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PERSONAGE IN SCIENCE

Professor Anthony N. Michel

Derong Liu*

Department of Electrical and Computer Engineering University of Illinois at Chicago,
Chicago, IL 60607, USA

1 Education and Career Overview Anthony N. Michel received a B.S. degree in
electrical engineering, an M.S. degree in mathematics, and a Ph.D. degree in electrical
engineering, all from Marquette University, Milwaukee, WI, in 1958, 1964, and 1968,
respectively. He also received a D.Sc. degree in applied mathematics from Technical
University of Graz, Austria, in 1973.

Anthony N. Michel has seven years of industrial experience (one year with the U.S.
Army, Corps of Engineers, and six years with AC Electronics, a Division of General
Motors, both in Milwaukee). From 1968 to 1984 he was on the Electrical Engineering
Faculty at Towa State University, Ames, 1A, where he was promoted from an Assistant
Professor to an Associate Professor in 1969 and to a Full Professor in 1974. In 1972-1973,
while on a sabbatical leave, he worked under the supervision of Professor Wolfgang Hahn
at Technical University of Graz, Austria, on his D.Sc. degree in Applied Mathematics.
In 1984 he joined the faculty of Electrical Engineering at the University of Notre Dame
as Professor and the Department Chair. He served as Chair until 1988. In 1987 he
was named Frank M. Freimann Professor of Engineering, and in 1988, he was appointed
Matthew H. McCloskey Dean of Engineering. He served two terms as the Dean of the
College of Engineering, from 1988 to 1998. From 1998 to December 31, 2002, he was
Frank M. Freimann Professor in the Department of Electrical Engineering. Since January
1, 2003, he is Frank M. Freimann Professor of Engineering Emeritus and Matthew H.
McCloskey Dean of Engineering FEmeritus. He has also held visiting faculty positions
at the Technical University of Vienna, Austria (1992), the Ruhr University in Bochum,
Germany (1999), and the Johannes Kepler University in Linz, Austria (2004).

2 Research and Scholarly Activities In his distinguished career spanning over forty
years, Anthony N. Michel has made seminal contributions in the qualitative analysis of
dynamical systems, with an emphasis on stability theory. Specific areas in which he has
contributed include finite-time and practical stability, Lyapunov stability of intercon-
nected (resp., large-scale) dynamical systems, input-output properties of interconnected
(resp., large-scale) systems, artificial neural networks with applications to associative
memories, robust stability analysis, stability preserving mapping theory, and stability

*Corresponding author: dliu@cil.ece.uic.edu
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316 DERONG LIU

theory of hybrid and discontinuous dynamical systems. Throughout, he has demon-
strated the significance of his work with specific applications to signal processing, power
systems, artificial neural networks, digital control systems, systems with state saturation
constraints, and other areas.

On the topic of finite-time and practical stability, in contrast to other workers, Michel
utilizes prespecified time-varying sets in formulating a notion of set stability. His Lyapu-
nov-like results for set stability yield estimates for system trajectory behavior, obtained
from the boundaries of prespecified sets [9,10]. As a radical departure from the existing
practices, this approach was subsequently adopted and extended by others.

To circumvent difficulties encountered in the analysis of large-scale systems with com-
plex structure, Michel views such systems as interconnections of several simpler subsys-
tems. The analysis is then accomplished in terms of the qualitative properties of the
subsystems and the interconnecting structure. Michel advocates the use of scalar Lya-
punov functions [1,11,13,15,20, 21] consisting of weighted sums of Lyapunov functions
for the free subsystems. This approach has resulted in significantly less conservative
results than the weak-coupling M-matrix results obtained by others who employ vec-
tor Lyapunov functions. These results in turn are applied by Michel in the analysis
and synthesis of artificial neural networks [8,23], and he also uses them as the basis of
further results involving computer generated norm-Lyapunov functions which then are
applied successfully in the analysis of interconnected power systems and digital filters
[20]. The theory developed in this work is applicable to continuous-time and discrete-
time systems, finite-dimensional and infinite-dimensional systems, and deterministic and
stochastic systems [1].

Using the same philosophy as in [1, 11,13, 15, 20, 21], Michel discovered the first results
for the input-output stability of interconnected systems [12], which subsequently were ex-
panded by many into all kinds of directions [1,14,16]. These results make possible the
systematic analysis of multi-loop nonlinear feedback systems (consisting of interconnec-
tions of subsystems that satisfy, e.g., the small gain theorem, the circle criterion, the
passivity theorem, or Popov-like conditions). In the same spirit, Michel established also
results for the response (due to periodic inputs) of nonlinear single-loop and multi-loop
feedback systems [17,18], and results for the existence, nonexistence, and stability of limit
cycles for such systems [1, 19, 22]. The proofs of the above results are rather technical and
require extensive use of functional analysis results and fixed-point theorems in abstract
spaces.

