEE Circuits and Systems Society in 1999, and an IEEE
Third Millennium Medal in 2000. He was a Fulbright Scholar in 1992 at the Technical
University of Vienna in Austria and a Distinguished Lecturer of the IEEE Circuits and
Systems Society from 1995 to 1997. He was elected Fellow of the IEEE in 1982 for contri-
butions in the qualitative analysis of large-scale dynamic systems, and he was elected a
Corresponding Member of the Russian Academy of Engineering in 1992 for contributions
in qualitative analysis of dynamical systems using stability preserving mappings.

6 References Anthony N. Michel has published eight books, 30 chapters in books,
174 journal papers, and 262 conference papers. His work has been cited more than 1500
times (since 1976) in the Science Citation Index.
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position and momentum coordinates are constants. A particular type of transformation
is chosen in such a way that the new equations of motion retain the same form as in the
former coordinates; such a transformation is called canonical or contact and can greatly
simplify the solution to the equations of motion. Hamilton (1838) has developed the
method for obtaining the desired transformation equations using what is today known as
Hamilton’s principle. It turns out that the required transformation can be obtained by
finding a smooth function S called a generating function or Hamilton’s principal function,
which satisfies a certain nonlinear first-order partial-differential equation (PDE) also
known as the Hamilton–Jacobi equation (HJE).

Unfortunately, the HJE being nonlinear, is very difficult to solve; and thus, it might
appear that little practical advantage has been gained in the application of the HJ-theory.
Nonetheless, under certain conditions, and when the Hamiltonian is independent of time,
it is possible to separate the variables in the HJE, and the solution can then always be
reduced to quadratures. Thus, the HJE becomes a useful computational tool only when
such a separation of variables can be achieved.

The aim of this paper is two-fold. First, to give an overview of the essentials of
Hamilton–Jacobi theory, namely; (i) the Hamiltonian reformulation of the equations of
motion of a mechanical system; and (ii) the Hamiltonian transformation of the equations
of motion. Secondly, to present an approach for solving the HJE for a fairly large class of
Hamiltonian systems in which the variables in the equation may not be separable and/or
the Hamiltonian is not time-independent. We apply the approach to a class of integrable
Hamiltonian systems known as the Toda lattice. Computational results are presented to
show the usefulness of the method.

The rest of the paper in organized as follows. In the remainder of this section, we
introduce notations. In Section 2, we discuss the Hamiltonian formulation of the equa-
tions of motion of a natural mechanical system. Then we discuss Hamiltonian coordinate
transformations and generating functions of the transformations in Section 3. In Sec-
tion 4, we discuss the Hamilton–Jacobi equation which is the central focus of the paper.
In Section 5, we review the Toda lattice as a Hamiltonian system, and discuss the method
of Lax for solving the system. Then in Section 6, we discuss the main results of the paper,
which is a parametrization approach for solving the HJE. We also apply the results to
the A2-Toda lattice. Finally, in Section 7, we give conclusions.

Notation The notation is fairly standard except where otherwise stated. Moreover,
R, Rn will denote respectively, the real line and the n-dimensional real vector space,
t ∈ R will denote the time parameter. Let Mn, Nn, . . . denote Riemannian manifolds
with dimension n, which are compact. Let TM =

⋃

x∈M TxM , T ?M =
⋃

x∈M T ?
x M

respectively denote the tangent and cotangent bundles of M with dimensions 2n. More-
over, πM and π?

M will denote the natural projections TM → M and T ?M → M
respectively. SO(n,M) and sl(n,M) will denote the special orthogonal group and the
lie-algebra of the special linear group of matrices over M respectively. A C∞(M) vector-
field is a mapping f : M → TM such that π ◦ f = IM (the identity on M), and f has
continuously differentiable partial derivatives of arbitrary order. A vector field f also
defines a differential equation (or a dynamic system) ẋ(t) = f(x), x ∈ M , x(t0) = x0.

A differential k-form ωk
x, k = 1, 2, . . . , at a point x ∈ M is an exterior product of

k-vectors from TxM to R i.e. ωk
x : TxM × . . .×TxM (k copies) → R, which is a k-linear

skew-symmetric function of k-vectors on TxM . The space of all smooth k-forms on M
is denoted by Ωk(M). The F-derivative (Frèchet derivative) of a real-valued function
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U : Rn → R is defined as any % such that lim
v→0

1
‖v‖

[U(x + v) − U(x) − 〈%, v〉] = 0, for

any v ∈ Rn. For a smooth function f : Rn → R, fx =
∂f
∂x

= ( ∂f
∂x1

, . . . , ∂f
∂xn

). Further,

let ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ : M → R denote respectively, 1, 2, and ∞ norms on M , where

‖v(q)‖1 =
n

∑

i

|vi(q)|, ‖v(q)‖2 =
n

∑

i=1

|vi(q)|2

and ‖v(q)‖∞ = maxi{vi(q) : i = 1, . . . , n} for any vector v : Mq → TqM . Also, if
f : [0, 1] → R, then

‖f(s)‖Lp =

(

∫ 1

0
|f(s)|p

) 1
p

, 1 ≤ p < ∞,

while ‖f(s)‖L∞ = sups∈[0,1] |f(s)|.

2 The Hamiltonian Formulation of Mechanics

To review the approach, let the configuration space of the system be defined by a smooth
n-dimensional Riemannian manifold M . If (ϕ,U) is a coordinate chart, we write ϕ = q =

(q1, . . . , qn) for the local coordinates and q̇i =
∂

∂qi
in the tangent bundle TM |U = TU .

We shall be considering natural mechanical systems which are defined as follows.

Definition 2.1 A Lagrangian mechanical system on a Riemannian manifold is called
natural if the Lagrangian function L : TU ×R → R, with U ⊂ M open, is equal to the
difference between the kinetic energy and the potential energy of the system as

L(q, q̇, t) = T (q, q̇, t)− V (q, t), (2.1)

where T : U → R is the kinetic energy which is given by the quadratic form

T =
1
2
〈v, v〉, v ∈ TqU

and V : M × R → R is the potential energy of the system (which may be independent
of time).

For natural mechanical systems, the kinetic energy is a positive-definite symmetric
quadratic form of the generalized velocities,

T (q, q̇, t) =
1
2

q̇TΨ(q, t)q̇. (2.2)

It is further known from Lagrangian mechanics and as can be derived using the D’Alem-
bert’s principle of virtual work or Hamilton’s principle of least action [3, 7, 8], that the
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motion of a holonomic conservative1 mechanical system satisfies Lagrange’s equations of
motion given by

d
dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= 0, i = 1, . . . , n. (2.3)

Then the above equation (2.3) may always be written in the form

ÿq = g(q, q̇, t), (2.4)

for some function g : TU ×R → Rn.
On the other hand, in the Hamiltonian formulation, we choose to replace all the q̇i by

independent coordinates, pi, in such a way that

pi =
∂L
∂q̇i

, i = 1, . . . , n. (2.5)

If we let
pi = hi(q, q̇), i = 1, . . . , n, (2.6)

then the Jacobian of h with respect to q̇, using (2.1), (2.2) and (2.5), is given by Ψ(q)
which is positive definite, and hence equation (2.5) can be inverted to yield

q̇i = gi(q1, . . . , qn, p1, . . . , pn, t), i = 1, . . . , n, (2.7)

for some continuous functions g1, . . . , gn. The coordinates q = (q1, q2, . . . , qn)T, in this
framework, are referred to as the generalized coordinates and p = (p1, p2, . . . , pn)T are
the generalized momenta. Together, these variables form a new system of coordinates for
the system known as the phase space of the system. If (U,ϕ) where ϕ = (q1, q2, . . . , qn)
is a chart on M , then since pi : TU → R, they are elements of T ?U , and together with the
qi’s form a system of 2n local coordinates (q1, . . . , qn, p1, . . . , pn), where pi(q) ∈ T ?

q M ,
i = 1, . . . , n, for the phase-space.

We now define the Hamiltonian function of the system H : T ?M × R → R as the
Legendre transform [3, 5] of the Lagrangian function with respect to q̇ by

H(q, p, t) = pTq̇ − L(q, q̇, t). (2.8)

Consider now the differential of H with respect to q, p and t as

dH =
(

∂H
∂p

)T

dp +
(

∂H
∂q

)T

dq +
∂H
∂t

dt. (2.9)

The above expression must be equal to the total differential of H = pq̇−L for p =
∂L
∂q̇

:

dH = q̇Tdp−
(

∂L
∂q

)T

dq −
(

∂L
∂t

)T

dt. (2.10)

1Holonomic if the constraints on the system are expressible as equality constraints. Conservative if

there exists a time-dependent potential.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(4) (2005) 323–344 327

Thus, in view of the independent nature of the coordinates, we obtain a set of three
relationships:

q̇ =
∂H
∂p

,
∂L
∂q

= −∂H
∂q

, and
∂L
∂t

= −∂H
∂t

.

Finally, applying Lagrange’s equation (2.3) together with (2.5) and the preceding results,

one obtains the expression for ṗ. Since we used Lagrange’s equation, q̇ =
dq
dt

and ṗ =
dp
dt

.

The resulting Hamiltonian canonical equations of motion are then given by

dq
dt

=
∂H
∂p

(q, p, t), (2.11)

dp
dt

= −∂H
∂q

(q, p, t). (2.12)

Thus, we have proven the following theorem.

Theorem 2.1 [3] The system of Lagrange’s equations (2.3) is equivalent to the system
of 2n first-order Hamilton’s equations (2.11), (2.12).

In addition, for time-independent conservative systems, H(q, p) has a simple physical
interpretation. From (2.8) and using (2.5), we have

H(q, p, t) = pTq̇ − L(q, q̇, t) = q̇T ∂L
∂q̇

− (T (q, q̇, t)− U(q, t))

= q̇T ∂T
∂q̇

− T (q, q̇, t) + U(q, t)

= 2T (q, q̇, t)− T (q, q̇, t) + U(q, t) = T (q, q̇, t) + U(q, t),

(2.13)

i.e., the total energy of the system. This completes the Hamiltonian formulation of the
equations of motion, and can be seen as an off-shoot of the Lagrangian formulation. It can
also be seen that, while the Lagrangian formulation involves n second-order equations,
the Hamiltonian description sets up a system of 2n first-order equations in terms of the
2n variables p and q. This remarkably new system of coordinates gives new insight and
physical meaning to the equations. However, the system of Lagrange’s equations and
Hamilton’s equations are completely equivalent as the above theorem asserts.

Furthermore, because of the symmetry of Hamilton’s equations (2.11), (2.12) and
the even dimension of the system, a new structure emerges on the phase space T ?M
of the system. This structure is defined by a nondegenerate closed differential 2-form
ω2 ∈ Ω2(M) which in the above local coordinates is defined as

ω2 = dp ∧ dq =
n

∑

i=1

dpi ∧ dqi. (2.14)

Thus, the pair (T ?M, ω2) form a symplectic manifold [1, 3, 11], and together with a Cr

Hamiltonian function H : T ?M → R define a Hamiltonian mechanical system. With this
notation we have the following representation of a Hamiltonian system.
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Definition 2.2 Let (T ?M,ω2) be a symplectic manifold and H : T ?M → R the
Hamiltonian function. Then the vector field XH determined by the condition

ω2(XH , Y ) = dH(Y ) (2.15)

for all vector fields Y , is called the Hamiltonian vector field with energy function H. The
tuple (T ?M, ω2, XH) is called a Hamiltonian system.

Remark 2.1 It is important to note that, the nondegeneracy of ω2 guarantees that
XH exists, and is a Cr−1 vector field. Moreover, on a connected symplectic manifold,
any two Hamiltonians for the same vector field XH have the same differential (2.15), so
differ by a constant only.

We also have the following proposition [1].

Proposition 2.1 Let (q1, . . . , qn, p1, . . . , pn) be canonical coordinates so that ω2 is
given by (2.14). Then, in these coordinates

XH =
(

∂H
∂p1

, . . . ,
∂H
∂pn

, −∂H
∂q1

, . . . , − ∂H
∂qn

)

= J · ∇H

where

J =
(

0 I
−I 0

)

.

Thus, (q(t), p(t)) is an integral curve of XH if and only if Hamilton’s equations (2.11),
(2.12) hold.

Now suppose that a transformation of coordinates is introduced qi → Qi, pi → Pi,
i = 1, . . . , n, defined by

qi = φi(Q,P, t), (2.16)

pi = ψi(Q,P, t) (2.17)

such that every Hamiltonian function transforms as

H(q1, . . . , qn, p1, . . . , pn, t) → K(Q1, . . . , Qn, P1, . . . , Pn, t)

in such a way that the new equations of motion retain the same form as in the former
coordinates, i.e.,

dQ
dt

=
∂K
∂p

(Q,P, t), (2.18)

dP
dt

= −∂K
∂q

(Q,P, t). (2.19)

Such a transformation is called canonical or contact and can greatly simplify the solution
to the equation of motion, especially if Q, P are selected such that K(·, ·, ·) is a constant
independent of Q and P . Should this happen, then Q and P will also be constants and the
solution to the equations of motion are immediately at hand (given the transformation).
We simply transform back to the original coordinates; under the assumption that the
transformation is univalent and invertible. Hamilton (1838) has developed a method for
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obtaining the desired transformation equations using what is today known as Hamilton’s
principle [3, 7, 8, 10].

3 The Transformation Generating Function

A given Hamiltonian system can often be simplified considerably by a suitable transfor-
mation of variables such that all the new position and momentum coordinates (Qi, Pi)
are constants. A particular type of transformation is discussed in this section.

Accordingly, define the Lagrangian function of the system L : TU × R → R as the
Legendre transform [3] of the Hamiltonian function by

L(q, q̇, t) = pTq̇ −H(q, p, t). (3.1)

Then, in the new coordinates, the new Lagrangian function is

L̄(Q, Q̇, t) = PTQ̇−K(Q,P, t). (3.2)

Since both L(·, ·, ·) and L̄(·, ·, ·) are conserved, each must separately satisfy Hamilton’s
principle. However, L(·, ·, ·) and L̄(·, ·, ·) need not be equal in order to satisfy the above
requirement. Indeed we can write [8]

L(q, q̇, t) = L̄(Q, Q̇, t) +
dS
dt

(q, p, Q, P, t) (3.3)

for some arbitrary function S : X × X ×R → R, where X ⊂ T ?M is open.
The next step is to show that, first, if such a function is known, then the transformation

we seek follows directly. Secondly, that the function can be obtained by solving a certain
partial differential equation.

The generating function S relates the old to the new coordinates via the equation

S =
∫

(L− L̄) dt = σ(q, p, Q, P, t) (3.4)

for some function σ : X×X×R → R. Thus, S is a function of 4n+1 variables, and hence
no more than four independent sets of relationships among the dependent coordinates
can exist. Two such relationships expressing the old sets of coordinates in terms of the
new set are given by (2.16), (2.17). Hence only two independent sets of relationships
among the coordinates remain for defining S and no more than two of the four sets of
coordinates may be involved. Therefore, there are four possibilities

S1 = f1(q, Q, t); S2 = f2(q, P, t), (3.5)

S3 = f3(p,Q, t); S4 = f4(p, P, t). (3.6)

Any one of the above four types of generating functions may be selected, and a transfor-
mation obtained from it. For example, if we consider the generating function S1, taking
its differential, we have

dS1 =
n

∑

i=1

∂S1

∂qi
dqi +

n
∑

i=1

∂S1

∂Qi
dQi +

∂S1

∂t
dt. (3.7)
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Again, taking the differential as defined by (3.1), (3.2) (3.3), we have

dS1 =
n

∑

i=1

pi dqi −
n

∑

i=1

Pi dQi + (K −H) dt. (3.8)

Finally, using the independence of coordinates, we equate coefficients, and obtain the
desired transformation equations

pi =
∂S1

∂qi
(q, Q, t)

Pi = −∂S1

∂Qi
(q,Q, t)

K −H =
∂S1

∂t
(q, Q, t), i = 1, . . . , n.

(3.9)

Similar derivation can be applied to the remaining three types of generating functions.

4 The Hamilton–Jacobi Equation

In this section, we turn our attention to the last missing link in the Hamiltonian trans-
formation theory; an approach for determining the transformation generating function,
S. There is only one equation available for this purpose

H(q, p, t) +
∂S
∂t

= K(P,Q, t). (4.1)

However, there are two unknown functions in this equation: S and K. Thus, the best
we can do is to assume a solution for one and then solve for the other. In this regard,
suppose we arbitrarily introduce the condition that K is to be identically zero? Under
this condition, Q̇ and Ṗ vanish; resulting in Q = α, and P = β, constants. The inverse
transformation then yields the motion q(α, β, t), p(α, β, t) in terms of these constants of
integration, α and β.

Consider now generating functions of the first type. Having forced a solution on K,
we must now solve the partial differential equation (PDE)

H
(

q,
∂S
∂q

, t
)

+
∂S
∂t

= 0 (4.2)

for S, where
∂S
∂q

=
(

∂S
∂q1

, . . . ,
∂S
∂qn

)T

. This equation is known as the Hamilton–Jacobi

equation (HJE), and was improved and modified by Jacobi in 1838. For a given func-
tion H(q, p, t), this is a first-order PDE in the unknown function S(q, α, t) which is
customarily called Hamilton’s principal function. We need a solution for this equation
which depends on n arbitrary constants α1, α2, . . . , αn in such a way that the Jacobian

determinant of
∂S
∂qi

with respect to (wrt) the αj satisfies

∣

∣

∣

∣

∂2S
∂qi∂αj

∣

∣

∣

∣

6= 0. (4.3)
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The above condition excludes the possibility in which one of the n constants αj is additive;
that is, one must have

S(q, α, t) 6= S(q, α1, α2, . . . , αn−1, t) + αn. (4.4)

A solution S(q, α, t) satisfying (4.3) is called a “complete solution” of the HJE (4.2),
and solving the HJE is equivalent to finding the solutions of the equations of motion
(2.11), (2.12). Conversely, the solution of (4.2) is nothing more than a solution of the
equations (2.11), (2.12) using the method of characteristics [5, 6]. However, it is generally
not simpler to solve (4.2) instead of (2.11), (2.12).

If a complete solution S(q, α, t) of (4.2) is known, then one has

∂S
∂qi

= pi, (4.5)

∂S
∂αi

= −βi, i = 1, . . . , n. (4.6)

Since the condition (4.3) is satisfied, the second algebraic equation above may be solved
for q and the first solved for p(α, β, t). One thus has a canonical transformation from
(α, β) to (q, p). And it follows from the definition of canonical transformation that the
inverse transformation α = α(q, p, t), β = β(q, p, t) also is canonical.

On the other hand, if the Hamiltonian is not explicitly a function of time or is inde-
pendent of time, which arises in many dynamical systems of practical interest, then the
solution to (4.2) can then be formulated in the form

S(q, α, t) = −ht + W (q, α) (4.7)

with h = h(α). Consequently, the use of (4.7) in (4.2) yields the following PDE in W

H
(

q,
∂W
∂q

)

= h, (4.8)

where h is the energy constant (if the kinetic energy of the system is homogeneous
quadratic, the constant equals the total energy, E). Moreover, since W does not involve
time, the new and the old Hamiltonians are equal, and it follows that K = h. The
function W , known as Hamilton’s characteristic function, thus generates a canonical
transformation in which all the new coordinates are cyclic. Further, one may choose
h = αn for example, so that

W = W (q, α1, . . . , αn−1, h) (4.9)

depends on n − 1 additional arbitrary constants besides h. Noting that the Jacobian
determinant of S wrt the n arbitrary coordinates, and the n constants α1, . . . , αn−1, h
may not vanish, then from (4.5), (4.6) and (4.7), we have the following system

∂W
∂αi

= −βi, i = 1, 2 . . . , n− 1,

∂W
∂h

= t− βn,

∂W
∂q

= p.

(4.10)
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where the term t − βn in the preceding equation follows directly from the fact that
the system is autonomous. The above system of equations may be solved for n − 1
components of q, say, for q1, q2, . . . , qn−1 resulting in

q1 = q1(α1, α2, . . . , αn, h, β1, β2, . . . , βn−1, qn),

q2 = q2(α1, α2, . . . , αn, h, β1, β2, . . . , βn−1, qn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qn−1 = qn−1(α1, α2, . . . , αn, h, β1, β2, . . . , βn−1, qn),

(4.11)

where the time t is replaced as the parameter qn. These equations are then the solution
for the system.

5 The Toda Lattice

The Toda lattice as a Hamiltonian system describes the motion of n particles moving
in a straight line with “exponential interaction” between them. Mathematically, it is
equivalent to a problem in which a single particle moves in Rn. Accordingly, let the
positions of the particles at time t (in R) be q1(t), . . . , qn(t), respectively. We assume
also that each particle has mass 1, and therefore the momentum of the i-th particle at
time t is pi = q̇i. Consequently, the Hamiltonian function for the finite (or non-periodic)
lattice is defined by

H(q, p) =
1
2

n
∑

j=1

p2
j +

n−1
∑

j=1

e2(qj−qj+1). (5.1)

Thus the canonical equations for the system are given by

dqj

dt
= pj j = 1, . . . , n,

dp1

dt
= −2e2(q1−q2),

dpj

dt
= −2e2(qj−qj+1) + 2e2(qj−1−qj), j = 2, . . . , n− 1,

dpn

dt
= 2e2(qn−1−qn).

(5.2)

It may be assumed in addition that
∑n

j=1 qj =
∑n

j=1 pj = 0, and the coordinates
q1, . . . , qn can be chosen so that this condition is satisfied. While for the periodic lattice
in which the first particle interacts with the last, the Hamiltonian function is defined by

˜H(q, p) =
1
2

n
∑

j=1

p2
j +

n−1
∑

j=1

e2(qj−qj+1) + e2(qn−q1). (5.3)

We may also consider the infinite lattice, in which there are infinitely many particles.
Using the inverse scattering method of solving the initial value problem for the

Korteweg-de Vries equation (KdV) formulated by Lax [13], the solution for the lattice
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can be derived using matrix formalism which led to a simplification of the equations of
motion. To introduce this formalism, define the following (n× n) matrices

L =

















p1 Q1,2 0 · · · 0 0
Q1,2 p2 Q2,3 · · · 0 0

0 Q2,3 p3 · · · 0 0
...

...
...

...
...

0 0 0 · · · pn−1 Qn−1,n

0 0 0 · · · Qn−1,n pn

















, (5.4)

M =

















0 Q1,2 0 · · · 0 0
−Q1,2 0 Q2,3 · · · 0 0

0 −Q2,3 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 Qn−1,n

0 0 0 · · · −Qn−1,n 0

















, (5.5)

where Qij = e(qi−qj). We then have the following proposition [9].

Proposition 5.1 The Hamiltonian system for the non-periodic Toda lattice (5.2)
is equivalent to the Lax equation L̇ = [L,M ], where the function L, M take values in
sl(n,R) and [cdot, ·] is the Lie bracket operation in sl(n, R).

Using the above matrix formalism, the solution of the Toda system (5.2) can be
derived [9, 13].

Theorem 5.1 The solution of the Hamiltonian system for the Toda lattice is given
by L(t) = Ad(exp tV )−1

I V , where V = L(0) and I represents the identity matrix.

The can explicitly write the solution for the case of n = 2. Letting q1 = −q, q2 = q,
p1 = −p and p2 = p, we have

L =
(

p Q
Q −p

)

, M =
(

0 Q
−Q 0

)

, (5.6)

where Q = c−2q. The solution of L̇ = [L, M ] with

L(0) =
(

0 v
v 0

)

,

is

L(t) = Ad
[

exp t
(

0 v
v 0

)]−1

I

(

0 v
v 0

)

.

Now

exp t
(

0 v
v 0

)

=
(

cosh tv sinh tv
sinh tv cosh tv

)

,

and hence,

[

exp t
(

0 v
v 0

)]−1

I
=

1
√

sinh2 tv + cosh2 tv

(

cosh tv sinh tv
sinh tv cosh tv

)

.
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Therefore,

L(t) =
v

sinh2 tv + cosh2 tv

(

−2 sinh tv cosh tv 1
1 2 sinh tv cosh tv

)

,

which means that

p(t) = −v
sinh 2tv
cosh 2tv

, Q(t) =
v

cosh 2tv
.

Furthermore, if we recall that Q(t) = e−2q(t), it follows that

q(t) = −1
2

log
( v

cosh 2tv

)

= −1
2

log v +
1
2

log cosh 2vt. (5.7)

6 Solving the Hamilton–Jacobi Equation

It is clear from the preceding discussion that the success of the Hamiltonian approach
to mechanics depends heavily on the ability to solve the HJE. Because the prospects of
success are limited by the inadequate state of the mathematical art in solving nonlinear
PDEs. At present, the only technique of general utility is the method of separation of
variables . If the Hamiltonian is explicitly a function of time, then separation of variables
is not readily achieved for the HJE. However, if on the other hand, the Hamiltonian
is not explicitly a function of time or is independent of time, which arises in many
dynamical systems of practical interest, then the HJE (4.2) degenerates to the HJE
(4.8). Nevertheless, solving this resulting HJE still remains a very difficult problem in
general.

In this section we propose a parametrization approach for solving the Hamilton–Jacobi
equation for a fairly large class of Hamiltonian systems, and then apply the approach
to the A2-Toda lattice as special cases. To present the approach, let the configuration
space of the class of Hamiltonian systems be a smooth n-dimensional manifold M with
local coordinates q = (q1, . . . , qn), i.e. if (ϕ,U) is a coordinate chart, we write ϕ = q and

q̇i =
∂

∂qi
in the tangent bundle TM |U = TU . Further, let the class of systems under

consideration be represented by Hamiltonian functions H : T ?M → R of the form:

H(q, p) =
1
2

n
∑

i=1

p2
i + V (q), (6.1)

where (p1(q), . . . , pn(q)) ∈ T ?
q M , and together with (q1, . . . , qn) form the 2n symplectic

coordinates for the phase-space T ?M of any system in the class, while V : M → R+ is the
potential function which we assume to be nonseparable in the variables qi, i = 1, . . . , n.
The time-independent HJE corresponding to the above Hamiltonian function is given by

1
2

n
∑

i=1

(

∂W
∂qi

)2

+ V (q) = h, (6.2)

where W : M → R is the Hamilton’s characteristic function for the system.
We then have the following theorem concerning the solution of this HJE.
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Theorem 6.1 Let M be an open subset of Rn which is simply connected and let
q = (q1, . . . , qn) be the coordinates on M . Suppose ρ, θi : M → R for i = 1, . . . , bn+1

2 c;
θ = (θ1, · · · , θbn+1

2 c); and ζi : R×Rb
n+1

2 c → R are C2 functions such that

∂ζi

∂qj
(ρ(q), θ(q)) =

∂ζj

∂qi
(ρ(q), θ(q)), ∀ i, j = 1, . . . , n, (6.3)

and
1
2

n
∑

i=1

ζ2
i (ρ(q), θ(q)) + V (q) = h (6.4)

is solvable for the functions ρ, θ. Let

ω1 =
n

∑

i=1

ζi(ρ(q), θ(q))dqi,

ω1 ∈ Ωprime(M), and suppose C is a path in M from an initial point q0 to an arbitrary
point q ∈ M . Then

(i) ω1 is closed;
(ii) ω1 is exact;
(iii) if W (q) =

∫

C
ω1, then W satisfies the HJE (6.2).

Proof (i)

dω1 =
n

∑

j=1

n
∑

i=1

∂
∂qj

ζi(ρ(q), θ(q))dqj ∧ dqi,

which by (6.3) implies dω1 = 0; hence, ω1 is closed.

(ii) Since by (i) ω1 is closed, by the simple connectedness of M (Poincaré’s lemma [1]),
ω1 is also exact.

(iii) By (ii) ω1 is exact, therefore the integral W (q) =
∫

C
ω1 is independent of the

path C. Therefore, W corresponds to a scalar function. Furthermore, dW = ω1 and
∂W
∂qi

= ζi(ρ(q), θ(q)), and thus substituting in the HJE (6.2) and if (6.4) holds, then W

satisfies the HJE.

In the next corollary we shall construct explicitly the functions ζi, i = 1, . . . , n, in
the above theorem.

Corollary 6.1 Assume the dimension n of the system is 2, and M , ρ, θ are as in
the hypotheses of Theorem 6.1, and that conditions (6.3), (6.4) are solvable for θ and ρ.
Also, define the functions ζi, i = 1, 2, postulated in the theorem by ζ1(q) = ρ(q) cos θ(q),
ζ2(q) = ρ(q) sin θ(q). Then, if

ω1 =
2

∑

i=1

ζi(ρ(q), θ(q)) dqi, W =
∫

C

ω1,
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and q : [0, 1] → M is a parametrization of C such that q(0) = q0, q(1) = q, then
(i) W is given by

W (q, h) = γ

1
∫

0

√

(h− V (q(s))
[

cos θ(q(s))q
′

1(s) + sin θ(q(s))q
′

2(s)
]

ds (6.5)

where γ = ±
√

2 and q′i =
dqi(s)

ds
;

(ii) W satisfies the HJE (6.2).

Proof (i) If (6.3) is solvable for the function θ, then substituting the functions
ζi(ρ(q), θ(q)), i = 1, 2 as defined above in (6.4), we get immediately

ρ(q) = ±
√

2(h− V (q)).

Further, by Theorem 6.1, ω1 given above is exact, and W =
∫

C
ω1dq is independent of

the path C. Therefore, if we parametrize the path C by s, then the above line integral
can be performed coordinate-wise with W given by (6.5) and γ = ±

√
2.

(ii) follows from Theorem 6.1.

Remark 6.1 The above corollary constructs one explicit parametrization that may be
used. However, because of the number of parameters available in the parametrization
are limited, the above parametrization is only suitable for systems with n = 2. Other
types of parametrizations that are suitable could also be employed.

If however the dimension n of the system is 3, then the following corollary gives a
procedure for solving the HJEs.

Corollary 6.2 Assume the dimension n of the system is 3, and M , ρ, are as in
the hypotheses of Theorem 6.1. Let ζi : R × R × R → R, i = 1, 2, 3, be defined by
ζ1(q) = ρ(q) sin θ(q) cos ϕ(q), ζ2(q) = ρ(q) sin θ(q) sin ϕ(q), ζ3(q) = ρ(q) cos θ(q), and
assume (6.3) are solvable for θ and ϕ, while (6.4) is solvable for ρ. Then, if

ω1 =
3

∑

i=1

ζi(ρ(q), θ, ϕ)dqi,

W =
∫

C
ω1, and q : [0, 1] → M is a parametrization of C such that q(0) = q0, q(1) = q,

then
(i) W is given by

W (q, h) = γ
∫ 1

0

√

(h− V (q(s)))
{

sin θ(q(s)) cos ϕ(q(s))q
′

1(s)

+ sin θ(q(s)) sin ϕ(q(s))q
′

2(s) + cos θ(q(s))q
′

3(s)
}

ds, (6.6)

where γ = ±
√

2;
(ii) W satisfies the HJE (6.2).

Proof Proof follows along the same lines as Corollary 6.1.

Remark 6.2 Notice that, the parametrization employed in the above corollary is now
of a spherical nature.

The following theorem gives bounds on the solution W and its derivatives.
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Theorem 6.2 Let N ⊂ M be the region in which the solution W of the HJE given
in Corollaries 6.1 and 6.2 exists. Then if C is a path q : [0, 1] → N in N parametrized
by s ∈ [0, 1] such that q(0) = q0, q(1) = q we have the following bounds on the solution
and its derivatives:

(i) ‖W (q(s), h)‖∞ ≤ |γ|
√

h ‖q(s)‖L1 ;

(ii)
∥

∥

∥

∥

∂W
∂q

∥

∥

∥

∥

2
= |
√

2ρ(q)/γ|;

(iii)
∥

∥

∥

∥

∂W
∂q

∥

∥

∥

∥

∞
= |γ|

√
h.

Proof (i) From (6.5) or (6.6),

‖W (q, h)‖∞ ≤ |γ|
n

∑

i=1

1
∫

0

sup
q(s)∈N

∣

∣

∣

√

(h− V (q))
∣

∣

∣ |q′i(s) dqi(s)|

≤ |γ|
√

h

1
∫

0

(|q′1(s) ds|+ |q′2(s) ds|+ . . . + |q′n(s) ds|)

≤ |γ|
√

h‖q(s)‖L1 .

(ii) Using the definition of ∂W/∂qi given in Corollaries 6.1 and 6.2, we have

∥

∥

∥

∥

∂W
∂qi

∥

∥

∥

∥

2

2
=

n
∑

i=1

∣

∣

∣

∣

∂W
∂qi

∣

∣

∣

∣

2

= |
√

2ρ(q)/γ|2,

hence the result.
(iii) Follows by taking the sup over q ∈ M of ∂W/∂qi, i = 1, . . . , n.

Furthermore, the following proposition gives regularity of the solution.

Proposition 6.1 If the functions ρ, θi, i = 1, . . . , bn+1
2 c in Theorem 6.1 and Corol-

laries 6.1 and 6.2, n = 1, 2, or 3 exist and the HJE (6.2) is solvable for W , then if θi,
i = 1, . . . , bn+1

2 c, are C1, then W is C2, and consequently if θi, i = 1, . . . , bn+1
2 c, are

Cr, r ≥ 1, then W is Cr+1.

Proof From the expressions (6.5), (6.6) for W , we see that ρ is a smooth function,
since V is smooth. Hence, the differentiability of W depends on the differentiability of the
θi, i = 1, 2, or 3. Further, it is clear that, the integration increases the differentiability
of W by 1 over that of the θi, i = 1, 2, or 3.

We can combine Corollaries 6.1 and 6.2 for any n in the following proposition.

Proposition 6.2 Let M be an open subset of Rn which is simply connected and let
q0 be a fixed point in M . Suppose there exists a C1 matrix function R : Rl → SO(n,R)
for some smooth vector function θ = (θ1, . . . , θl), θi : M → R, i = 1, . . . , l, and a C1

vector function %(q) = [ρ(q), . . . , ρ(q)], ρ : M → R, such that the Jacobian matrix

∂
∂q
R(θ(q))%(q) (6.7)
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is symmetric and
1
2
〈%(q)|%(q)〉+ V (q) = h. (6.8)

Let

ω̃1 =
n

∑

i=1

[R(θ(q))%(q)]idqi

and suppose C is a path from q0 to an arbitrary point q ∈ M . Then,

(i) ω̃1 is closed;
(ii) ω̃1 is exact;
(iii) if ˜W (q) =

∫

C
ω̃1, then ˜W satisfies the HJE (6.2).

Proof (i)

dω̃1 =
n

∑

j=1

n
∑

i=1

∂
∂qj

[R(θ(q))%(q)]idqj ∧ dqi

which by (6.7) implies that dω̃1 = 0; hence, ω̃1 is closed.

(ii) Again by simple-connectedness of M , (i) implies (ii).

(iii) By (ii) the integral ˜W (q) =
∫

C ω̃1 is independent of the path, and W corre-
sponds to a scalar function. Moreover, if dW = ω̃1 and ∂W/∂qi = [R(θ(q))%(q)]i, then
substituting in the HJE (6.2) and if (6.8) holds, then W satisfies the HJE (6.2).

If the HJE (6.2) is solvable, then the dynamics of the system evolves on the n-
dimensional Lagrangian submanifold [1, 11] ˜N which is an immersed submanifold of max-
imal dimension, and can be locally parametrized as the graph of the function W , i.e.,

˜N =
{(

q,
∂W
∂q

)

: q ∈ N ⊂ M, W is a solution of HJE (6.2)
}

as described in Section 1. Moreover, for any other solution W ′ of the HJE, the volume
enclosed by this surface is invariant. This is stated in the following proposition.

Proposition 6.3 Let N ⊂ M be the region in M where the solution W of the HJE
(6.2) exists. Then, for any orientation of M , the volume form of ˜N

ωn =





√

√

√

√1 +
n

∑

j=1

(

∂W
∂qj

)2


 dq1 ∧ dq2 . . . ∧ dqn

is given by

ωn = (
√

1 + 2(h− V (q)))dq1 ∧ dq2 . . . ∧ dqn.
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Proof From the HJE (6.2), we have

√

√

√

√1 +
n

∑

j=1

(

∂W
∂qj

)2

=
√

1 + 2(h− V (q), ∀ q ∈ N

m

ωn =





√

√

√

√1 +
n

∑

j=1

(

∂W
∂qj

)2


 dq1 ∧ . . . ∧ dqn =
(
√

1 + 2(h− V (q)
)

dq1 ∧ . . . ∧ dqn

∀ q ∈ N.

We now apply the above ideas to solve the HJE for the two-particle A2-Toda lattice.
We consider the nonperiodic system described in Section 5.

6.1 Solution of the Hamilton–Jacobi equation for the A2-Toda system

Consider the two-particle nonperiodic Toda system (or A2 system) given by the Hamil-
tonian (5.1)

H(q1, q2, p1, p2) =
1
2

(p2
1 + p2

2) + e2(q1−q2). (6.9)

Then, the HJE corresponding to the system is given by

1
2

{

(

∂W
∂q1

)2

+
(

∂W
∂q2

)2
}

+ e2(q1−q2) = h2. (6.10)

The following proposition gives the solution of the above HJE corresponding to A2-Toda
lattice.

Proposition 6.4 Consider the HJE (6.10) corresponding to the A2-Toda lattice.
Then a solution to the HJE is given by

W (q′1, q
′
2, h2) = cos

π
4

q′1
∫

1

ρ(q) dq1 + m sin
π
4

q′1
∫

1

ρ(q) dq1

= (1 + m)

{

√

h2 − e−2(b+m−1) −
√

h2 tanh−1
[
√

h2−e−2(b+m−1)
√

h2

]

m− 1

−

√

h2 − e−2b−2(m−1)q′1 −
√

h2 tanh−1
[
√

h2−e−2b−2(m−1)q′1√
h2

]

m− 1

}

, q1 > q2,
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and

W (q′1, q
′
2, h2) = cos

π
4

q′1
∫

1

ρ(q) dq1 + m sin
π
4

q′1
∫

1

ρ(q) dq1

= (1 + m)

{

√

h2 − e−2(b−m+1) −
√

h2 tanh−1
[
√

h2−e−2(b−m+1)
√

h2

]

m− 1

−

√

h2 − e−2b+2(1−m)q′1 −
√

h2 tanh−1
[
√

h2−e−2b+2(1−m)q′1√
h2

]

m− 1

}

, q2 > q1.

Furthermore, a solution for the system equations (5.2) for the A2 with the symmetric
initial conditions q1(0) = −q2(0) and q̇1(0) = q̇2(0) = 0 is

q(t) = −1
2

log
√

h2 +
1
2

log[cosh 2
√

h2(β − t)] (6.11)

where h2 is the energy and

β =
1

2
√

h2
tanh−1

(

2q̇2
1(0)√
2h2

)

.