For his work on qualitative analysis of interconnected systems, Michel has received sub-
stantial recognition. In response to an invitation by Professor Richard Bellman, Michel
co-authored with R.K. Miller the book on qualitative analysis of large-scale dynamical
systems [1], which appeared in the Bellman Series in Mathematics in Science and En-
gineering (Academic Press). This book is widely referred to and has had an impact on
other areas of large-scale systems (e.g., power systems).

Michel has also conducted extensive research in artificial neural networks with ap-
plications to associative memories [8,23,24,30,31,35,36]. This work, which addresses
network architectures, qualitative analysis, synthesis procedures, and implementation is-
sues for several classes of continuous and discrete recurrent neural networks, is widely
referred to and one of their paradigms [24], “LSSM-linear systems in a saturated mode,”
has been used in the software tool MATLAB.

Michel has contributed significantly to robust stability analysis, most notably, for
systems with interval matrices and perturbed systems with perturbed equilibria. He has
established several (Hurwitz and Schur) stability, controllability, and observability results
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for linear systems with interval plants [27,33,34], while for nonlinear systems, he ad-
dresses the effects of parameter perturbations on the locations (and even existence) of
equilibria, along with their stability properties, using fixed point theorems and the notion
of “extreme systems” [28,32,37]. The work in [33] was the first to provide necessary and
sufficient conditions for the Hurwitz and Schur stability of interval matrices with a prac-
tical computer algorithm. Michel has further extended the results in [28] to the robust
stability analysis of recurrent neural networks [8,30, 36, 37].

Michel has conducted fundamental research in qualitative analysis of dynamical sys-
tems using stability preserving mappings. He utilizes stability preserving mappings to
develop a comparison theory for Lyapunov and Lagrange stability of general dynamical
systems defined on metric space [5,44], applicable to systems determined by all types
of classical equations encountered in science, as well as to contemporary systems that
cannot be described in this way (e.g., discrete event systems [29]). Some of this work
has been published in Russian (in Avtomatika i Telemekhanika) and in a highly original
book [5] (co-authored with K. Wang), where the entire Lyapunov and Lagrange stability
theory is developed for general dynamical systems, making use of stability preserving
mappings.

Michel’s more recent research addresses stability analysis of hybrid and discontinuous
dynamical systems. For such systems, he formulates a general model suitable for stabil-
ity analysis (involving a notion of generalized time), which contains most of the hybrid
and discontinuous systems considered in the literature as special cases. For this model,
he establishes the Principal Lyapunov and Lagrange stability results, including Converse
Theorems [7,39,42,43,45] and he applies these results in the analysis of several special
classes of systems, including switched systems [7], digital control systems [7,38], impul-
sive systems [7,41], pulse-width-modulated feedback control systems [7,46], systems with
saturation constraints [4,7,25,26,40], and others.

Currently, Michel is working on stability issues of infinite dimensional discontinuous
dynamical systems. In particular, he is concerned with discontinuous systems determined
by differential equations in Banach space and by linear and nonlinear semigroups. Spe-
cific classes of systems that are considered in this work are those that can be described by
functional differential equations, Volterra integro-differential equations, certain classes of
partial differential equations, and others [47, 48].

Michel has played a significant role as an educator. His eight books [1-8] which have
been well received in the systems and control community around the world, and in many
instances have blazed new trails when first introduced, demonstrate his contributions as
a teacher. Furthermore, his record of maintaining a highly productive research program
while simultaneously serving as an effective administrator at Notre Dame, first as De-
partment Chair (1984-1988) and then as Dean (1988-1998), puts him in rare company.
Michel has served as mentor to many outstanding graduate students. Equal numbers of
these are in academe and in industry, attesting to the fine balance Michel maintains in
his research program between theory and practice. These former students have all out-
standing careers. (For example, one of them was the Dean of Engineering at Washington
State University.)