Proof Applying the results of Theorem 6.1 we have

∂W
∂q1

= ρ(q) cos θ(q),
∂W
∂q2

= ρ(q) sin θ(q)

and substituting in the HJE (6.10) we immediately get

ρ(q) = ±
√

2(h2 − e2(q1−q2))

and

ρq2(q) cos θ(q)− θq2ρ(q) sin θ(q) = ρq1(q) sin θ(q) + θq1ρ(q) cos θ(q). (6.12)

The above equation (6.12) is a first-order PDE in θ and can be solved by the method
of characteristics [5, 6]. However, the geometry of the system allows for a simpler solu-
tion. We make the simplifying assumption that θ is a constant function. Consequently,
equation (6.12) becomes

ρq2(q) cos θ = ρq1(q) sin θ =⇒ tan θ =
ρq2(q)
ρq1(q)

= −1 ⇒ θ = −π
4

.

Thus,
p1 = ρ(q) cos

π
4

, p2 = −ρ(q) sin
π
4

,
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and integrating dW along the straightline path from (1,−1) on the line

L : q2 =
q′2 + 1
q′1 − 1

q1 +
(

1 +
q′2 + 1
q′1 − 1

)

def= mq1 + b

(this follows from the configuration of the lattice) to some arbitrary point (q′1, q
′
2) we

get

W (q′1, q
′
2, h2) = cos

π
4

q′1
∫

1

ρ(q) dq1 + m sin
π
4

q′1
∫

1

ρ(q) dq1

= (1 + m)

{

√

h2 − e−2(b+m−1) −
√

h2 tanh−1
[
√

h2−e−2(b+m−1)
√

h2

]

m− 1

−

√

h2 − e−2b−2(m−1)q′1 −
√

h2 tanh−1
[
√

h2−e−2b−2(m−1)q′1√
h2

]

m− 1

}

.

Similarly, if we integrate from point (−1, 1) to (q′1, q
′
2), we get

W (q′1, q
′
2, h2) = cos

π
4

q′1
∫

−1

ρ(q) dq1 + m sin
π
4

q′1
∫

−1

ρ(q) dq1

= (1 + m)

{

√

h2 − e−2(b−m+1) −
√

h2 tanh−1
[
√

h2−e−2(b−m+1)
√

h2

]

m− 1

−

√

h2 − e−2b+2(1−m)q′1 −
√

h2 tanh−1
[
√

h2−e−2b+2(1−m)q′1√
h2

]

m− 1

}

.

Finally, from (2.11) and (6.9), we can write

q̇1 = p1 = ρ(q) cos
π
4

, (6.13)

q̇2 = p2 = −ρ(q) sin
π
4

. (6.14)

Then q̇1 + q̇2 = 0 which implies that q1 + q2 = k, a constant, and by our choice of initial
conditions, k = 0. Now integrating the above equations from t = 0 to t we get

1
2
√

h2
tanh−1 ρ(q)√

2h2
=

1
2
√

h2
tanh−1 ρ(q(0))√

2h2
− t,

1
2
√

h2
tanh−1 ρ(q)√

2h2
=

1
2
√

h2
tanh−1 ρ(q(0))√

2h2
− t.

If we let

β =
1

2
√

h2
tanh−1 ρ(q(0))√

2h2
,
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then upon simplification we get

q1 − q2 =
1
2

log
[

h2

(

1− tanh2 2
√

h2(β − t)
)]

=
1
2

log [h2 sech2 2
√

h2(β − t)].

Since k = 0, then q1 = −q2 = −q, and we get

q(t) = −1
2

log
√

h2 −
1
2

log[sech 2
√

h2(β − t)]

= −1
2

log
√

h2 +
1
2

log[cosh 2
√

h2(β − t)].

Now, from (6.10) and (6.13), (6.14),

ρ(q(0)) = q̇2
1(0) + q̇2

2(0),

and in particular, if q̇1(0) = q̇2(0) = 0, then β = 0. Therefore,

q(t) = −1
2

log
√

h2 +
1
2

log(cosh 2
√

h2t)

which is of the form (5.7) with v =
√

h.

Next, we consider a more general solution to the HJE for the A2-Toda lattice. We try
to solve the equation (6.12) under the fact that

p1 + p2 = α (6.15)

a constant, which follows from (5.2). Then, from the proceeding, the above equation
implies that

ρ(q) cos θ(q) + ρ(q) sin θ(q) = α. (6.16)

Now suppose we seek a solution to (6.12) and (6.16) for θ(q) such that

∂θ(q)
∂q1

=
∂θ(q)
∂q2

. (6.17)

The above condition is satisfied if

θ(q1, q2) = f(q1 + q2) (6.18)

for some smooth function f : R → R of one variable, and

∂θ(q)
∂q1

=
∂θ(q)
∂q2

= f ′(q1 + q2), (6.19)

where f ′(·) is the derivative of the function with respect to its argument. Then substi-
tuting in (6.12) and using (6.16), we get

ρq2(q) cos f(q1 + q2)− ρq1(q) sin f(q1 + q2) = αf ′(q1 + q2) (6.20)
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which after substituting for ρq1(q) and ρq2(q) and making the change of variables x =
q1 + q2, y = q1 − q2 becomes

√
2e2y

√
h2 − e2y

(cos f(x) + sin f(x)) = αf ′(x). (6.21)

The above equation represents a first-order nonlinear ODE in the function f(x), and can
be integrated in this way

x
∫

0

√
2e2y

√
h2 − e2y

dx =

x
∫

0

αf ′(x)
(cos f(x) + sin f(x))

dx (6.22)

to yield

f(x) = 2 tan−1

[

tanh

( √
2e2y

α
√

h2 − e2y

)

+ 1

]

. (6.23)

This implies that

θ(q1, q2) = 2 tan−1

[

tanh

( √
2e2(q1−q2)

α
√

h2 − e2(q1−q2)

)

+ 1

]

. (6.24)

We can now obtain W by taking the line integral of p1(q) = ρ(q) cos θ(q) and p2 =
ρ(q) sin θ(q) along the straightline path from (1,−1) on the line

L : q2 =
q′2 + 1
q′1 − 1

q1 −
(

1 +
q′2 + 1
q′1 − 1

)

def= mq1 + b

to some arbitrary point (q′1, q
′
2) for q1 > q2 and from (−1, 1) to (q′1, q

′
2) for q2 > q1.

Hence we have

W (q, α, h2) =
∫

L

[ρ(q) cos θ(q) + mρ(q) sin θ(q)] dq1. (6.25)

Using the half-angle formula, we can write

T (q1)
def= tan

θ(q1)
2

= tanh

( √
2e2q1(1−m)−b

α
√

h2 − e2q1(1−m)−b

)

+ 1, (6.26)

cos θ(q1) =
1− T 2(q1)
1 + T 2(q1)

, (6.27)

sin θ(q1) =
2T (q1)

1 + T 2(q1)
. (6.28)

Therefore,

W (q, α, h2) =

q′1
∫

1

√

2(h2 − e2x(1−m)−b)
(

1− T 2(x)
1 + T 2(x)

+ m
2T (x)

1 + T 2(x)

)

dx

=

q′1
∫

1

√

2(h2 − e2x(1−m)−b)
(

1− 2mT (x)− T 2(x)
1 + T 2(x)

)

dx for q1 > q2
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and

W (q, α, h2) =

q′1
∫

−1

√

2(h2 − e2x(1−m)−b)
(

1− 2mT (x)− T 2(x)
1 + T 2(x)

)

dx for q2 > q1.

Unfortunately the above integrals cannot be computed in closed-form.

7 Conclusion

In this paper, we have presented a review of Hamilton–Jacobi theory and a new approach
for solving the HJE for a fairly large class of Hamiltonian systems in which the variables
may not be separable. The approach can also be extended to the case in which the
Hamiltonian is not time-independent, and relies on finding a parametrization that allows
for the equation to be solved.

The approach has been applied to the A2-Toda lattice, and computational results
have been presented to show the usefulness of the method. It has been shown that, for
the two-particle non-periodic A2-Toda system, the HJE can be completely integrated
as expected to obtain the characteristic function and subsequently a complete solution
to the equations of motion. The approach can also be applied to a fairly large class of
Hamiltonian systems.
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where w is the sought-for function in the space C[−τ,T ] = C([0, π]×[−τ, T ]), for arbitrarily
fixed 0 < T < ∞, of all continuous functions endowed the supremum norm, h is a
function defined from the space C[−τ,0] into itself, φ ∈ C[−τ,0], the function w|[−τ,0] ∈
C[−τ,0] is the restriction of w ∈ C[−τ,T ] on [0, π]× [−τ, 0], a > 0 is a constant.

Let X be the Banach space C[0, π] of all real-valued continuous functions on [0, π]
endowed with the supremum norm

‖ξ‖X = sup
0≤x≤π

|ξ(x)|, ξ ∈ X,

and for t ∈ [0, T ], 0 < T < ∞, let Ct = C([−τ, t]; X), 0 < τ < ∞, be the Banach space
of all continuous functions from [−τ, t] into X endowed with the supremum norm

‖ψ‖t = sup
−τ≤θ≤t

‖ψ(θ)‖X , ψ ∈ Ct.

Let C0(χ) = {χ̄ ∈ C0 : χ̄(0) = χ(0)}. Define a function F from C0(χ) into X by

F (χ) = f(χ(0), χ(−τ)), χ ∈ C0.

Then (1.1) can be written as the following nonlocal history-valued functional differential
equation

u′(t) + Au(t) = F (ut), t ∈ (0, T ],

H(u0) = φ on [−τ, 0],
(1.2)

where A is a linear operator defined on D(A) = {ξ ∈ C[0, π] : ξ′′ ∈ C[0, π], ξ(0) =
ξ(π) = 0} with Aξ = −aξ′′ for ξ ∈ D(A), for u ∈ CT and t ∈ [0, T ], ut ∈ C0 given by
ut(θ) = u(t + θ), θ ∈ [−τ, 0], the map H is defined from C0 into itself and φ ∈ C0.

For the earlier works on existence, uniqueness and stability of various types of so-
lutions of differential and functional differential equations with nonlocal conditions we
refer to Byszewski and Akca [2], Byszewski and Lakshmikantham [4], Byszewski [5], Bal-
achandran and Chandrasekaran [3], Lin and Liu [7] and references cited in these papers.

Our main aim is to consider various types of nonlocal history conditions H and their
applications. We use the ideas and techniques used by Bahuguna [1] to study such
conditions and their applications.

A few examples of H are the following. Let g be map from C0 into X be a map given
by one of the following.

(I) Let k ∈ L1(0, τ) such that κ =
τ
∫

0
k(s) ds 6= 0. Let

g(ξ) =

0
∫

−τ

k(−s)ξ(s) ds, ξ ∈ C0.

(II) Let −τ ≤ t1 < t2 < · · · < tl ≤ 0, ci ≥ 0 with C =
l

∑

i=1
ci 6= 0. Let

g(ξ) =
l

∑

i=1

ciξ(ti), ξ ∈ C0.
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(III) Let ti and ci be as in (II) and let εi > 0, i = 1, 2, . . . , l. Let

g(ξ) =
l

∑

i=1

ci

εi

ti
∫

ti−εi

ξ(s)ds, ξ ∈ C0.

If we define φ ∈ C0 given by φ(θ) ≡ x for all θ ∈ [−τ, 0] and H : C0 → C0 given
by H(ξ)(θ) ≡ g(ξ) for all θ ∈ [−τ, 0] and all ξ ∈ C0, then the condition g(ξ) = x is
equivalent to the condition H(ξ) = φ.

Let χ ∈ C0 be such that H(χ) = φ. The function u ∈ CeT , 0 < ˜T ≤ T , such that

u(t) =







χ(t) t ∈ [−τ, 0]

S(t)χ(0) +
t
∫

0
S(t− s)F (us) ds, t ∈ [0, ˜T ],

(1.3)

is called a mild solution of (1.2) on [−τ, ˜T ]. If a mild solution u of (1.2) on [−τ, ˜T ] is
such that u(t) ∈ D(A) for a.e. t ∈ [0, ˜T ], u is differentiable a.e. on [0, ˜T ] and

u′(t) + Au(t) = F (ut), a.e. on [0, ˜T ],

it is called a strong solution of (1.2) on [−τ, ˜T ]. If a mild solution u of (1.2) on [−τ, ˜T ]
is such that u ∈ C1((0, ˜T ]; X), u(t) ∈ D(A) for t ∈ (0, ˜T ] and satisfies

u′(t) + Au(t) = F (ut), t ∈ (0, ˜T ],

then it is called a classical solution of (1.2) on [−τ, ˜T ].
We first establish the existence of a mild solution u ∈ CeT of (1.2) for some 0 <

˜T ≤ T and its continuation to the whole of [−τ,∞). Under the additional assumption
of Lipschitz continuity on ψ on [−τ, 0], we show that the mild solution u is a strong
solution of (1.2) on the interval of existence and it is Lipschitz continuous. Under further
additional assumption that S(t) is analytic, we show that u is a classical solution of (1.2)
on the interval of existence. We also show that u is unique if and only if χ satisfying
H(χ) = φ is unique. Next, we establish a global existence result. Finally, we study the
finite dimensional approximation of solutions in a Hilbert space.

2 Local Existence of Mild Solutions

We first prove the following result establishing the local existence and uniqueness of a
mild solution of (1.2).

Theorem 2.1 Suppose that −A is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0 of bounded linear operators in X. Let H : C0 → C0 be such that there exists
a function χ ∈ C0 such that H(χ) = φ. Let C0(χ) = {χ̄ ∈ C0 : χ̄(0) = χ(0)}. Let
F : C0(χ) → X satisfy a Lipschitz condition

‖F (χ1)− F (χ2)‖X ≤ LF ‖χ1 − χ2‖0,
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for all χi ∈ C0(χ), i = 1, 2, where LF is a non-negative constant. Then there exists a
mild solution u of (1.2) on [−τ, T0] for some 0 < T0 ≤ T . Moreover, the mild solution
u is unique if and only if χ is unique.

Proof Let M ≥ 1 and ω ≥ 0 be such that ‖S(t)‖B(X) ≤ Meωt for t ≥ 0. Here
B(X) is the space of all bounded linear operators from X into itself. We choose 0 <
T0 ≤ T be such that

T0MeωT LF ≤ 3/4.

Define a map F : CT0(χ) → CT0(χ) by

Fw(t) =







χ(t) t ∈ [−τ, 0],

S(t)χ(0) +
t
∫

0
S(t− s)F (ws) ds, t ∈ [0, T0].

(2.1)

Here and subsequently, any function in CT (χ) = {ψ ∈ CT : ψ(0) = χ(0)} is also in
CeT (χ), 0 ≤ ˜T ≤ T , as its restriction on the subinterval. Also, for wi ∈ CT0(χ), i = 1, 2,
we have

‖Fw1(t)−Fw2(t)‖X ≤ T0MeωT LF ‖w1 − w2‖T0 .

Since T0MeωT LF ≤ 3/4, F is a strict contraction on CT0(χ) and hence has a unique
fixed point u ∈ CT0(χ).

Clearly, if χ ∈ CT satisfying H(χ) = φ on [−τ, 0] is unique on [−τ, 0], then u is
unique. If there are two χ and χ̃ in C0 satisfying H(χ) = H(χ̃) = φ on [−τ, 0], with
χ 6= χ̃ on [−τ, 0], then the corresponding solutions u and ũ of (1.2) belonging to CT0(χ)
and CT̃0

(χ̃) are different. This completes the proof of Theorem 2.1.

3 Global Existence of Solutions

Theorem 3.1 Assume the hypotheses of Theorem 2.1. Then the local mild solution
u of (1.2) exists on the whole interval [−τ,∞).

Proof Let 0 < T < ∞ be arbitrarily fixed. If T0 < T , consider the functional
differential equation

v′(t) + Av(t) = F (vt), 0 < t ≤ T − T0,

˜H(v0) = φ̃,
(3.1)

where ˜H : C0(χ) → C0(χ) given by ˜Hχ = χ for χ ∈ C0(χ) and φ̃(θ) = u(T0 + θ) for
θ ∈ [−τ, 0]. Since all the hypotheses of Theorem 2.1 are satisfied for problem (3.1), we
have the existence of a mild solution w ∈ CT1(χ), 0 < T1 ≤ T − T0 of (3.1). This mild
solution w is unique as ˜H in (3.1) is the identity map on C0(χ). We define

ū(t) =
{

u(t), t ∈ [−τ, T0]

w(t− T0), t ∈ [T0, T0 + T1].
(3.2)

Then ū is a mild solution of (1.2) on [−τ, T0 + T1], unique for fixed χ. Continuing
this way, we get the existence of a mild solution u either on the whole interval [−τ, T ]
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or on the maximal interval [−τ, tmax) of existence. In the later case we may use the
arguments similar in the proof of Theorem 6.2.2 in Pazy [9, P.193–194], to conclude
that lim

t→tmax−
‖u(t)‖X = ∞.

In order to show the global existence, we show that ‖u(t)‖X ≤ C for t ≥ 0. Let
M1 = max{M, eωτ , (M/ω)‖F (0)‖X , ‖χ‖0}. For t ∈ [−τ, 0], e−ωt‖u(t)‖X ≤ M1 and for
t ∈ [0, T ), we have

e−ωt‖u(t)‖X ≤ M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds. (3.3)

From (3.3), for any 0 ≤ r ≤ t, we have

e−ωt‖u(r)‖X ≤ M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds. (3.4)

Putting r = t + η, −t ≤ η ≤ 0, in (3.4), we get

e−ωt‖u(t + η)‖X ≤ M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds. (3.5)

Now, if −τ ≤ −t, then

e−ωt sup
−τ≤η≤0

‖u(t + η)‖X ≤ e−ωt sup
−τ≤η≤−t

‖u(t + η)‖X + e−ωt sup
−t≤η≤0

‖u(t + η)‖X

≤ 2M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds,

and for the case −t ≤ −τ , we have

e−ωt sup
−τ≤η≤0

‖u(t + η)‖X ≤ e−ωt sup
−t≤η≤0

‖u(t + η)‖X

≤ 2M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds.

Thus,

e−ωt sup
−τ≤η≤0

‖u(t + η)‖X ≤ 2M1 + MLF

t
∫

0

[

e−ωs sup
−τ≤θ≤0

‖u(s + θ)‖X
]

ds.

Gronwall’s inequality implies that

e−ωt sup
−τ≤η≤0

‖u(t + η)‖X ≤ 2M1 + MLF

t
∫

0

f(s) exp {2M‖F (0)‖X(t− s)} ds. (3.6)

Inequality (3.6) implies that ‖u(t)‖X is bounded by a continuous function and therefore
‖u(t)‖X is bounded on every compact interval [−τ, T ], 0 < T < ∞. Since T is arbitrary,
the global existence follows.
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4 Regularity of Solutions

Theorem 4.1 Assume the hypotheses of Theorem 2.1. If, in addition, χ ∈ C0

satisfying H(χ) = φ is Lipschitz continuous on [−τ, 0] and χ(0) ∈ D(A), then the
solution u corresponding to χ is Lipschitz continuous on every compact subinterval of ex-
istence. If, in addition, X is reflexive, then u is a strong solution of (1.2) on the interval
of existence and this strong solution is a classical solution of (1.2) provided S(t) is an
analytic semigroup.

Proof We shall prove the result for the first case when the mild solution u exists on
the whole interval. The proof can be modified easily for the second case.

We need to show the Lipschitz continuity of u only on [0, T ]. In what follows, Ci’s are
positive constants depending only on R, T and ‖χ‖0. Let t ∈ [0, T ] and h ≥ 0. Then

‖u(t + h)− u(t)‖X ≤ ‖(S(h)− I)S(t)χ(0)‖X +

0
∫

−h

‖S(t− s)F (us+h)‖X ds

+

t
∫

0

‖s(t− s)[F (us+h)− F (us)]‖Xds

≤ C1

[

h +

t
∫

0

[‖us+h − us‖C0 ] ds

]

≤ C1

[

h +

t
∫

0

sup
−τ≤θ≤0

‖u(s + h + θ)− u(s + θ)‖X

]

ds.

(4.1)

For the case when −τ ≤ t < 0 and 0 ≤ t + h (clearly, t + h ≤ h in this case), we have

‖u(t + h)− u(t)‖X ≤ ‖(S(t + h)− I)χ(0)‖X + ‖χ(t)− χ(0)‖X

+

h
∫

0

‖S(t + h− s)F (us)‖Xds ≤ C2h.
(4.2)

Combining the inequalities (4.1) and (4.2), we have for −τ ≤ t̄ ≤ t,

‖u(t̄ + h)− u(t̄)‖X ≤ C3

[

h +

t
∫

0

sup
−τ≤θ≤0

‖u(s + h + θ)− u(s + θ)‖Xds

]

. (4.3)

Putting t̄ = t + θ̄, −t− τ ≤ θ̄ ≤ 0, in (4.3), and taking supremum over θ̄ on [−τ, 0], we
get

sup
−τ≤θ≤0

‖u(t+h+θ)−u(t+θ)‖X ≤ 2C3

[

h+

t
∫

0

sup
−τ≤θ≤0

‖u(s+h+θ)−u(s+θ)‖Xds

]

. (4.4)
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Applying Gronwall’s inequality in (4.4), we obtain

‖u(t + h)− u(t)‖X ≤ sup
−τ≤θ≤0

‖u(t + h + θ)− u(t + θ)‖X ≤ C4h.

Thus, u is Lipschitz continuous on [−τ, T ].
The function F : [0, T ] → X given by F (t) = F (ut), is Lipschitz continuous and

therefore differentiable a.e. on [0, T ] and F
′
is in L1((0, T ); X). Consider the Cauchy

problem
v′(t) + Av(t) = F (t), t ∈ (0, T ],

v(0) = u(0),
(4.5)

By the Corollary 2.10 on page 109 in Pazy [9], there exists a unique strong solution v of
(4.5) on [0, T ]. Clearly, v̄ defined by

v̄(t) =
{

u(t), t ∈ [−τ, 0]

v(t), t ∈ [0, T ],

is a strong solution of (1.2) on [−τ, T ]. But this strong solution is also a mild solution of
(1.2) and v̄ ∈ CT (χ). By the uniqueness of such a function in CT (χ), we get v̄(t) = u(t)
on [−τ, T ]. Thus u is a strong solution of (1.2). If S(t) is analytic semigroup in X then
we may use Corollary 3.3 on page 113 in Pazy [9] to obtain that u is a classical solution
of (1.2). This completes the proof of Theorem 4.1.

5 Finite Dimensional Approximations

In this section we assume that X is a separable Hilbert space. Furthermore, we assume
that in (1.2), the linear operator A satisfies the following hypothesis.

(H1) A is a closed, positive definite, self-adjoint linear operator from the domain
D(A) ⊂ X into X such that D(A) is dense in X, A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ . . .

and a corresponding complete orthonormal system of eigenfunctions {ui}, i.e.,

Aui = λiui and (ui, uj) = δij ,

where δij = 1 if i = j and zero otherwise.
If (H1) is satisfied then the semigroup S(t) generated by −A is analytic in X. It

follows that the fractional powers Aα of A for 0 ≤ α ≤ 1 are well defined from D(Aα) ⊆
X into X (cf. Pazy [9], pp. 69 – 75). D(Aα) is a Banach space endowed with the norm

‖x‖α = ‖Aαx‖X , x ∈ D(Aα). (5.1)

For t ∈ [0, T ], we denote by Cα
t = C([−r, t]; D(Aα)) endowed with the norm

‖ζ‖t,α = sup
−r≤η≤t

‖ζ(η)‖α, ζ ∈ Cα
t .
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In addition, we assume the following hypotheses.
(H2) There exists a function χ ∈ Cα

0 satisfying H(χ) = φ.
(H3) The map F is defined from Cα

0 (χ) = {χ̄ ∈ Cα
0 : χ̄(0) = χ(0)} into D(Aβ) for

0 < β ≤ α < 1 and there exists a non-negative constant LF such that

‖F (ζ1)− f(ζ2)‖X ≤ LF ‖ζ1 − ζ2‖0,α,

for ζi ∈ Cα
0 (χ), for i = 1, 2.

Let Xn denote the finite dimensional subspace of X spanned by {u0, u1, . . . , un} and
let Pn : X → Xn be the corresponding projection operator for n = 0, 1, 2, . . . . Let
χ ∈ C0 be such that H(χ) = φ. Let χ̄ be the extension of χ by the constant value χ(0)
on [0, T ]. We set

T0 = min
{

T,
(

3(1− α)
8LF Cα

)1−α }

,

where Cα is a positive constant such that ‖AαS(t)‖ ≤ Cαt−α for t > 0.
We define

Fn : C0(χ) → Xn,

given by
Fn(ζ) = PnF (Pnζ), ζ ∈ C0(χ),

where (Pnζ)(θ) = Pnζ(θ), −τ ≤ θ ≤ 0. We denote ψn = Pnψ for any ψ ∈ CT .
Let Aα : Cα

t → Ct be given by (Aαψ)(s) = Aα(ψ(s)), s ∈ [−r, t], t ∈ [0, T0]. We
define a map Fn : CT0(χ) → CT0(χ) as follows:

(Fnξ)(t) =







Aαχn(t), t ∈ [−τ, 0],

S(t)Aαχn(0) +
t
∫

0
AαS(t− s)Fn(A−αξs) ds, t ∈ [0, T0],

(5.2)

for ξ ∈ CT0(χ).

Proposition 5.1 There exists a unique wn ∈ CT0(χ) such that Fnwn = wn on [−r, T0].

Proof For ξ1, ξ2 ∈ CT0(χ), (Fnξ1)(t)− (Fnξ2)(t) = 0 on [−τ, 0] and for t ∈ [0, T0],
we have

‖(Fnξ1)(t)− (Fnξ2)(t)‖X ≤ 2LF Cα
T 1−α

0

1− α
‖ξ1 − ξ2‖T0 ≤

3
4
‖ξ1 − ξ2‖T0 .

Taking the supremum over [−τ, T0], it follows that Fn is a strict contraction on CT0(χ)
and hence there exits a unique wn ∈ CT0(χ) with wn = Fnwn on [−τ, T0]. This
completes the proof of Proposition 5.1.

Let un = A−αwn. Then un ∈ Cα
T0

and satisfies

un(t) =







χn(t), t ∈ [−τ, 0],

S(t)χn(0) +
t
∫

0
S(t− s)Fn(us) ds, t ∈ [0, T0].

(5.3)
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Proposition 5.2 The sequence {un} ⊂ CT0(χ) is a Cauchy sequence and therefore
converges to a function u ∈ CT0(χ).

Proof For n,m ∈ N , n ≥ m, t ∈ [−τ, 0], we have

‖un(t)− um(t)‖α ≤ ‖Aα(χn(t)− χm(t))‖X ≤ ‖(Pn − Pm)Aαχ(t)‖X → 0 as m →∞.

For t ∈ (0, T0] and n, m as above, we have

‖un(t)− um(t)‖α ≤ ‖(Pn − Pm)S(t)Aαχ(0)‖X

+

t
∫

0

‖AαS(t− s)[Fn((un)s)− Fm((um)s))]‖X ds.

Now, using the fact that F ((um)s) ∈ D(Aβ), m ≥ n0 and 0 < α < β < 1, we have

‖Fn((un)s)− Fm((um)s)‖X ≤ ‖(Pn − Pm)F (Pm(um)s)‖X

+ LF [‖(Pm − Pm)Aα(um)s‖0] + LF ‖un − um‖s,α

≤ C1
1

λβ
m

+ C2‖un − um‖s,α,

for some positive constants C1 and C2 independent of n and m. Thus, we have the
following estimate

‖un(t)− um(t)‖α ≤ C0‖(Pn − Pm)Aαχ(0)‖X

+
C1T γ

λβ
m

+ C2

t
∫

0

(t− s)α‖un − um‖s,α ds,
(5.4)

where C0 = MeωT . Since un − um = χn − χm on [−τ, 0], we have for 0 ≤ t̄ ≤ t,

‖un(t̄)− um(t̄)‖α ≤ ‖χn − χm‖0,α + C0‖(Pn − Pm)Aαχ(0)‖X

+
C1T

λβ
m

+ C2

t̄
∫

0

(t̄− s)α‖un − um‖s,α ds.
(5.5)

We put t̄ = t + η, −t ≤ η ≤ 0, to obtain

‖un(t + η)− um(t + η)‖α ≤ ‖χn − χm‖0,α + C0‖(Pn − Pm)Aαχ(0)‖X+

C1T

λβ
m

+ C2

t+η
∫

0

(t + η − s)α‖un − um‖s,α ds.
(5.6)

Now, we put s− η = s̄ to get

‖un(t + η)− um(t + η)‖α ≤ ‖χn − χm‖0,α + C0‖(Pn − Pm)Aαχ(0)‖X

+
C1T

λβ
m

+ C2

t
∫

−η

(t− s̄)α‖un − um‖s̄+η,α ds̄

≤ ‖χn − χm‖α,0 + C0‖(Pn − Pm)Aαχ(0)‖

+
C1T

λβ
m

+ C2

t
∫

0

(t− s̄)α‖un − um‖s̄,α ds̄.

(5.7)
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For t ≥ τ , we have

sup
−τ≤η≤0

‖un(t + η)− um(t + η)‖α ≤ sup
−t≤η≤0

‖un(t + η)− um(t + η)‖α

≤ ‖χn − χm‖α,0 + C0‖(Pn − Pm)Aαχ(0)‖+
C1T

λβ
m

+ C2

t
∫

0

(t− s̄)α‖un − um‖s̄,α ds̄.

(5.8)
Since un(t + η) = χ(t + η) for t + η ≤ 0 for all n ≥ n0, for 0 ≤ t ≤ τ , we have

sup
−τ≤η≤0

‖un(t + η)− um(t + η)‖α

≤ sup
−τ≤η≤−t

‖un(t + η)− um(t + η)‖α + sup
−t≤η≤0

‖un(t + η)− um(t + η)‖α

≤ ‖χn − χm‖α,0 + C0‖(Pn − Pm)Aαχ(0)‖+
C1T

λβ
m

+ C2

t
∫

0

(t− s̄)α‖un − um‖s̄,α ds̄.

(5.9)
Combining (5.8) and (5.9), we have

‖un − um‖t,α ≤ ‖χn − χm‖α,0 + C0‖(Pn − Pm)Aαχ(0)‖

+
C1T

λβ
m

+ C2

t
∫

0

(t− s̄)α‖un − um‖s̄,α ds̄.
(5.10)

Application of Lemma 5.6.7 on page 159 in Pazy [9] gives the required result. This
completes the proof of Proposition 5.2.

With the help of Propositions 5.1 and 5.2, we may state the following existence,
uniqueness and convergence result.

Theorem 5.3 Suppose that assumptions (H1) – (H3) hold. Then there exist functions
un ∈ ([−τ, T0]; Xn), n ∈ N , and u ∈ CT0 (0 < T0 ≤ T ) unique for a given χ ∈ C0 with
H(χ) = φ, such that

un(t) =







χn(t), t ∈ [−τ, 0],

S(t)χn(0) +
t
∫

0
S(t− s)Fn((un)s) ds, t ∈ [0, T0],

(5.11)

and

u(t) =







χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
t
∫

0
S(t− s)F (us) ds, t ∈ [0, T0],

(5.12)

such that un → u in CT0 as n → ∞, where ψn(t) = Pnψ(t) for ψ ∈ CT0 and
Fn(ζ) = PnF (Pnζ), ζ ∈ C0.

6 Applications

As an applicability of the theory developed in previous sections, we cite two examples of
partial differential equation with retarded arguments and a nonlocal history condition.
These problems are closely related to a mathematical model for population density with
a time delay and self regulation (cf. [6, 10]).
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Example 6.1

∂w
∂t

(x, t) = a
∂2w
∂x2 (x, t) + b w(x, t− τ)(1− w(x, t)),

t > 0, 0 < x < π,

w(0, t) = w(π, t) = 0, t > 0,

h(w|[−τ,0])(x, t) = φ(x, t), −τ ≤ t ≤ 0, τ > 0, 0 ≤ x ≤ π,

(6.1)

where w(·, t) is the population density at time t, b is the constant rate of growth for
the species. τ is a fixed positive constant and φ ∈ C[−τ,0] = C([0, π] × [−τ, 0]). Let
X = C[0, π]. For each t, define an operator A by

Au = −au′′,

for u ∈ D(A) = {u ∈ C([0, π]) : u′′ ∈ C([0, π]), u(0) = u(π) = 0}. It follows that −A
generates an analytic semigroup in X. The nonlinear map H can be defined as mentioned
in the first section.

Let C0(χ) be the set consisting of all continuous function χ̄ : [−τ, 0] → X such that
χ̄(0) = χ(0) and define F : C0(χ) → X by

F (χ) = bχ(−τ)(1− χ(0)), χ ∈ C0(χ).

It is easily verified that F satisfies Lipschitz condition. The problem (6.1) now take the
abstract form

u′(t) + Au(t) = F (ut), t ∈ (0, T ],

H(u0) = φ, on [−τ, 0],
(6.2)

Then the theorems ensure the existence of a unique solution of the problem (6.2) (hence
a unique solution of the problem (6.1)).

Example 6.2

∂w
∂t

(x, t) = a
∂2w
∂x2 (x, t) + bw(x, t)

[

1−
0

∫

−τ

wt(x, s) dη(s)

]

,

t > 0, 0 < x < π,

w(0, t) = w(π, t) = 0, t > 0,

h(w|[−τ,0])(x, t) = φ(x, t), −τ ≤ t ≤ 0, τ > 0, 0 ≤ x ≤ π,

(6.3)

which is a population model when diffusion occurs within the population. Here η(·) is
bounded, nondecreasing function on [−τ, 0], τ ≥ 0. All other functions and maps are as
described in Example 6.1.

Let X = C([0, π]). The linear operator A is defined as in the previous example. Also
we define F : C0(χ) → X by

F (χ) = bχ(0)

[

1−
0

∫

−τ

χ(s) dη(s)

]

, χ ∈ C0(χ).
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Then clearly F satisfies Lipschitz condition and problem (6.3) transforms into the ab-
stract form (6.2).

Since all the assumptions taken into account for establishing the existence and unique-
ness results are satisfied, we can apply these results to considered problem which shows
that there exists a unique solution of (6.3).
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stable with the assumption that the nominal system is globally exponentially stable.
Therefore, to obtain stability of the whole system, we shall make some restrictions on
the perturbed term. Suppose that the origin of the nominal system

ẋ = A(t)x (2)

is globally exponentially stable with

W (t, x) = xT P (t)x

as an associate Lyapunov function, where P (t) is a continuous differentiable symmetric
and bounded positive definite matrix, such that

0 < c1I ≤ P (t) ≤ c2I, ∀ t ≥ 0, (3)

which satisfies the matrix differential equation

Ṗ (t) + P (t)A(t) + A(t)T P (t) = −Q(t)

with Q(t) is continuous, symmetric and positive definite that is

Q(t) ≥ c3I > 0, ∀ t ≥ 0.

Here the constants c1, c2, c3 > 0 and I is identical matrix.
Then calculating the derivative of W along the trajectories of the system (1) one can

obtain the definiteness of Ẇ by imposing some conditions on g(t, x).
For the case when

‖g(t, x)‖ ≤ η(t)‖x‖,

where η(t) is a continuous function, we obtain after taking the derivative of W along the
trajectories of the whole system,

Ẇ (t, x) ≤ −xT Q(t)x + 2xT P (t)g(t, x).

Then, one gets the following estimation on the derivative of W ,

Ẇ (t, x) ≤ (−c3 + 2c2η(t))‖x‖2

which implies the global exponential stability of the equilibrium point of (1) under the
condition

η(t) ≤ k <
1
2

c3

c2

with k > 0.
Moreover, one can obtain exponential convergence to zero for system (1) especially,

where
g(t, x) = B(t)x

under the conditions B(t) is continuous and

B(t) → 0 as t →∞.
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Similar conclusions can be obtained (see [5]), where

+∞
∫

0

‖B(t)‖ < ∞

or
+∞
∫

0

‖B(t)‖2 < ∞.

Actually, the synthesis of stability of perturbed systems is based on the stability of
the nominal system with W (t, x) as a Lyapunov function candidate for the whole system
provided that the size of the perturbation is known (see [1, 2, 4 – 7, 11, 12]). Panteley and
Loria [8, 9] studied this problem for cascaded time-varying nonlinear systems, which can
be regarded as perturbed systems, where growth conditions are given to ensure the global
uniform asymptotic stability of some classes of time-varying nonlinear systems.

Our approach is to find more general classes of perturbed systems which can be globally
exponentially stable by considering a new Lyapunov function which has the following
form

V (t, x) = xT P (t)x + Ψ(t, x),

where Ψ(t, x) is a C1-function which will be chosen, for some classes of systems, in such
a way that V (t, x) is positive definite radially unbounded and its derivative along the
trajectories of (1) is negative definite. We use a cross term in the Lyapunov function,
as in [10] introduced for cascade nonlinear systems, to obtain a large class of stable per-
turbed systems. The proposed new method is based on the non uniqueness of Lyapunov
functions with a stable nominal system, which guarantees exponential stability with the
requirement on the upper bound of the perturbed term. We prove that the system can
be globally uniformly exponentially stable. The perturbation term is a known function
which could result in general from errors in modelling, aging of parameters or distur-
bances. Naturally, the choice of the function Ψ(t, x) depends on the perturbation term
g(t, x) and its smoothness is given under some restrictions on the dynamics of the sys-
tem. Furthermore, we give an illustrative example in dimensional one and we show for
a certain class of perturbed systems that the proposed method gives better result than
the classical method.

2 Stability

In this paper the solution of a differential time-varying equation

ẋ = A(t)x + g(t, x)

with initial conditions (t0, x0) ∈ R+ × Rn, x(t0) = x0 is denoted φ(t, t0, x0).
V̇(?)(t, x) is the derivative of Lyapunov function V (t, x) along the trajectories repre-

sented by the differential equation (?).
According to [3, 5], the equilibrium point x = 0 of (1) is uniformly stable if for each

ε > 0 there is δ = δ(ε) > 0 independent of t0, such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ t0 ≥ 0.
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The equilibrium point x = 0 of (1) is globally uniformly asymptotically stable if it is
uniformly stable and for any initial state x(t0), one has

x(t) → 0 as t → +∞

uniformly in t0, that is there exists T = T (ε) > 0, such that

‖x(t)‖ < ε, ∀ t ≥ t0 + T (ε), ∀x(t0).

The equilibrium point x = 0 of (1) is globally exponentially stable if the following
estimation holds for any initial state x(t0),

‖x(t)‖ < λ1e−λ2(t−t0), ∀ t ≥ t0 ≥ 0,

where λ1 > 0 and λ2 > 0.
Throughout this paper, we suppose that
(A1). There exists a continuous differentiable, symmetric, bounded, positive definite

matrix P (t) which satisfies (3).
(A2). There exist a continuous function ρ : R+ −→ R+ and k > 0, such that

∀ t ≥ 0, ∀x ∈ Rn, ‖g(t, x)‖ ≤ ρ(t)‖x‖

with
ρ(t) ≤ k, ∀ t ≥ 0

and
+∞
∫

0

ρ(t)dt < +∞.