Anthony N. Michel has sustained a high level of significant research, mostly in control
systems. His work is characterized by great depth, as exemplified by his contributions
to stability theory of dynamical systems, and by great breadth, as demonstrated by the
wide range of problems that he addresses. He has proved to be an excellent teacher and
mentor, he has demonstrated to be an effective administrator, and he has rendered more
than his share of service to his profession.
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3 Service to the Profession Anthony N. Michel served as an Associate Editor of
the IEEE Transactions on Circuits and Systems from 1977 to 1979, the Editor of the
IEEE Transactions on Circuits and Systems from 1981 to 1983, and the President of the
IEEE Circuits and Systems Society in 1989. He also served as an Associate Editor of the
IEEE Transactions on Automatic Control in 1981 and 1982, an Associate Editor at Large
of the IEEE Transactions on Automatic Control from 1991 to 2000, the Vice President
of Technical Affairs (1994, 1995) and the Vice President of Conference Activities (1996,
1997) of the IEEE Control Systems Society. In addition, he served as an Associate Editor
of IEEE Transactions on Neural Networks from 1989 to 1991. He currently serves as the
Associate Editor for Book Reviews of IEEE Transactions on Automatic Control. He was
Program Chair of the 1985 IEEE Conference on Decision and Control, Co-General Chair
of the 1990 IEEE Symposium on Circuits and Systems, and General Chair of the 1997
IEEE Conference on Decision and Control.

4 Student Supervision Anthony N. Michel guided the work of 13 Ph.D. students at
Towa State University and 12 Ph.D. students at the University of Notre Dame. He also
supervised 10 Master’s degree students.

List of Doctoral Dissertations Supervised

(1) Cornick, D.E. Numerical Optimization of Distributed Parameter Systems by Gradient
Methods. Ph.D. Dissertation, lowa State University, 1970.
(2) Porter, D.W. Stability of Multiple-Loop Nonlinear Time-Varying Systems. Ph.D. Disser-
tation, lowa State University, 1972.
(3) Bose, A.B. Stability and Compensation of Systems with Multiple Nonlinearities. Ph.D.
Dissertation, lowa State University, 1974.
(4) Oppenheimer, E.P.Application of Interval Analysis to Problems of Linear Control Systems.
Ph.D. Dissertation, Iowa State University, 1974.
(5) Lasley, E.L. The Qualitative Analysis of Composite Systems. Ph.D. Dissertation, Iowa
State University, 1975.
(6) Rasmussen, R.D. Lyapunov Stability of Large-Scale Dynamical Systems. Ph.D. Disserta-
tion, Iowa State University, 1976.
(7) Vitacco, W.R. Qualitative Analysis of Interconnected Dynamical Systems Containing Al-
gebraic Loops. Ph.D. Dissertation, Iowa State University, 1976.
(8) Gutmann, R.L. Input-Output Stability of Interconnected Stochastic Systems. Ph.D. Dis-
sertation, lowa State University, 1976.
(9) Tang, W. Structure and Stability Analysis of Large Scale Systems using a New Graph-
Theoretic Approach. Ph.D. Dissertation, lowa State University, 1978.
(10) Peterson, J.N. Wind Generator Network Methodology and Analysis. Ph.D. Dissertation,
Towa State University, 1980.
(11) Sarabudla, N.R. Stability Analysis of Complex Dynamical Systems: Some Computational
Methods. Ph.D. Dissertation, lowa State University, 1981.
(12) Nam, B.H. Asymptotic Stability of Large-Scale Dynamical Systems using Computer Gen-
erated Lyapunov Functions. Ph.D. Dissertation, Iowa State University, 1983.
(13) Erickson, K.T. Stability Analysis of Fized-Point Digital Filters using a Constructive Al-
gorithm. Ph.D. Dissertation, lowa State University, 1983.
(14) Li, J.-H. Qualitative Analysis and Synthesis of a Class of Neural Networks. Ph.D. Disser-
tation, University of Notre Dame, 1988.
(15) Farrell, J.A. Analysis and Synthesis Techniques for Two Classes of Nonlinear Dynamical
Systems: Digital Controllers and Neural Networks. Ph.D. Dissertation, University of
Notre Dame, 1989.
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(16) Sun, H.-F. Two Problems in Finite Dimensional Dynamical Systems: Qualitative Analysis
and Synthesis of a Class of Neural Networks and Linear Systems Subject to Parameter
Variations. Ph.D. Dissertation, University of Notre Dame, 1990.

(17) Gray, D.L. New Paradigms for Feedforward and Feedback Artificial Neural Networks.
Ph.D. Dissertation, University of Notre Dame, 1990.