Note that, the quadratic function

W (t, x) = xT P (t)x

implies by the assumption (A1) the two following inequalities,

c1‖x‖2 ≤ W (t, x) ≤ c2‖x‖2,

Ẇ(2)(t, x) ≤ −c3‖x‖2.
(4)

Our goal is to seek a suitable function Ψ which is of class C1 to compensate the
perturbed term which is not always possible only for some restrictive dynamical sys-
tems. Thus, we will consider a Lyapunov function for system (1) of the form V (t, x) =
xT P (t)x + Ψ(t, x), where Ψ is a C1-function which will be chosen later such that V is
definite positive function and V̇ definite negative for some restriction on g. Notice that,
continuity of the partial derivatives of the cross term can be proven for some classes of
system of the form (1). Thus, if we consider the derivative of V (t, x) along the trajectories
of the system (1) we get

V̇(1)(t, x) = Ẇ(2)(t, x) + 2xT P (t) · g(t, x) + Ψ̇(t, x).
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The first term of the right-hand side constitute the derivative of V (t, x) along the
trajectories of the nominal system, which is negative definite and satisfies (4). The
second term is the effect of the perturbation while the third one is the derivative of the
cross term. We choose

Ψ(t, x) =

+∞
∫

t

2φT (s, t, x)P (s)g(s, φ(s, t, x)) ds.

Thus, one can verify the following statement

2xT P (t) · g(t, x) + Ψ̇(t, x) = 0

for all (t, x) ∈ R+ × Rn.
It follows with this choice, that

V̇(1)(t, x) = Ẇ(2)(t, x) ≤ −c3‖x‖2.
This yields by (A1), the exponential stability of (1) provided that Ψ(t, x) exists and it
is a C1-function or simply uniformly continuous rending V (t, x) definite positive for a
given perturbed function g(t, x).

First, one can state the following proposition which provides a stability result.

Proposition 2.1 If (A1) and (A2) are satisfied, then the origin of the system (1) is
uniformly stable.

Proof Let (t, x) ∈ R+ × Rn be an initial condition. The derivative of W along the
trajectories of (1) is given by

Ẇ(1) =
d
ds

(W (s, φ(s, t, x)))

=
∂W
∂s

(s, φ(s, t, x)) + 2φT (s, t, x)P (s)A(s)φ(s, t, x)

+ 2φT (s, t, x)P (s).g(s, φ(s, t, x)).

Thus,

Ẇ(1) ≤ 2φT (s, t, x)P (s).g(s, φ(s, t, x))

≤ 2c2ρ(s)‖φ(s, t, x)‖2

≤ 2
c2

c1
ρ(s)W (s, φ(s, t, x))

which implies that
W (s, φ(s, t, x)) ≤ MW (t, x),

where

M = exp

{

2
c2

c1

( +∞
∫

0

ρ(u) du

)}

.

We conclude that

‖φ(s, t, x)‖ ≤
√

c2

c1
M ‖x‖, ∀ s ≥ t.

Then the equilibrium point of the system (1) is uniformly stable.

The above proposition is conceptually important because it shows the stability of the
origin for all perturbations satisfying the condition (A2).

Now, concerning the cross term, we have the following lemma.
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Lemma 2.1 Under assumptions (A1) and (A2), the function Ψ(t, x) exists and is
continuous on R+ × Rn.

Proof Observe that, using the above proposition and the fact that for all (t, x) the
function ψ(t, x) exists, we have each solution of (1) which starts at (t, x) is bounded for
all (t, x) ∈ R+ × Rn and for all s ≥ t.

Indeed, on the one hand

|φT (s, t, x)P (s)g(s, φ(s, t, x))| ≤ c2ρ(s)‖φ(s, t, x)‖2

which gives
|φT (s, t, x)P (s)g(s, φ(s, t, x))| ≤ M1ρ(s)‖x‖2

which belongs to L1(R+), where M1 = M c2
2

c1
.

Thus, the integral exists for all (t, x) ∈ R+×Rn and then ψ(t, x) exists.
On the other hand, the continuity of Ψ can be shown by observing that, for all s ≥ t,

the function
(t, x) 7−→ φ(s, t, x)T P (s)g(s, φ(s, t, x))

is continuous on R+ × Rn and the fact that for all (t, x) ∈ R+ ×K, s ≥ t, where K is a
compact set in Rn, we have

|φT (s, t, x)P (s)g(s, φ(s, t, x)| ≤ MKρ(s).

The upper bound MKρ(s) is in L1(R+) where MK is a positive constant which depends
only on K.

Next, the proposed Lyapunov function candidate for (1) must be definite positive and
we will use this fact to show the exponential stability of the origin of system (1).

Theorem 2.1 If the assumptions (A1) and (A2) hold, then there exist some positive
constants d1, d2 such that

d1‖x‖2 ≤ V (t, x) ≤ d2‖x‖2.

It means that, the Lyapunov function V (t, x) is a decreascent function.

Proof Observe that,

s
∫

t

Ẇ(1)(u, φ(u, t, x)) du = W (s, φ(s, t, x))−W (t, x).

Then, we obtain

W (s, φ(s, t, x))−W (t, x) =

s
∫

t

Ẇ(2)(u, φ(u, t, x)) du

+

s
∫

t

2φT (u, t, x)P (u)g(u, φ(u, t, x)) du.
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Because W (s, φ(s, t, x)) is bounded and Ψ(t, x) exists, it means that the integral

+∞
∫

t

2φT (u, t, x)P (u)g(u, φ(u, t, x)) du

exists.
Then

lim
s→+∞

W (s, φ(s, t, x)) = W∞(t, x)

exists.
It follows that,

V (t, x) = W∞(t, x)−
+∞
∫

t

Ẇ(2)(u, φ(u, t, x)) du,

V (t, x) ≥ −
+∞
∫

t

Ẇ(2)(u, φ(u, t, x)) du

V (t, x) ≥
+∞
∫

t

c3‖φ(s, t, x)‖2ds.

(5)

Remark also that

φ(s, t, x) = x +

s
∫

t

A(u)φ(u, t, x) + g(u, φ(u, t, x)) du

which gives

‖φ(s, t, x)‖ ≥ ‖x‖ −
s

∫

t

(L‖φ(u, t, x)‖+ ρ(u)‖φ(u, t, x)‖)du

Thus,

‖φ(s, t, x)‖ ≥ ‖x‖ −
s

∫

t

(L + k)‖φ(u, t, x)‖du

≥ ‖x‖ − λ(s− t)‖x‖

≥ ‖x‖
2

, for s ∈
[

t, t +
1
2λ

]

,

where

λ = (L + k)

√

Mc2

c1
.
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Hence from (5), we obtain
V (t, x) ≥ d1‖x‖2.

Still to prove the existence of d2, which implies in conjunction with the above expres-
sion that V (t, x) is a decreascent function.

For any (t, x), we have
V (t, x) = W (t, x) + Ψ(t, x).

Thus,

V (t, x) ≤ c2‖x‖2 +

+∞
∫

t

2|φT (s, t, x)P (s)g(s, φ(s, t, x))|ds.

It follows that,

V (t, x) ≤ c2‖x‖2 +

+∞
∫

t

M1ρ(s)‖x‖2ds ≤ c2‖x‖2 + M2‖x‖2

≤ d2‖x‖2.

Theorem 2.2 Suppose that the assumptions (A1), (A2) hold and the function g is
chosen in such a way that

Ψ(t, x) =

+∞
∫

t

2φT (s, t, x)P (s)g(s, φ(s, t, x)) ds

is a C1-function, then x = 0 is globally exponentially stable equilibrium point for (1).

Proof Still to prove that

Ψ̇(t, x) = −2xT P (t)g(t, x).

We have

Ψ̇(t, x) =
d
ds

(Ψ(s, φ(s, t, x)))

∣

∣

∣

∣

∣

s=t

,

Ψ̇(t, x) =
d
ds

( +∞
∫

t

2φT (u, t, x)P (u)g(u, φ(u, t, x))ds

)∣

∣

∣

∣

∣

s=t

.

Since the solutions of (1)
u 7−→ Φ(u, t, x)

and
u 7−→ Φ(u, s, Φ(s, t, x))

are equal for u = s, this implies that, for all u ≥ s ≥ t ≥ 0,

Φ(u, t, x) = Φ(u, s, Φ(s, t, x)).
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Thus,

Ψ̇(t, x) =
d
ds

( +∞
∫

t

2φT (u, t, x)P (u)g(u, φ(u, t, x))ds

)∣

∣

∣

∣

∣

s=t

.

So,
Ψ̇(t, x) = −(2φT (s, t, x)P (s)g(s, φ(s, t, x))ds)

∣

∣

∣

s=t
.

Hence,
Ψ̇(t, x) = −2φT (s, t, x)P (s)g(t, x).

Using the fact that V is a decreascent function in conjunction with the above expres-
sion yields the global exponential stability of (1).

Finally, we give an example to illustrate the applicability of the result of this paper.
Moreover, we will compare in the next section our approach with the classical one for a
certain class of nonlinear system.

Example As a simple example, to compute the cross term, we consider the following
scalar linear equation

ẋ = −ax + ρ(t)x, a > 0, (6)

with ρ(t) satisfies (A2). If we choose

W (x) = x2

as a Lyapunov function of
ẋ = −ax

we obtain

φ(s, t, x) = exp
(

− a(s− t) +

s
∫

t

ρ(u) du
)

x.

Thus,

Ψ(t, x) = x2

+∞
∫

t

ρ(s) exp
(

2

s
∫

t

ρ(u) du
)

e−2a(s−t)ds.

So,

Ψ(t, x) = −x2 + 2ax2

+∞
∫

t

exp
(

2

s
∫

t

ρ(u) du
)

e−2a(s−t)ds.

It follows that, Ψ is a C1-function and then x = 0 is an exponentially stable equilibrium
point for (4).

3 Stability of a Certain Class of Perturbed Systems

Consider the following system

ẋ = Ax + ρ(t)B(x)x, (7)
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where x ∈ Rn, t ≥ 0, A(n× n) is a constant matrix which is supposed Hurwitz and ρ(t)
satisfies (A2).

Moreover, We assume that
(A3). B(·) is a C1-function and there exists a positive constant M , such that

∀x ∈ Rn ‖B(x)‖ ≤ M.

We have the following result of stability for system (7).

Proposition 3.1 If (A1), (A2) and (A3) are satisfied, then Ψ is C1 in R+×Rn and
x = 0 is a globally exponentially stable equilibrium point for (7).

Proof We denote

X(s) =
∂
∂x

(Φ(s, t, x))

and

Y (s) =
∂
∂t

(Φ(s, t, x)), s ≥ t.

Thus, X and Y satisfies the following two statements

Ẋ =
(

A + ρ(s)
∂B
∂x

(Φ(s, t, x))Φ(s, t, x) + ρ(s)B(Φ(s, t, x))
)

X

with
X(t) = I

and

Ẏ =
(

A + ρ(s)
∂B
∂x

(Φ(s, t, x))Φ(s, t, x) + ρ(s)B(Φ(s, t, x))
)

Y

with
Y (t) = 0.

Let K be a compact set of Rn. Because Φ(s, t, x) is uniformly bounded and B(·) is a
C1-function, then there exists MK > 0, such that ∀ s ≥ t ≥ 0, ∀x ∈ K,

∥

∥

∥

∥

ρ(s)
∂B
∂x

(Φ(s, t, x))Φ(s, t, x) + ρ(s)B(Φ(s, t, x))
∥

∥

∥

∥

≤ MKρ(s).

Note that Lemma 2.1 implies that X(s, t, x) and Y (s, t, x) are bounded when x leaves
in K.

Thus, we have

Ψ(t, x) =

+∞
∫

t

∂W
∂x

(φ(s, t, x))ρ(s)B(φ(s, t, x))φ(s, t, x) ds.

Because X and Y are bounded when x ∈ K, then there exist M1 and M2, such that
∥

∥

∥

∥

∂
∂x

(

∂W
∂x

(φ(s, t, x))ρ(s)B(φ(s, t, x))φ(s, t, x)
)∥

∥

∥

∥

≤ M1ρ(s)

and
∥

∥

∥

∥

∂
∂t

(

∂W
∂x

(φ(s, t, x))ρ(s)B(φ(s, t, x))φ(s, t, x)
)∥

∥

∥

∥

≤ M2ρ(s)

for all s ≥ t ≥ 0 and x ∈ K.
Hence, we conclude that Ψ is a C1-function on R+ × Rn and then x = 0 is globally

exponentially stable equilibrium point of system (7).
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Remark To compare the result given in this paper with the usual techniques of
stability for perturbed systems, we shall consider the Lyapunov function of the nominal
system as a Lyapunov function for the whole system. Let V (t, x) = xT Px, where P > 0
is symmetric and positive definite so that

AT P + PA = −Q

with Q symmetric and positive definite matrix. Then the derivative of V (t, x) along the
solutions of system (7) gives

V̇(2)(t, x) = −xT Qx + ρ(t)xT
(

BT (x)P + PB(x)
)

x.

It follows that,

V̇(2)(t, x) ≤
(

− λmin(Q) + 2λmax(P )ρ(t)‖B(x)‖
)

‖x‖2,

V̇(2)(t, x) ≤ −
(

λmin(Q)− 2kMλmax(P )
)

‖x‖2.

Then, if we choose
λmin(Q)− 2kMλmax(P ) > 0

which implies that k must satisfy the following inequality

k <
λmin(Q)

2Mλmax(P )
. (8)

Hence, the system (7) is globally exponentially stable. Notice that, with our choice of
Lyapunov function we don’t need that the upper bound of ρ(t) is limited as in (8). So, we
obtain a class of stable differential system more large than by using the classical method.
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1 Introduction

Takagi-Sugeno (TS) fuzzy models, proposed by Takagi and Sugeno [16] and further de-
veloped by Sugeno and Kang [15], are nonlinear systems described by a set of IF–THEN
rules which gives a local linear representation of an underlining system. It is well known
that such models can describe or approximate a wide class of nonlinear systems. Hence,
it is important to study their stability or to synthesize their stabilizing controllers.

In fact, the stability study constitutes an important phase in the synthesis of a control
law, as well as in the analysis of the dynamic behavior of a closed loop system. It has
been one of the central issues concerning fuzzy control, refer to the brief survey on the
stability issues given in [14].

Based on the stability conditions, model-based control of such systems has been de-
veloped for the continuous case in [5 – 7, 13, 19, 20] by using state-space models.

In recent literature, Tanaka and Sugeno [17], have provided a sufficient condition for
the asymptotic stability of a fuzzy system in the sense of Lyapunov through the existence
of a common Lyapunov function for all the subsystems.

This kind of design methods suffer mainly from a few limitations:

(1) one can construct a TS model if local description of the dynamical system to be
controlled is available in terms of local linear models;

(2) a common positive definite matrix must be found to satisfy a matrix Lyapunov
equation, which can be difficult especially when the number of fuzzy rules required
to give a good plant model is large so that the dimension of the matrix equation
is high;

(3) it appears that a necessary condition, for the existence of this common positive
definite matrix, is that all subsystems must be asymptotically stable.

To overcome those difficulties, we propose, in this paper, to study the stability of TS
fuzzy nonlinear model through the study of the convergence of a regular vector norm.

If the vector norm is of dimension one, then this is like the second Lyapunov method
approach; therefore, if it is of higher dimension, then we deal with a vector-Lyapunov
function [9 – 12].

The vector norm approach, based on the comparison/overvaluing principle, has a ma-
jor advantage: it deals with a very large class of systems, since no restrictive assumption
is made on the matrices of state equations, except that they are bounded for bounded
states, in such a way that a unique continuous solution exists.

Nevertheless, although the overvaluing principle allows the simplification of the study,
it also presents the corresponding drawback: overvaluation means losing information on
the real behavior of the process. Thus, the cases of state equations which are the most
resistant of this type of method are the ones in which replacement of coefficients by their
absolute values leads to an overvaluing system which is far from reality, for instance an
unstable one, whereas the initial system was stable. In many cases, this type of drawback
can be bypassed by using changes of state variables leading to a good performance of the
representation [2 – 4]. For instance, for continuous control, a particularly interesting case
is the one in which the off-diagonal elements are naturally positive or equal to zero; in
this case, the overvaluing is carried out without loss of information.

This paper is organized as follows: TS fuzzy nonlinear continuous model description
is presented in Section 2. Section 3 reviews some existing stability conditions of such
system. In Section 4, the vector norm approach combined with the arrow form matrix
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are employed to give the new stability criterion for TS fuzzy nonlinear continuous mod-
els. The case of Lur’e–Postnikov continuous system is studied in Section 5. Finally,
conclusions are drawn in Section 6.

2 TS Fuzzy Nonlinear Continuous Model Description

Consider a TS fuzzy model when local description of the plant to be controlled is available
in terms of nonlinear autonomous models

Ẋ(t) = Ai(X)X(t) (1)

where X ∈ Rn describes the state vector, Ai(·) are matrices of appropriate dimensions,
Ai(·) = {aij(·)} and aij(·) : Rn → R, are nonlinear elements.

It is assumed that X = 0 is the unique equilibrium state of the studied system.
The above information is then fused with the available IF–THEN rules, where the i-th

rule, i = 1, . . . , r, can have the form:

Rule i: IF {X(t) is Hi(X)} THEN
{

Ẋ(t) = Ai(·)X(t)
}

,

where Hi(X) is the grade of the membership of the state X(t).
The final output of the fuzzy system is inferred as follows:

Ẋ(t) =
r

∑

i=1

hi(X)Ai(·)X(t) (2)

with, for i = 1, . . . , r, 0 ≤ hi(X) ≤ 1 and
r
∑

i=1
hi(t) = 1.

3 Stability Conditions — Problem Statement

It is straightforward to show that a sufficient condition for asymptotic stability in the
large of the equilibrium state X = 0 of the unforced fuzzy model, obtained by lineariza-
tion of (2),

Ẋ(t) =
r

∑

i=1

hiAiX(t) (3)

is that there exists a common symmetric positive definite matrix P such that, for i =
1, 2, . . . , r

AT
i P + P Ai < 0. (4)

The necessary condition for the existence of matrix P is that each matrix must be asymp-
totically stable [17], i.e. all the subsystems are stable, or that matrices:

k
∑

j=1

Aij (5)

where ij ∈ {1, 2, . . . , r} and k = 2, 3, . . . , r, are asymptotically stable [18].
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The linear matrix inequality (LMI) based approaches have been used to determine the
existence of a common symmetric positive definite matrix [20]. Their computation can
be expensive in the case of high number of rules.

As it was shown, the stability study of the nonlinear model (2) requires the lineariza-
tion of the nonlinear subsystems described by the instantaneous characteristic matrices
Ai. If those matrices are in arrow form [2], stability conditions of the nonlinear system
(2), as we will see in the next section, can be formulated easily.

4 New TS Fuzzy Nonlinear Model Stability Criterion

Let us consider the continuous process whose model is in the controllable form, that
matrices Ai(·), of equation (2), are written as

Ai(·) =













0 1 0 . . . 0
...

. . .
. . .

. . .
...
0

0 . . . 0 1
−ai,0(·) . . . −ai,n−1(·)













. (6)

A change of base under the form:

T =













1 1 · · · 1 0
α1 α2 · · · αn−1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
αn−2

1 αn−2
2 · · · αn−2

n−1 0
αn−1

1 αn−1
2 · · · αn−1

n−1 1













(7)

allows the new state matrices, denoted by Fi(·), to be in arrow form (2)

Fi(·) = T−1Ai(·)T =









α1 β1
. . .