(18) Si, J. Analysis and Synthesis of Discrete-Time Recurrent Neural Networks with High Order
Nonlinearities. Ph.D. Dissertation, University of Notre Dame, 1991.

(19) Yen, G. Learning, Forgetting, and Unlearning in Associative Memories: The Figenstruc-
ture Method and the Pseudo Inverse Method with Stability Constraints. Ph.D. Dissertation,
University of Notre Dame, 1991.

(20) Kuo, C.-H. Robust Control Strategies for a Class of Large Scale Dynamical Systems: Con-
taminated Groundwater Remediation. Ph.D. Dissertation, University of Notre Dame, 1993.

(21) Liu, D. Qualitative Theory of Dynamical Systems with Saturation Nonlinearities. Ph.D.
Dissertation, University of Notre Dame, 1993.

(22) Ye, H. Stability Analysis of Two Classes of Dynamical Systems: General Hybrid Systems
and Neural Networks with Delays. Ph.D. Dissertation, University of Notre Dame, 1996.

(23) Hu, B. Qualitative Analysis of Hybrid Dynamical Systems. Ph.D. Dissertation, University
of Notre Dame, 1999.

(24) Hou, L. Qualitative Analysis of Discontinuous Deterministic and Stochastic Dynamical
Systems. Ph.D. Dissertation, University of Notre Dame, 2000.

(25) Y. Sun, Stability Analysis of Discontinuous Dynamical Systems. Ph.D. Dissertation, Uni-
versity of Notre Dame, 2004.

5 Awards Anthony N. Michel received numerous awards in his career including the
1978 Best Transactions Paper Award of the IEEE Control Systems Society (currently
called the Axelby Award) (with R.D. Rasmussen), the 1984 Guillemin-Cauer Prize Paper
Award of the IEEE Circuits and Systems Society (with R. K. Miller and B.H. Nam),
the 1985 Engineering Distinguished Professional Achievement Award of Marquette Uni-
versity, the 1993 Myril B. Reed Outstanding Paper Award of the IEEE Circuits and
Systems Society (with K. Wang), the 1995 Technical Achievement Award of the IEEE
Circuits and Systems Society, the 1997 Alexander von Humboldt Research Award (for
Senior U.S. Scientists) from the Federal Republic of Germany, the 1998 Distinguished
Member Award of the IEEE Control Systems Society, and the 2005 Distinguished Alum-
nus Award of Marquette University. He received an IEEE Centennial Medal in 1984, the
Golden Jubilee Medal of the IEEE Circuits and Systems Society in 1999, and an IEEE
Third Millennium Medal in 2000. He was a Fulbright Scholar in 1992 at the Technical
University of Vienna in Austria and a Distinguished Lecturer of the IEEE Circuits and
Systems Society from 1995 to 1997. He was elected Fellow of the IEEE in 1982 for contri-
butions in the qualitative analysis of large-scale dynamic systems, and he was elected a
Corresponding Member of the Russian Academy of Engineering in 1992 for contributions
in qualitative analysis of dynamical systems using stability preserving mappings.

6 References Anthony N. Michel has published eight books, 30 chapters in books,
174 journal papers, and 262 conference papers. His work has been cited more than 1500
times (since 1976) in the Science Citation Index.
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mation in which the equations of motion can be casily integrated. Hamilton
(1838) has developed the method for obtaining the desired transformation
equations by finding a smooth function S called a generating function or
Hamilton’s principal function, which satisfies a certain nonlinear first-order
partial-differential equation (PDE) also known as the Hamilton—Jacobi equa-
tion (HJE).

Unfortunately, the HJE being nonlinear is very difficult to solve; and thus,
except for the case in which the variables in the equation are separable, its
application remains limited. It is thus our aim in this paper to present a new
approach for solving the Hamilton—Jacobi equation for a fairly large class of
Hamiltonian systems and to apply it in particular to the As-Toda lattice.
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1 Introduction to Hamilton—Jacobi Theory

Hamilton—Jacobi (HJ)-theory is an extension of Lagrangian mechanics and concerns itself
with a directed search for a coordinate transformation in which the equations of motion
can be casily integrated. The equations of motion of a given mechanical system can often
be simplified considerably by a suitable transformation of variables such that all the new
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position and momentum coordinates are constants. A particular type of transformation
is chosen in such a way that the new equations of motion retain the same form as in the
former coordinates; such a transformation is called canonical or contact and can greatly
simplify the solution to the equations of motion. Hamilton (1838) has developed the
method for obtaining the desired transformation equations using what is today known as
Hamilton’s principle. It turns out that the required transformation can be obtained by
finding a smooth function S called a generating function or Hamilton’s principal function,
which satisfies a certain nonlinear first-order partial-differential equation (PDE) also
known as the Hamilton—Jacobi equation (HJE).