...
αn−1 βn−1

γi,1(·) · · · γi,n−1(·) γi,n(·)









, (8)

where

βj =
n−1
∏

k=1
k 6=j

(αj − αk)−1 ∀ j = 1, 2, . . . , n− 1, (8a)

γi,j(·) = −PAi(·, αj) ∀ j = 1, 2, . . . , n− 1, (8b)

γi,n(·) = −ai, n−1(·)−
n−1
∑

i=1

αi. (8c)

PAi(·, λ) is the Ai(·) instantaneous characteristic polynomial such that

PAi(·, λ) = λn +
n−1
∑

l=0

ai,l(·)λl (9)
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and αj , j = 1, 2, . . . , n− 1, are distinct arbitrary parameters.
Let us note that the determinant of the arrow form matrix Fi(·) is computed as [2]

|Fi(·)| =
[

γi,n(·)−
n−1
∑

j=1

α−1
j γi,j(·) βj

] n−1
∏

k=1

αk. (10)

The final output of the fuzzy system is then inferred as follows

Ẏ (t) = Q(·)Y (t) (11)

where Y (t) is the new state vector such that X(t) = TY (t),

Q(·) =
r

∑

i=1

hiFi(·), (11a)

Q(·) =













α1 β1
. . .

...
αn−1 βn−1

r
∑

i=1
hiγi,1(·) · · ·

r
∑

i=1
hiγi,n−1(·)

r
∑

i=1
hiγi,n(·)













. (11b)

In such conditions, if p(Y ) denotes a vector norm of Y , satisfying component to compo-
nent the equality

p(Y ) = |Y | (12)

it is possible, by the use of the aggregation techniques [2, 9], to define a comparison
system (13), Z ∈ Rn, of (11)

Ż = M(·)Z. (13)

In this expression, the matrix M(·) is deduced from the matrix Q(·) by substituting
only the off-diagonal elements by their absolute values; it can be written as

M(·) =













α1 |β1|
. . .

...
αn−1 |βn−1|

∣

∣

∣

∣

r
∑

i=1
hiγi,1(·)

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

r
∑

i=1
hiγi,n−1(·)

∣

∣

∣

∣

r
∑

i=1
hiγi,n(·)













. (14)

Noting that the non-constant elements are isolated in the last row of matrix M(·), then
the stability condition of the continuous nonlinear system (2) can be easily deduced from
the Borne and Gentina criterion [8, 11]. It comes

(−1)i∆i > 0, i = 1, 2, . . . , n, (15)

with ∆i the i-th M(·) principal minor.
It is clear that, for i = 1, 2, . . . , n − 1, the condition (15) is verified for αi ∈ R−,

therefore, for i = n and using the relation (10), it leads to the stability condition (16).
Then, the TS fuzzy nonlinear model stability, in the continuous case, can be studied

by the following proposed theorem.
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Theorem 4.1 If there exist αi ∈ R−, i = 1, 2, . . . , n− 1, αi 6= αj for all i 6= j and
ε ∈ R+ such that the inequality

−
r

∑

i=1

hiγi,n(·) +
n−1
∑

j=1

∣

∣

∣

∣

r
∑

i=1

hiγi,j(·)βj

∣

∣

∣

∣

α−1
j ≥ ε ∀X ∈ Rn (16)

is satisfied, the equilibrium state of the studied continuous nonlinear system (3) and (7)
is asymptotically globally stable.

If there exist αj , j = 1, 2, . . . , n− 1, such that

r
∑

i=1

hiγi,j(·)βj > 0 j = 1, 2, . . . , n− 1, (17)

the Theorem 4.1 can be simplified and the comparison system (13) can be chosen iden-
tically to (11).

Since for Q(·)

∆n =
r

∑

i=1

hiPAi(·, 0), (18)

−
r

∑

i=1

hiγi,n(·) +
n−1
∑

j=1

α−1
j

r
∑

i=1

hiγi,j(·)βj =
n−1
∏

j=1

(−αj)−1
r

∑

i=1

hiPAi(·, 0). (19)

Hence to Corollary 4.1.

Corollary 4.1 If there exist αj ∈ R−, αj 6= αk for all j 6= k and ε ∈ R+ such
that:

(i) the inequalities (17) are satisfied for all X ∈ Rn,

(ii)
r
∑

i=1
hi(t) PAi(·, 0) ≥ ε for all X ∈ Rn, (20)

the equilibrium state of the continuous system described by (2) and (6) is globally asymp-
totically stable.

Example 4.1. Unstable TS fuzzy model case
Given the unforced fuzzy linear system model described by (3), where r = 2 and

A1 =
[

0 1
2 −1

]

, A2 =
[

0 1
−1 −1

]

.

Obviously, the first subsystem is unstable whereas the second one is stable. However,
there is no common positive definite matrix P to verify the stability condition (4).

The matrices A1 and A2 can be transformed to arrow form matrices F1 and F2, by
the same change of base under the form

T =
[

1 0
α 1

]

, F1 = T−1A1T =
[

α 1
−(α2 + α− 2) −1− α

]

,

F2 = T−1A2T =
[

α 1
−(α2 + α + 1) −1− α

]
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Di(s) = sn +
n−1
∑

j=0

di,jsj ≡
n

∏

j=1

(s− pi,j), (21)

N(s) = sn−1 +
n−2
∑

j=0

cjsj ≡
n−1
∏

j=1

(s− zj). (22)

Thus, the i-th unforced Lur’e–Postnikov system can be described by

Di(s)y(s) = f(e) = f∗(·)e = −f∗(·)N(s)y(s) (23)

witch leads to the nonlinear differential equation

y(n) +
n−1
∑

j=0

(di,j + f∗(·)cj)y(j) = 0. (24)

With the choice of arbitrary parameters α′j such that

αj = zj , j = 1, . . . , n− 1, (25)

this system can be described [1], in the state space arrow form, by

F ′i (·) =











z1 β′1
. . .

...
zn−1 β′n−1

γ′i,1(·) · · · γ′i,n−1(·) γ′i,n(·)











(26)

with

β′j =
n−1
∏

k=1
k 6=j

(zj − zk)−1, ∀ j = 1, . . . , n− 1, (26a)

γ′i,n(·) = −(di,n−1 + f∗(·))−
n−1
∑

j=1

zj , (26b)

γ′i,j(·) = −P ′Ai
(·, zj), ∀ j = 1, . . . , n− 1, (26c)

P ′Ai
(·, zj) = Di(zj) + f∗(·) Ni(zj) ≡ Di(zj). (26d)

The final output of the fuzzy Lur’e–Postnikov system is then inferred as (11)

Ẏ (t) =
r

∑

i=1

hiF ′i (·)Y (t) (27)

with

r
∑

i=1

hiF ′i (·) =













z1 β′1
. . .

...
zn−1 β′n−1

r
∑

i=1
hiγ′i,1(·) . . .

r
∑

i=1
hiγ′i,n−1(·)

r
∑

i=1
hiγ′i,n(·)













. (27a)

The stability conditions of the studied Lur’e–Postnikov system can be deduced by using
the following proposed theorem.
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Theorem 5.1 The Lur’e–Postnikov system described by (24) is globally asymptoti-
cally stable if there exist ε ∈ R+ such that the following conditions are verified

zj ∈ R−, j = 1, . . . , n− 1, zi 6= zj ∀ i 6= j; (28)

−
r

∑

i=1

hi(t)γ′i,n(·) +
n−1
∑

j=1

(zj)−1
∣

∣

∣

∣

β′j
r

∑

i=1

hi(t)γ′i,j(·)
∣

∣

∣

∣

≥ ε > 0. (29)

Proof The non-constant elements in (27a) are isolated in the last row. Hence, the
stability conditions can be easily deduced from the Theorem 4.1.

If for parameters zj , j = 1, . . . , n, the following condition is verified

β′j
r

∑

i=1

hiγ′i,j(·) > 0 (30)

the inequality (29) can then be written:

n−1
∏

i=1

(−zj)−1
r

∑

i=1

hiP ′Ai
(·, 0) ≥ ε > 0. (31)

Hence to Corollary 5.1.

Corollary 5.1 If zj ∈ R−, j = 1, 2, . . . , n− 1, zj 6= zk, ∀ j 6= k, and ε ∈ R+ such
that ∀X ∈ Rn

(i) the inequality (30) is satisfied; (32)

(ii)
r
∑

i=1
hiP ′Ai

(·, 0) ≥ ε, (33)

the Lur’e–Postnikov continuous system described by (24), (26) and (27) is globally asymp-
totically stable.

Example 5.1 Consider the Lur’e–Postnikov system shown in Figure 5.1 with n = 2,
r = 2, f(e) = f∗(·)e, p1,1 = −1, p1,2 = −3, p2,1 = −2, p2,2 = −4 and z1 = −2.5.

From (21) and (22), one can obtain then d1,1 = 4, d1,0 = 3, d2,1 = 6, d2,0 = 8,
and c0 = 2.5.

According to (26), the characteristic matrices, in the arrow form, are given by

F ′1(·) =
[

z1 1
−(z2

1 + 4z1 + 3) −4− f∗(·)− z1

]

=
[

−2.5 1
0.75 −1.5− f∗(·)

]

,

F ′2(·) =
[

z1 1
−(z2

1 + 6z1 + 8) −6− f∗(·)− z1

]

=
[

−2.5 1
0.75 −3.5− f∗(·)

]

.

The global fuzzy system is then described by

F ′(·) =
2

∑

i=1

hiF ′i (·)
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For an important class of Lur’e–Postnikov continuous system, the stability criterion
corresponds to a simple instantaneous characteristic polynomial condition.

The considered illustrative examples showed the efficiency of the proposed new ap-
proaches.

Other similar results can be obtained easily for nonlinear TS fuzzy discrete systems.
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is considerable challenge in the synthesis of control laws for the nonholonomic systems
since as pointed out in a famous paper of Brockett [6], they cannot be stabilized by
continuously differentiable, time invariant, state feedback control laws. To overcome the
limitations imposed by the Brockett’s result, a number of approaches have been proposed
for the stabilization of nonholonomic control systems to equilibrium points, see [11] for
a comprehensive survey of the field. Among the proposed solutions are smooth time
varying controllers [16, 17, 8, 12, 13, 15, 4], discontinues or piecewise smooth control laws
[3, 5, 7, 9, 19], and hybrid controllers [5, 10, 20].

Despite the vast amount of papers published on the stabilization of nonholonomic
systems, the majority has concentrated on the kinematics models of mechanical systems
controlled directly by velocity inputs. Although in certain circumstances this can be
acceptable, many physical systems (where forces and torques are actual inputs) will not
perform well if their dynamics are neglected.

As a contribution to overcome this limitation, this paper derives a time-varying control
law for the so-called the extended nonholonomic double integrator (ENDI) system. The
extended nonholonomic double integrator (ENDI) system can be viewed as an extension
of the so-called nonholonomic integrator [6]. Its importance stems from the fact that it
captures the dynamics and kinematics of a nonholonomic system with three states and
two first-order dynamics control inputs, (e.g., the dynamics of a wheeled robot subject
to force and torque inputs).

This article presents a feedback stabilization control strategy based on model reference
approach for ENDI. The trajectory of the extended system for ENDI model is chosen as
the model reference trajectory. The extended system has equal number of inputs and
state variables i.e. m = n therefore can be made asymptotically stable by choosing
an arbitrary Lyapunov function. This classical state feedback is then combined with a
periodic continuation of a parameterized solution to an open loop steering problem for the
comparison of flows of the original and extended systems. In combination with the time
invariant state feedback for the extended system, the solution to this open loop problem
delivers a time varying control, which provides for periodic intersection of the trajectories
of the controlled extended system and the original system. For stabilizing the original
system, the extended system trajectory serves as a reference. The time-invariant feedback
for the extended system dictates the speed of convergence of the system trajectory to
the desired terminal point, the open loop solution serves the averaging purpose in that
it ensures that the “average motion” of the original system is that of the controlled
extended system. The construction proposed here demonstrates that synthesis of time
varying feedback stabilizers for ENDI with two control input can be viewed as a procedure
of combining static feedback laws for a Lie bracket extension of the system with a solution
of an open loop trajectory interception control problem.

2 The Kinematics Model of the Extended Nonholonomic Double Integrator

In [6], Brockett introduced the nonholonomic integrator system

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 − x1u2,

where (x1, x2, x3)T ∈ R3 is the state vector and (u1, u2)T ∈ R2 is a two-dimensional
input. This system displays all basic properties of nonholonomic systems and is often
quoted in the literature as a benchmark for control system design [3, 10, 14].
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The nonholonomic integrator captures (under suitable state and control transforma-
tions) the kinematics of a wheeled robot. However, the nonholonomic integrator model
fails to capture the case where both the kinematics and dynamics of a wheeled robot
must be taken into account. To tackle this realistic case, the nonholonomic integrator
model must be extended. It is shown in [2] that the dynamic equations of motion of a
mobile robot of the unicycle type can be transformed into the system

ÿx1 = u1, ÿx2 = u2, ÿx3 = x1ẋ2 − x2ẋ1. (1)

By defining the state variables x = (x1, x2, x3, x4, x5)T = (x1, x2, x3, ẋ1, ẋ2)T, system
(1) becomes as ẋ1 = x4, ẋ2 = x5, ẋ3 = x1x5 − x2x4, ẋ4 = u1, ẋ5 = u2, which can be
written in the following standard form:

ẋ = g0(x) + g1(x)u1 + g2(x)u2, (2)

where

g0(x) = (x4, x5, x1x5 − x2x4, 0, 0)T, g1(x) = (0, 0, 0, 1, 0)T, g2(x) = (0, 0, 0, 0, 1)T.

As in [1], the system (2) will be referred to as the extended nonholonomic double inte-
grator (ENDI).

The ENDI system (2) satisfies the following properties:
H1. The vector fields g0, g1, g2 are real analytic and complete and, additionally,

g0(0) = 0.

H2. The ENDI system is locally strongly accessible for any x ∈ R5 as this satisfies
the LARC (Lie algebra rank condition) for accessibility (see [18]), namely that
L(g0, g1, g2), the Lie algebra of vector fields generated by g0(x), g1(x) and g2(x),
spans R5 at each point x ∈ R5 that is

span{g1, g2, g3, g4, g5}(x) = R5 for all x ∈ R5, (3)

where

g3(x) = [g0(x), g1(x)] = (1, 0,−x2, 0, 0)T, g4(x) = [g0(x), g2(x)] = (0, 1, x1, 0, 0)T,

g5(x) = [[g0(x), g1(x)], [g0(x), g2(x)]] = [g3(x), g4(x)] = (0, 0, 2, 0, 0)T.

H3. The controllability Lie algebra L(g0, g1, g2) is locally nilpotent i.e. all other Lie
brackets which are not involve in accessibility rank condition are zero when eval-
uated at zero.

3 The Control Problem

(SP) Given a desired set point xdes ∈ R5, construct a feedback strategy in terms of
the controls ui : R5 → R, i = 1, 2, such that the desired set point xdes is an
attractive set for (2), so that there exists an ε > 0, such that x(t; t0, x0) → xdes,
as t →∞ for any initial condition (t0, x0) ∈ R+ ×B(xdes; ε).



384 FAZAL-UR-REHMAN

Without the loss of generality, it is assumed that xdes = 0, which can be achieved by
a suitable translation of the coordinate system.

4 Basic Approach of Designing Stabilizing Control Law for ENDI

4.1 Extended system

The construction of the stabilizing feedback, presented in the next section, employs as its
base a Lie bracket extension for the original system (2). This extension is a new system
whose right hand side is a linear combination of the vector fields, which locally span the
state space. The “coefficients” of this linear combination are regarded as “extended”
controls. The extended system can be written as:

ẋ = g0(x) + g1(x)ν1 + g2(x)ν2 + g3(x)ν3 + g4(x)ν4 + g5(x)ν5. (4)

Henceforth, equations (2) and (4) are referred to as the “original system”, and the “ex-
tended system”, respectively. The importance of the extended system for the purpose of
control synthesis lies in the fact that, unlike the original system, it permits instantaneous
motion in the “missing” Lie bracket directions g3, g4 and g5.

4.2 Stabilization of the extended system

The extended system (4) can be made globally asymptotically stable if we define the
following control inputs

ν(x) = (ν1(x), ν2(x), ν3(x), ν4(x), ν5(x))T

= {G(x)}−1(−x− g0(x)) =











0 0 1 0 0
0 0 0 1 0
0 0 −x2 x1 2
1 0 0 0 0
0 1 0.5 0 0











−1 









−x1 − x4

−x2 − x5

−x3 − x1x5 + x2x4

−x4
−x5











or

ν(x) = (ν1(x), ν2(x), ν3(x), ν4(x), ν5(x))T

=











0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

0.5x2 −0.5x1 0.5 0 0





















−x1 − x4

−x2 − x5

−x3 − x1x5 + x2x4

−x4

−x5











=











−x4
−x5

−x1 − x4

−x2 − x5

ν5











,
(5)

where

ν5 = −1
2
x2(x1 + x4) +

1
2
x1(x2 + x5)−

1
2
(x3 + x1x3 − x2x4)

G(x) = (g1(x, ) g2(x, ) g3(x, ) g4(x, ) g5(x, )).

The existence of {G(x)}−1 is guaranteed by the LARC condition.
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Lemma The extended system (4) can be made asymptotically stable by using the
feedback control as given in (5).

Proof By considering a Lyapunov function V (x) = 1
2 xTQx, where Q is some sym-

metric and positive definite matrix, it follows that, along the controlled extended system
trajectories,

d
dt

V (x) = xTQ(g0(x) + G(x){G(x)}−1(−x− g0(∗x))) = −xTQx = −2V (x) < 0,

∀x ∈ R5 \ {0}.

Confirming the asymptotic stability of (4) with feedback controls (5).

The discretization of the above control in time, with sufficiently high sampling fre-
quency 1/T , does not prejudice stabilization in that if the feedback control (5) is substi-
tuted by the discretized control

νT
i (x(t)) , νi(x(nT )), t ∈ [nT, (n + 1)T ), n = 0, 1, 2, . . . , i = 1, 2, . . . , 5.

This leads to a parameterized extended system

ẋ = g0(x) + g1(x)a1 + g2(x)a2 + g3(x)a3 + g4(x)a4 + g5(x)a5, (6)

where ai = νT
i (x(t)), i = 1, 2, . . . , 5, (which are constant over each interval [nT,

(n+1)T )). For a sufficiently small T , the discretization of the extended controls preserves
their stabilizing properties.

4.3 The trajectory interception problem

(TIP) Find control functions mi(a, t), i = 1, 2, in the class of functions which are con-
tinuous in a = (a1, a2, a3, a4, a5) and piece-wise continuous and locally bounded
in t, such that for any initial condition x(0) = x0 the trajectory xa(t; x0, 0) of
the extended, parameterized system (6) intersects the trajectory xm(t; x0, 0) of
the system (2) with controls mi, i = 1, 2, i.e. the trajectory of the system

ẋ = g0(x) + g1(x)m1(a, t) + g2(x)m2(a, t) (7)

intercept with the trajectory of

ẋ = g0(x) + g1(x)a1 + g2(x)a2 + g3(x)a3 + g4(x)a4 + g5(x)a5

precisely at time T , so that

xa(T ; x0, 0) = xm(T ;x0, 0). (8)
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4.4 The TIP in logarithmic coordinates of flows

To solve the TIP, we employ the formalism of [21] by considering a formal equation for
the evolution of flows for the system (6)

U̇(t) = U(t)
( 5

∑

i=0

giwi

)

, w0 = 1, U(0) = I, (9)

and its solution can be expressed locally as

U(t) =
5

∏

i=0

eγi(t)gi , (10)

where the functions γi, i = 0, 1, . . . , 5, are the logarithmic coordinates for this flow and
can be computed approximately as follows.

Equation (10) is first substituted into (9) which yields

g0w0 + g1w1 + · · ·+ g5w5 = γ̇0g0 + γ̇1(eγ0Adg0)g1 + γ̇2(eγ0Adg0eγ1Adg1)g2 + . . .

+ γ̇5(eγ0Adg0eγ1Adg1eγ2Adg2eγ3Adg3eγ4Adg4)g5,
(11)

where (eAdX)Y = eXY e−X and (AdX)Y = [X, Y ].
Employing the Campbell-Baker-Hausdorff formula

(eAdX)Y = eXY e−X = Y + [X,Y ] + [X, [X,Y ]]/2! + . . . ,

and ignoring all other Lie brackets which are not involved in LARC equation (3). This
gives

(eγ0Adg0)g1 = eγ0g0g1e−γ0g0 = g1 + (γ0/1!)[g0, g1] + (γ2
0/2!)[g0, [g0, g1]] + . . .

≈ g1 + γ0g3.
(12)

Similarly

(eγ0Adg0eγ1Adg1)g2 = eγ0Adg0(eγ1Adg1g2) = eγ0Afg0(g2)
(13)

≈ g2 + γ0[g0, g2] = g2 + γ0g4,

(eγ0Adg0eγ1Adg1eγ2Adg2)g3 = eγ0Adg0eγ1Adg1(eγ2Adg2g3)

≈ eγ0Adg0eγ1Adg1(g3 + γ2[g2, g3]) = eγ0Adg0eγ1Adg1(g3) (14)

≈ eγ0Adg0(g3) ≈ g3.

In a similar way we can obtain

(eγ0Adg0eγ1Adg1eγ2Adg2eγ3Adg3)g4 ≈ g4 + γ3g5, (15)

(eγ0Adg0eγ1Adg1eγ2Adg2eγ3Adg3eγ4Adg4)g5 ≈ g5. (16)
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Substituting (12) – (15) into equation (11) and comparing the coefficients of gi, i =
0, 1, . . . , 5, yields the following approximate equations for the evolution of the logarithmic
coordinates γi, i = 0, 1, . . . , 5,

γ̇0 = 1,

γ̇1 = w1,

γ̇2 = w2,

γ̇3 = −γ0w1 + w3,

γ̇4 = −γ0w2 + w4,

γ̇5 = γ0γ3w2 − γ3w4 + w5 with γi(0) = 0, i = 0, 1, . . . , 5.

(17)

The TIP problem can thus be recast in the logarithmic coordinates as follows.
[TIP in LC :] On a given time horizon T > 0, find control functions mi(a, t), i = 1, 2,

in the class of functions which are continuous in a = [a1, a2, a3, a4, a5], and piece-
wise continuous, and locally bounded in t, such that the trajectory t 7→ γa(t)
of

γ̇ = M(γ)a, γ(0) = 0, (18)

intersects the trajectory t 7→ γm(t) of

γ̇ = M(γ)m(a, t), γ(0) = 0, (19)

in which m(a, t) = [m1(a, t), m2(a, t), 0, 0, 0] at time T , so that

γa(T ) = γm(T ). (20)

The TIP in logarithmic coordinates now takes the form of a trajectory interception
problem for the following two control systems

γ̇0 = 1,

γ̇1 = w1,

γ̇2 = w2,

γ̇3 = −γ0w1 + w3,

γ̇4 = −γ0w2 + w4,

γ̇5 = γ0γ3w2 − γ3w4 + w5 with γi(0) = 0, i = 0, 1, . . . , 5.

CS1 : γ̇0 = 1, CS2 : γ̇0 = 1,
γ̇1 = m1, γ̇1 = a1,
γ̇2 = m2, γ̇2 = a2,
γ̇3 = −γ0m1, γ̇3 = −γ0a1 + a3,
γ̇4 = −γ0m2, γ̇4 = −γ0a2 + a4,
γ̇5 = γ0γ3m2, γ̇5 = γ0γ3a2 − γ3a4 + a5

(21)

with initial conditions γi(0) = 0, i = 0, 1, . . . , 5.
A solution to TIP is calculated by approximating the flow of ẋ = g0 + [g0, g1] by

the flow of ẏ = g0 + kg1 sin
2πt
T

, and the flow of ẋ = g0 + [[g0, g1], [g0, g2]] by ẏ =
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g0+kg1 sin
2πt
T

+kg2 cos
2πt
T

, where k is some constant. Therefore we adopt the following

parameterizations of mi, i = 1, 2:

m1 = c1 + (c3 + c5) sin
2πt
T

and m2 = c2 + c4 sin
2πt
T

+ c5 cos
2πt
T

, (22)

where ci, i = 1, 2, . . . , 5, are found as c1 = a1, c2 = a2, c3 = 6.28319 a3/T , c4 =
6.28319 a4/T and c5 = 6.28319 a5/T , or c1 = a1, c2 = a2, c3 = ka3, c4 = ka4 and
c5 = ka5, where k = 6.28319/T .

The time varying stabilizing controls for model (2), are thus given by

u1 = c1 + c3 sin
2πt
T

+ c5 cos
2πt
T

,

u2 = c2 + c4 sin
2πt
T

+ c5 cos
2πt
T

.
(23)

Theorem 4.1 Suppose that a solution to the TIP problem can be found. Then, there
exists an admissible time horizon Tmax and a neighborhood of the origin R such that
for any T < Tmax the time-varying feedback controls given in (23) are asymptotically
stabilizing the system (2) with the region of attraction R.

Proof By considering a trivial Lyapunov function V (x) = 1
2 xTx, x ∈ R5 it follows

that along the controlled system trajectories,

d
dt

V (x) = xTẋ = xT(g0(x) + g1(x)u1 + g2(x)u2)

= xT
(

g0(x) + g1(x)
(

c1 + c3 sin
2πt
T

+ c5 cos
2πt
T

)

+ g2(x)
(

c2 + c4 sin
2πt
T

+ c5 cos
2πt
T

))

= xT
(

g0(x) + g1(x)a1 + k3a3g1(x) sin
2πt
T

+ k5a5g1(x) sin
2πt
T

+ g2(x)a2 + k4a4g2(x) sin
2πt
T

+ k5a5g2(x) cos
2πt
T

)

≈ xT(g0(x) + g1(x)a1 + g2(x)a2 + g3(x)a3 + g4(x)a4 + g5(x)a5)

= xT(g0(x) + Gν) = −xTx < 0,

where G = [g1 g2 g3 g4 g5](x), ν = G−1{−x− g0(x)} for all x ∈ R5 \ {0}.

Confirming the asymptotic stability of (2) with feedback controls (23).
The simulation results employing the above controls are depicted in Figures 4.1 – 4.6.

In first simulation we choose x(0) = [0.9 0.7 0.4 0.8 0.6]T and T = 0.9. The results are
shown in Figures 4.1 – 4.4. In 2nd simulation we choose x(0) = [0.5 0.5 0.5 0.5 0.5]T

and T = 0.9. The results are shown in Figures 4.5 – 4.8.
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5 Conclusion

A time varying control law is derived for the extended nonholonomic double integrator
(ENDI) system that captures any kinematics completely nonholonomic model with three
states and two first order dynamic control inputs, e.g., the dynamics of a wheeled robot
subject to force and torque inputs. The controller yields asymptotic stability and con-
vergence of the closed loop system to an arbitrarily small neighborhood of the origin.
Simulation results captured some of the features of the proposed control laws and their
performance.
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Ekeland in [1] proved that the system (H) has for any T > 0 at least one nonconstant
T -periodic solution.

In the present paper, we try to find the same result under some more general hypothe-
ses. Precisely, we assume that H satisfies the following hypotheses:

(H1) H is convex;
(H2) ∀x ∈ R2N , x 6= 0, H(x) > H(0) = 0;
(H3) there exist α > 2 and β > 2 such that:

∀ (p, q) ∈ R2N , H(p, q) ≤ 1
α

∂H
∂p

(p, q)p +
1
β

∂H
∂q

(p, q)q;

(H4) There exists l > 0 such that ∀ (p, q) ∈ R2N

|H ′
p(p, q)| ≤ l

(

1 + |p|α−1 + |q|β
(α−1)

α

)

,

|H ′
q(p, q)| ≤ l

(

1 + |q|β−1 + |p|α
(β−1)

β

)

;

(H5) there exist m > 0, n > 0 such that ∀(p, q) ∈ R2N

|H ′
p(p, q)| ≥ m|p|α−1 − n.

|H ′
q(p, q)| ≥ m|q|β−1 − n.

Example 1.1 This is an example of Hamiltonian H which verifies the hypotheses
(H1) – (H5). Let G,K : RN → R be two functions of class C1, convex such that:

∀x ∈ RN , x 6= 0, G(x) > G(0) = 0, K(x) > K(0) = 0,

∀x ∈ RN ,
1
α

G′(x)x ≥ G(x),
1
β

K ′(x)x ≥ K(x),

∃ a, b > 0: ∀x ∈ RN , G(x) ≤ a|x|α, K(x) ≤ b|x|β .

Then the Hamiltonian H(p, q) = G(p) + K(q), verifies the hypotheses (H1) – (H5).

Our main result is the following.

Theorem 1.1 Under the hypotheses (H1) – (H5), the system (H) possesses for any
T > 0 a non constant T -periodic solution. Moreover, the energy h verifies the condition:

h ≤ α + β
αβ − α− β

[

(

1
2
− 1

α

)[

4π
a2T

] α
α−2

+
(

1
2
− 1

β

)[

4π
b2T

]
β

β−2
]

+
(α + β)aα

α(αβ − α− β)
= h̄

with
aα

α
=

bβ

β
= min{H(p, q), |p|α + |q|β = 1}.
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2 Preliminaries

Definition 2.1 Let E be a Banach space and f : E → R be a function of class C1.
The function f satisfies the Palais–Smale condition (PS) if every sequence (xn) such
that (f(xn)) is bounded and f ′(xn) → 0 as n goes to infinity, possesses a convergent
subsequence.

Theorem 2.1 (Ambrosetti–Rabinowitz Theorem) [7] Let E be a Banach space and
f : E → R be a function of class C1. Assume that:

(i) there exists α > 0 such that:

m(α) = inf{f(x) : ‖x‖ = α} > f(0),

(ii) there exists z ∈ E such that ‖z‖ ≥ α and f(z) ≤ m(α),
(iii) f satisfies the Palais–Smale condition (PS).

Then there exists x̄ ∈ E such that f ′(x̄) = 0 and f(x̄) ≥ m(α). Moreover

f(x̄) = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0 et γ(1) = z}.

We have the version of the theorem of Krasnoselskii [5].

Theorem 2.2 Let Ω be a measurable bounded set of Rn and f : Ω×RN ×RN → R
be a function verifying the following condition.

For almost every t ∈ Ω, f(t, ·, ·) is convex, of class C1, and that for all (x, y) ∈
RN ×RN , f(·, x, y) is measurable.

Let α, β > 1 be two reals, we assume that there exist ξ̄ ∈ Lα(0, T ;RN ), µ̄ ∈
Lβ(0, T ;RN ), ū ∈ Lα∗(0, T ;RN ), v̄ ∈ Lβ∗(0, T ;RN ) where α−1 + α∗−1 = 1, β−1 +
β∗−1 = 1, such that

∫

Ω

|f(t, ξ̄(t), µ̄(t))| dt < ∞,
∫

Ω

|f∗(t, ū(t), v̄(t)) dt < ∞,

and there exists a constant a > 0 such that for all t ∈ Ω and (p, q) ∈ R2N ,

∣

∣

∣

∣

∂f
∂p

(t, p, q)
∣

∣

∣

∣

≤ amax{1, |p|α−1, |q|β
(α−1)

α },
∣

∣

∣

∣

∂f
∂q

(t, p, q)
∣

∣

∣

∣

≤ amax{1, |p|α
(β−1)

β , |q|β−1},

so the functional

F : Lα × Lβ → R,

(p, q) 7→
∫

Ω

f(t, p(t), q(t)) dt
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is of class C1 and

[F ′(p, q)](t) =
∂f

∂(p, q)
(t, p(t), q(t)).

3 Proof of Theorem 1.1

We will proceed by successive lemmas.
The hypothesis (H3) is equivalent to the following

(H6) ∀λ ≥ 1, ∀ (p, q) ∈ R2N , H(λ1/αp, λ1/βq) ≥ λH(p, q).

Let ε0 ∈ ]0,m[ be a fixed real. For all 0 < ε ≤ ε0, we consider the Hamiltonian

Hε(p, q) = H(p, q) + ε(|p|α + |q|β).

It’s clear that Hε is strictly convex and verifies (H2) – (H5).
Set

aα
ε

α
=

bβ
ε

β
=

aα

α
+ ε, lε = l + ε, mε = m− ε.

Lemma 3.1 Let α∗ and β∗ be such that 1
α + 1

α∗ = 1
β + 1

β∗ = 1, so

(7) H∗
ε is of class C1;

(8) ∀(r, s) ∈ R2N , 1
α∗ (H

∗
ε )′r(r, s)r + 1

β∗ (H
∗
ε )′s(r, s)s ≤ Hε

∗(r, s);

(9) Hε(p, q) ≥ aε
α

α |p|α + bε
β

β |q|β for all |p|α + |q|β ≥ 1, Hε(p, q) ≥ aα
ε
α (|p|α + |q|β − 1)

for all (p, q) ∈ R2N ;
(10) ∀ (r, s) ∈ R2N , H∗

ε (r, s) ≤ aα
ε
α + 1

α∗aα∗
ε
|r|α∗ + 1

β∗bβ∗
ε
|s|β∗ ;

(11) there exists kε > 0 such that ∀ (p, q) ∈ R2N , Hε(p, q) ≤ kε(|p|α + |q|β);
(12) ∀ (r, s) ∈ R2N H∗

ε (r, s) ≥ 1
α∗cα∗

ε
|r|α∗ + 1

β∗dβ∗
ε
|s|β∗ , where cε and dε are given

by cα
ε
α = dβ

ε
β = kε.

Proof (9) Set S = {(p, q) ∈ R2N : |p|α + |q|β = 1}. For (p, q) ∈ R2N such that
|p|α + |q|β ≥ 1, we set s = |p|α + |q|β , so (s−1/αp, s−1/βq) ∈ S and by (H6) we have

Hε(p, q) ≥ s min
(p,q)∈S

{Hε(p, q)}.

For |p|α + |q|β ≤ 1, we have Hε(p, q) ≥ 0 ≥ aα
ε
α (|p|α + |q|β−1). This is the desired result.

(7) By the inequality (9) we have for |p|α + |q|β ≥ 1

Hε(p, q)
|p|+ |q|

≥ aα
ε

α

(

|p|α

|p|+ |q|
+

|q|β

|p|+ |q|

)

and since α, β > 1, so

lim
|(p,q)|→∞

Hε(p, q)
|p|+ |q|

= +∞.
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Since Hε is strictly convex and of class C1, so by a result of convex analysis the conjugate
H∗

ε of Hε is of class C1.
(8) Let (r, s) ∈ R2N and (p, q) = H∗

ε
′(r, s) = ((Hε

∗)′r(r, s), (Hε
∗)′s(r, s)), so by the

Fenchel reciprocity and the hypothesis (H3) we obtain

Hε
∗(r, s) ≥

(

1− 1
α

)

(Hε
∗)′r(r, s)r +

(

1− 1
β

)

(Hε
∗)′s(r, s)s,

hence the result.
(10) Let (r, s) ∈ R2N , we have

H∗
ε (r, s) = sup

(p,q)∈R2N
{pr + sq −Hε(p, q)},

thus by the inequality (9)

Hε
∗(r, s) ≤ sup

(p,q)∈R2N

{

pr + sq − aα
ε

α
|p|α − bβ

ε

β
|q|β +

aα
ε

α

}

≤ 1
α∗aα∗

ε
|r|α

∗
+

1

β∗bβ∗
ε
|s|β

∗
+

aα
ε

α
.

(11) For (p, q) ∈ R2N such that |p|α + |q|β ≥ 1, there exists θ ∈ ]0, 1[ such that

Hε(p, q) =
∂Hε

∂p
(θ(p, q))p +

∂Hε

∂q
(θ(p, q))q

≤
∣

∣

∣

∣

∂Hε

∂p
(θ(p, q))

∣

∣

∣

∣

|p|+
∣

∣

∣

∣

∂Hε

∂q
(θ(p, q))

∣

∣

∣

∣

|q|

so by the hypothesis (H4)

Hε(p, q) ≤ lε
(

|p|+ |p|α + |p‖q|β
(α−1)

α + |q|+ |q|β + |q‖p|α
(β−1)

β

)

≤ lε

(

|p|+ |q|+ |p|α + |q|β +
|p|α

α
+
|q|β

α∗
+
|q|β

β
+
|p|α

β∗

)

.

So there exists k̃ε > 0 such that

Hε(p, q) ≤ k̃ε(|p|α + |q|β).

For (p, q) ∈ R2N such that , s = |p|α + |q|β ≤ 1, we have by (H6)

H(p, q) ≤ sH(s−1/α, s−1/β)

≤ s max
(p,q)∈S

{H(p, q)} ≤ k(|p|α + |q|β),

where k = max
(p,q)∈S

{H(p, q)}.

Hence, by picking kε = max(k̃ε, k + ε), we obtain the result.
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(12) Let (r, s) ∈ R2N ,

H∗
ε (r, s) = sup

(p,q)∈R2N
{pr + sq −Hε(p, q)}

≥ sup
(p,q)∈R2N

{pr + sq − kε(|p|α + |q|β)}

≥ 1
α∗cα∗

ε
|r|α

∗
+

1

β∗dβ∗
ε
|s|β

∗
.

Denote for µ a real ≥ 1

Lµ
0 =

{

p ∈ Lµ(0, T ; RN )/

T
∫

0

p(t)dt = 0
}

.−−−???

We define on Lα∗
0 × Lβ∗

0 the dual action functional fε by

fε(p, q) =
1
2

T
∫

0

〈J(p, q), π(p, q)〉dt +

T
∫

0

H∗
ε (p, q) dt,

where

(πy)(t) =

t
∫

0

y(s) ds− 1
T

T
∫

0

dt

t
∫

0

y(s) ds

is the primitive of y with zero mean.
We are interested in the search of a non trivial critical point of fε, by using the

Ambrosetti–Rabinowitz theorem.

Lemma 3.2 fε is of class C1 and for all (p, q) ∈ Lα∗
0 × Lβ∗

0 , there exists (ξε, µε) ∈
RN ×RN such that

f ′ε(p, q) = −Jπ(p, q) + H∗′
ε (p, q) + (ξε, µε).

The proof is a simple application of the version of the theorem of Krasnoselskii.

Lemma 3.3 There exist ρ > 0 and γ > 0 such that

‖(p, q)‖Lα∗
0 ×Lβ∗

0
= ρ ⇒ fε(p, q) ≥ γ.

0 < ‖(p, q)‖Lα∗
0 ×Lβ∗

0
≤ ρ ⇒ fε(p, q) > fε(0, 0) = 0

Proof It’s easy to verify that for all (p, q) ∈ Lα∗
0 × Lβ∗

0 we have
∣

∣

∣

∣

∣

T
∫

0

≺ p(t), πq(t) � dt
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−
T

∫

0

≺ πp(t), q(t) � dt

∣

∣

∣

∣

∣

≤ T
1
α + 1

β (|p|2Lα∗ + |q|2Lβ∗ ).

So, by the inequality (12) for all ε ∈ ]0, ε0] and (p, q) ∈ Lα∗
0 × Lβ∗

0 ,

fε(p, q) ≥ −T
1
α + 1

β (|p|2Lα∗ + |q|2Lβ∗ ) +
1

α∗cα∗
ε0
|p|α

∗

Lα∗ +
1

β∗dβ∗
ε0

|q|β
∗

Lβ∗

≥ −T
1
α + 1

β |p|2Lα∗ +
1

α∗cα∗
ε0
|p|α

∗

Lα∗ − T
1
α + 1

β |q|2Lβ∗ +
1

β∗dβ∗
ε0

|q|β
∗

Lβ∗

hence, since α∗ < 2, β∗ < 2, the desired result is obtained.
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Lemma 3.4 There exists (p0, q0) ∈ (Lα∗
0 × Lβ∗

0 ) \ {(0, 0)} such that fε(p0, q0) = 0.

Proof Let Z = (p, q) ∈ R2N , setting ω(t) = Z sin
(

− 2π
T t

)

+ JZ cos
( 2π

T t
)

, we have

∀ t ∈ [0, T ], |ω(t)|2 = |Z|2 = |p|2 + |q|2.

Thus

1
2

T
∫

0

≺ −Jπω, ω � dt = − T
4π

T
∫

0

|ω(t)|2dt = −T 2

4π
|Z|2.

So, it follows by the inequality (10), that for all s ≥ 0 we have

fε(sω) ≤ −T 2

4π
s2|Z|2 +

T
α∗aε

α∗ sα∗ |Z|α
∗

+
T

β∗bβ∗
ε

sβ∗ |Z|β
∗

+
aα

ε

α
T.

Since α∗ < 2 and β∗ < 2, we obtain the result by applying the Lemma 3.3.

Lemma 3.5 fε verifies the Palais–Smale condition.

Proof Let (ωn)n∈N = ((pn, qn))n∈N a sequence of Lα∗
0 ×Lβ∗

0 verifying (fε(ωn))n is
bounded and f ′ε(ωn) converges to zero as n goes to infinity. So, there exist two constants
A and B such that

A ≤ −1
2

T
∫

0

≺ Jπωn(t), ω(t) � dt +

T
∫

0

H∗
ε (ωn(t)) dt ≤ B, (13)

and
(−πqn, πpn) + ((Hε

∗)′p(ωn), (Hε
∗)′q(ωn)) + (ξε,n, µε,n) = (λn, ηn) (14)

converges to zero in Lα∗
0 × Lβ∗

0 as n goes to infinity.
By taking πpn and πqn from the expression (14) and substituting it into (13), we

obtain:

(

1
α∗

+
1
β∗

)
T

∫

0

H∗
ε (ωn(t)) dt +

1
β∗

T
∫

0

[≺ ηn, qn � − ≺ µε,n, qn �] dt

− 1
β∗

T
∫

0

≺ (Hε
∗)′q(ωn), qn � dt +

1
α∗

T
∫

0

[≺ λn, pn � − ≺ ξε,n, pn �] dt

− 1
α∗

T
∫

0

≺ (Hε
∗)′p(ωn), pn � dt ≤

(

1
α∗

+
1
β∗

)

B,

thus

(

1
α∗

+
1
β∗

)
T

∫

0

H∗
ε (ωn(t)) dt−

T
∫

0

[

1
α∗

≺ (Hε
∗)′p(ωn), pn � +

1
β∗

≺ (Hε
∗)′q(ωn), qn �

]

dt

+
1
α∗

T
∫

0

≺ λn, pn � dt +
1
β∗

T
∫

0

≺ ηn, qn � dt ≤
(

1
α∗

+
1
β∗

)

B.
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We deduce by the inequality (8) that:

(

1
α∗

+
1
β∗

− 1
)

T
∫

0

H∗
ε (ωn(t)) dt− 1

α∗
|λn|Lα |pn|Lα∗ −

1
β∗
|ηn|Lβ |qn|Lβ∗

≤
(

1
α∗

+
1
β∗

)

B.

Hence, since 1
α∗ + 1

β∗ − 1 > 0 and by the inequality (12), we have

(

1
α∗

+
1
β∗

− 1
)[

1
α∗c∗ε

|p|α
∗

Lα∗ +
1

β∗dβ∗
ε
|q|β

∗

Lβ∗

]

− 1
α∗
|λn|Lα |p|Lα∗ −

1
β∗
|ηn|Lβ |qn|Lβ∗

≤
(

1
α∗

+
1
β∗

)

B.

Since α∗, β∗ < 2 and |λn|Lα → 0, |ηn|Lβ → 0 as n → ∞, we deduce that there exists
a constant d > 0 such that for all n ∈ N |pn|Lα∗ , |qn|Lβ∗ ≤ d and up to a subsequence,
we may assume that (pn, qn) is weakly convergent to ω = (p, q) in Lα∗

0 × Lβ∗
0 .

Consider the set

D = {−Jπ(pn, qn), n ∈ N} ⊂ C([0, T ], R2N ).

By (H5), we verify that (Hε
∗′(pn, qn)) is bounded in Lα

0 × Lβ
0 and since (λn, ηn) goes

to zero in Lα
0 ×Lβ

0 as n goes to infinity, so by the formula (14), (ξε,nk , µε,nk) is bounded
in R2N and therefore we can suppose that (ξε,nk , µε,nk) converges to (ξ, µ).

Finally, since

H∗′
ε (pnk , qnk) = (λnk , ηnk) + Jπ(pnk , qnk)− (ξε,nk , µε,nk),

we have by the Fenchel reciprocity:

(pnk , qnk) = H ′
ε((λnk , ηnk) + Jπ(pnk , qnk)− (ξε,nk , µε,nk)),

By (H4) and the version of the theorem of Krasnoselskii, the map (u, v) 7−→ H ′
ε(u, v)

defined on Lα
0 × Lβ

0 into Lα∗ × Lβ∗ is continuous. Thus the sequence (pnk , qnk) =
H ′

ε((λnk , ηnk) + Jπ(pnk , qnk)− (ξε,nk , µε,nk)) is convergent in Lα∗ ×Lβ∗ and the lemma
is proved.

The functional fε verifies all the hypotheses of the Ambrosetti–Rabinowitz theorem,
consequently there exists ȳε = (p̄ε, q̄ε) ∈ Lα∗

0 × Lβ∗
0 such that

f ′ε(ȳε) = 0

and
fε(ȳε) ≥ γ.

By the Lemma 3.2, there exists (ξε, µε) ∈ R2N such that

0 = −Jπ(ȳε) + H∗′
ε (ȳε) + (ξε, µε),
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which gives by the Fenchel reciprocity

ȳε = H ′
ε(Jπ(ȳε)− (ξε, µε)).

Setting x̄ε = (ūε, v̄ε) = Jπ(ȳε)− (ξε, µε), we have

˙̄xε = ( ˙̄uε, ˙̄vε) = J(ȳε) = JH ′
ε(ūε, v̄ε) = JH ′

ε(x̄ε).

Thus the Hamiltonian system

(Hε) ẋ = JH ′
ε(x)

possesses a T -periodic solution.

Lemma 3.6 Let hε be the energy of the found solution x̄ε. Then

hε ≤
α + β

αβ − α− β

[

(

1
2
− 1

α

)[

4π
Ta2

ε

] α
α−2

+
(

1
2
− 1

β

)[

4π
Tb2

ε

]
β

β−2
]

+
α + β

αβ − α− β
aα

ε

α
. (15)

Proof We have

(

1
α

+
1
β

)

fε(ȳε) =
(

1
α

+
1
β

)

[ T
∫

0

1
2
≺ H ′

ε(x̄ε), x̄ε � dt−
T

∫

0

Hε(x̄ε) dt

]

=
1
α

T
∫

0

≺ (Hε)′u(x̄ε), ūε � dt +
1
β

T
∫

0

≺ (Hε)′v(x̄ε), v̄ε � dt− (
1
α

+
1
β

)

T
∫

0

Hε(x̄ε) dt

and by (H3) we obtain

(

1
α

+
1
β

)

fε(ȳε) ≥
(

1− 1
α
− 1

β

)
T

∫

0

Hε(x̄ε) dt,

which implies that

fε(ȳε) ≥
αβ − α− β

α + β
hεT.

On the other hand, by the Ambrosetti–Rabinowitz theorem we have

fε(ȳε) = inf
γ∈Γ

max
s∈[0,1]

fε(γε(s)),

where Γ = {γ ∈ C([0, T ], Lα∗
0 × Lβ∗

0 )/γ(0) = 0 and γ(1) = (p0, q0)}.
For s ∈ R+, we set ωs(t) = sω(t) where ω is defined in the proof of Lemma 3.4. We

have

fε(ȳε) ≤ sup
s∈[0,1]

fε(s(p0, q0)) ≤ sup
s≥0

fε(sω)

≤ sup
s≥0

{

− T 2

4π
s2|Z|2 +

T
α∗aα∗

ε
sα∗ |Z|α

∗
+

T

β∗bβ∗
ε

sβ∗ |Z|β
∗

+
aα

ε

α
T

}

≤ sup
s≥0

{

−T 2

8π
s2|Z|2 +

T
α∗aα∗

ε
sα∗ |Z|α

∗
}

+
aα

ε

α
T

+ sup
s≥0

{

− T 2

8π
s2|Z|2 +

T

β∗bβ∗
ε

sβ∗ |Z|β
∗
}

.
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Setting

ϕ(s) = −T 2

8π
s2|Z|2 +

T
α∗aα∗

ε
sα∗ |Z|α

∗
, ψ(s) = −T 2

8π
s2|Z|2 +

T

β∗bβ∗
ε

sβ∗ |Z|β
∗
.

So ϕ attains its maximum at

s̄ =
[

4π
aα∗

ε T

] 1
2−α∗ 1

|Z|
,

and ψ attains its maximum at

¯̄s =
[

4π

bβ∗
ε T

] 1
2−β∗ 1

|Z|
.

A simple computation gives

ϕ(s̄) = T
(

1
2
− 1

α

)[

4π
aα∗

ε T

] α
α−2

and

ψ(¯̄s) = T
(

1
2
− 1

β

)[

4π

bβ∗
ε T

]
β

β−2

,

so

fε(ȳε) ≤ T
[(

1
2
− 1

α

)[

4π
aα∗

ε T

] α
α−2

+
(

1
2
− 1

β

)[

4π

bβ∗
ε T

]
β

β−2
]

+
aα

ε

α
T.

Consequently

hε ≤
α + β

αβ − α− β

[(

1
2
− 1

α

)[

4π
aα∗

ε T

] α
α−2

+
(

1
2
− 1

β

)[

4π

bβ∗
ε T

]
β

β−2
]

+
α + β

αβ − α− β
aα

ε

α

and the Lemma 3.6 is proved.

Lemma 3.7 The set E = {x̄ε : 0 < ε ≤ ε0} is relatively compact in C([0, T ], R2N ).

Proof We have for all ε ∈ ]0, ε0],

0 <
aα

α
<

aα
ε

α
<

aα

α
+ ε0.

Thus, by (15), there exists R ∈ R∗+ such that

H(x̄ε(t)) ≤ R

for all t ∈ [0, T ] and ε ∈ ]0, ε0].
Since lim

|x|→∞
H(x) = +∞, so there exists λ ∈ R∗+ such that for all t ∈ [0, T ] and

ε ∈ ]0, ε0] x̄ε(t) ∈ B(0, λ). Consequently, for all t ∈ [0, T ], the set E(t) is relatively
compact in R2N .
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On the other hand, since H ′ is continuous, there exists η > 0 independent of ε such
that for all ε ∈ ]0, ε0] and t, t′ ∈ [0, T ], ‖x̄ε(t)− x̄ε(t′)‖ ≤ η|t− t′|1/2. Thus E is equicon-
tinuous. Hence, by the theorem of Ascoli, E is relatively compact in C([0, T ], R2N ).

So, we may extract from E a subsequence (x̄εn), εn → 0, which is convergent uniformly
in [0, T ]. Let x̄ = (ū, v̄) be its limit; we have

˙̄xεn = JH ′
εn

(x̄εn) = J(H ′(x̄εn) + εn(α|ūεn |
α−2ūεn , β|v̄εn |

β−2v̄εn))

→ JH ′(ū, v̄) uniformly,

which implies that
˙̄x = JH ′(x̄).

So it’s clear that H∗
εn

(p̄εn , q̄εn) is convergent uniformly to H∗( ˙̄x) and

0 < γ ≤ lim
n→∞

fεn(ȳεn) = f( ˙̄x).

Since f(0, 0) = 0, so ˙̄x 6= 0 and x̄ is not constant.
Finally, we have lim

n→∞
aεn = a and lim

n→∞
bεn = b, thus lim

n→∞
h̄εn = h̄ and so h =

H(x̄) ≤ h̄.
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The solution to be found is the coordinate of the point P as a function of the transfer
time. The solution is not unique, and a graph including many solutions was published by
Hénon [6]. He plotted η/π (where η is the redefined “eccentric anomaly” of the point P )
against τ/π (where τ is half of the transfer time). Another problem that is considered in
the present research is the calculation of the ∆V and the time required for each of these
transfers, in a search for transfer orbits with small ∆V . The solution consists of plots of
the ∆V against the time required for the transfer (both in canonical units). A detailed
study of the transfer orbits with small ∆V is included.

2.1 Lambert’s problem formulation

A different approach used in the present research formulates Hénon’s problem as a Lam-
bert’s problem. The Lambert’s problem can be defined as [5]:

“An (unperturbed) orbit, about a given inverse-square-law center of force is to be
found connecting two given points, P and Q, with a flight time ∆t (= t2 − t1) that
has been specified. The problem must always have at least one solution and the actual
number, which is denoted by N , depends on the geometry of the problem — it is assumed,
for convenience and with no loss of generality, that t is positive.”

Using this formulation, Hénon’s problem can be defined in the following way: “Find
an unperturbed orbit for M3, around M1, which leaves the point P at t = −τ and goes
to point Q at t = τ”. Since M2 is assumed to have zero mass, it has no participation
in the equations of motion of the system. Its only use is to relate the time τ with the
eccentric anomaly η, in such a way that M3 has the same position as M2 at P and Q at
the times t = −τ and t = τ , respectively.

3 Mathematical Formulation

In terms of mathematical formulation, Hénon’s problem formulated as a Lambert’s prob-
lem can be described as follows. The following information is available:

1. The position of M3 at t = −τ (point P ). It can be specified by the radius
vector R1 and the angle −τ . R1 can be related to −τ by using the equation R1 =
a(1− e2)/(1+e cos(−τ)) for the orbit of M2, since M2 and M3 occupy the same position
at t = −τ .

2. The position of M3 at t = τ (point Q). It can be specified by the radius vector R2
and the angle τ . R2 can be related to τ by using the same equation used in the above
paragraph.

3. The total time for the transfer, ∆t = 2τ . Remember that the angular velocity of
the system is unity, so τ can be considered to be the time as well as the angle.

4. The total angle the spacecraft must travel to go from P to Q, that is called φ. For
the case where the orbit of M3 is elliptic this variable has several possible values. First
of all, there are two possible choices for the transfer: the one that uses the direction
of the shortest possible angle between P and Q (that is called the “short way”), and
the one that uses the direction of the longest possible angle between these two points
(that is called the “long way”). Which one is the shortest or the longest depends on
the value of τ . After considering these two choices, it is also necessary to consider the
possibilities of multi-revolution transfers. In this case, the spacecraft leaves P , makes
one or more complete revolutions around M1, and then goes to Q. Then, by combining
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these two factors, the possible values for φ are: 2τ + 2mπ and 2(π − τ) + 2mπ, where
m is an integer that represents the number of complete revolutions during the transfer.
There is no upper limit for m, and this problem has an infinite number of solutions. In
the case where the orbit of M3 is parabolic or hyperbolic, φ has a unique value. The
multi-revolution transfer does not exist anymore (the orbit is not closed), and the only
direction of transfer that has a solution is the one that makes the spacecraft goes in a
retrograde orbit passing by periapse at t = 0.

The information needed (the solution of the Lambert’s problem) is the Keplerian orbit
that contains the points P and Q and requires the given transfer time ∆t = 2π for a
spacecraft to travel between these two points. This solution can be specified in several
ways. The velocity vectors at P or Q are two possible choices, since the corresponding
position vectors are available. The Keplerian elements of the transfer orbit is also another
possible set of coordinates to express the solution of this problem. In the implementation
developed here, all three sets of coordinates are obtained, since all of them are useful
later.

To obtain the ∆V s, the following steps are taken:
1. Find the radial and transverse velocity components of M2 at P and Q. They are

also the velocity components of M3 just before the first impulse and just after the second
impulse, respectively, since they match their orbits at these points. They are obtained
from the equations [2]:

Vr =
e sin(ν)

√

a(1− e2)
, (1)

Vt =
1 + e cos(ν)
√

a(1− e
2
)
, (2)

where Vr and Vt are the radial and transverse components of the velocity vector, a and
e are the semi-major axis and the eccentricity of the transfer orbit and ν is the true
anomaly of the spacecraft.

2. Find an unperturbed orbit for M3 that allows it to leave the point P at t = −τ
and arrive at point Q at t = τ . This orbit is found by solving the associate Lambert’s
problem, as explained in the next section. At this point the total time for this transfer,
2τ is already known.

3. Find the velocity components at these points (P and Q) in the transfer orbit
determined above. They are the velocity components for M3 just after the first impulse
and just before the second impulse. They are provided by Gooding’s Lambert routine [5].

4. With the velocity components just after and just before both impulses it is possible
to calculate the magnitude of both impulses (∆V1 and ∆V2) and add them together to
get the total impulse required (∆V ) for the transfer.

4 Gooding’s Implementation of the Lambert’s Problem

The solution of the Lambert’s problem, as defined in the previous paragraphs, has been
under investigation for a long time. The approach to solve this problem is to set up a
set of non-linear equations (from the two-body problem) and start an iterative process
to find an orbit that satisfies all the requirements. There is no closed-form solution
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The same comment about other multi-revolution possible transfer orbits with a lower
∆V made in the previous cases are valid here. In this case M2 does not exist as a real
body. It is only a reference point in orbit and, in consequence, its mass is really zero.
For this reason, this example fits very well the model used and the results found here are
expected to be in close agreement with the real world.

Table 6.1 Transfer orbits with ∆V ≤ 0.1 for the transfer in the geosynchronous orbit.

τ/π η/π a e ν/π L P S A ∆Vc ∆T ∆V

3.500 3.0000 1.1081 0.0976 3.0000 0 1 1 0 0.095 3.49 292

3.500 4.0000 0.9149 0.0931 4.0000 0 0 1 0 0.095 3.49 292

4.500 4.0000 1.0816 0.0755 4.0000 0 0 1 1 0.074 4.49 228

4.500 5.0000 0.9322 0.0727 5.0000 0 1 1 1 0.074 4.49 228

5.500 5.0000 1.0656 0.0616 5.0000 0 1 1 0 0.061 5.49 188

5.500 6.0000 0.9437 0.0597 6.0000 0 0 1 0 0.061 5.49 188

6.500 6.0000 1.0548 0.0520 6.0000 0 0 1 1 0.051 6.49 157

The symbols are the same ones used in the previous tables.

7 Conclusions

The problem previously called “consecutive collision orbits” in the three-body problem is
formulated as a problem of transfer orbits from one body back to the same body. Using
this approach, Hénon’s problem became a special case of the Lambert’s problem.

Gooding’s implementation of the Lambert’s problem [5] is used to solve this problem
with great success.

The ∆V s and the transfer time required for these transfers are calculated. Among a
large number of transfer orbits, a small family is found, such that the ∆V required for
the transfer is very small. These orbits and their properties are shown in detail.

A practical applications for these orbits are studied in detail: a transfer for a satellite
from a point in a circular geosynchronous orbit to another point in this same orbit, 180
degrees ahead of its initial point.

The possibilities of transfers like this one is open for several types of missions and the
algorithm developed here can be used to relocate a satellite to a different position in one
orbit.
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[8] Hitzl, D.L. and Hénon, M. Critical generating orbits for second species periodic solutions
of the restricted problem. Celestial Mechanics 15 (1977) 421–452.
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