Unfortunately, the HJE being nonlinear, is very difficult to solve; and thus, it might
appear that little practical advantage has been gained in the application of the HJ-theory.
Nonetheless, under certain conditions, and when the Hamiltonian is independent of time,
it is possible to separate the variables in the HJE, and the solution can then always be
reduced to quadratures. Thus, the HJE becomes a useful computational tool only when
such a separation of variables can be achieved.

The aim of this paper is two-fold. First, to give an overview of the essentials of
Hamilton—Jacobi theory, namely; (i) the Hamiltonian reformulation of the equations of
motion of a mechanical system; and (ii) the Hamiltonian transformation of the equations
of motion. Secondly, to present an approach for solving the HJE for a fairly large class of
Hamiltonian systems in which the variables in the equation may not be separable and/or
the Hamiltonian is not time-independent. We apply the approach to a class of integrable
Hamiltonian systems known as the Toda lattice. Computational results are presented to
show the usefulness of the method.

The rest of the paper in organized as follows. In the remainder of this section, we
introduce notations. In Section 2, we discuss the Hamiltonian formulation of the equa-
tions of motion of a natural mechanical system. Then we discuss Hamiltonian coordinate
transformations and generating functions of the transformations in Section 3. In Sec-
tion 4, we discuss the Hamilton—Jacobi equation which is the central focus of the paper.
In Section 5, we review the Toda lattice as a Hamiltonian system, and discuss the method
of Lax for solving the system. Then in Section 6, we discuss the main results of the paper,
which is a parametrization approach for solving the HJE. We also apply the results to
the As-Toda lattice. Finally, in Section 7, we give conclusions.

Notation The notation is fairly standard except where otherwise stated. Moreover,
R, R™ will denote respectively, the real line and the n-dimensional real vector space,

t € R will denote the time parameter. Let M™, N", ... denote Riemannian manifolds
with dimension n, which are compact. Let TM = (J, 3 TeM, T"M = J,cp ToM

respectively denote the tangent and cotangent bundles of M with dimensions 2n. More-
over, mp; and 7y, will denote the natural projections TM — M and T*"M — M
respectively. SO(n, M) and sl(n, M) will denote the special orthogonal group and the
lie-algebra of the special linear group of matrices over M respectively. A C*°(M) vector-
field is a mapping f: M — TM such that 7o f = I, (the identity on M), and f has
continuously differentiable partial derivatives of arbitrary order. A vector field f also
defines a differential equation (or a dynamic system) z(t) = f(x), x € M, x(ty) = xo.
A differential k-form w¥, k = 1,2,..., at a point x € M is an exterior product of
k-vectors from T, M to Ri.e. w®: T,M x...xT,M (k copies) — R, which is a k-linear
skew-symmetric function of k-vectors on T, M. The space of all smooth k-forms on M
is denoted by QF(M). The F-derivative (Frechet derivative) of a real-valued function
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U: R* — R is defined as any p such that lim ﬁ[U(m +v) —U(z) — (o,v)] = 0, for
v

v—0
%)
any v € R"™. For a smooth function f: R® — R, f, = a—i = (aaxflv"' ,%). Further,
let || |1, || - ll2, | - loo: M — R denote respectively, 1, 2, and co norms on M, where
n n

lo(@)lh =D lwi(@)l,  llo(@)llz =D lvilg)?

7 i=1

and ||v(q)|lc = max;{vi(¢): ¢ = 1,...,n} for any vector v: M, — T,M. Also, if

f:]0,1] = R, then
1 :
(/ |f<s>|p> L 1<p<oo,

1)z,

while || f()]|L.. = supeqo 1f(5)].

2 The Hamiltonian Formulation of Mechanics

To review the approach, let the configuration space of the system be defined by a smooth
n-dimensional Riemannian manifold M. If (¢,U) is a coordinate chart, we write ¢ = ¢ =

(q1,.-. ,qn) for the local coordinates and ¢; = 68 in the tangent bundle TM|y = TU.
di
We shall be considering natural mechanical systems which are defined as follows.

Definition 2.1 A Lagrangian mechanical system on a Riemannian manifold is called
natural if the Lagrangian function L: TU x R — R, with U C M open, is equal to the
difference between the kinetic energy and the potential energy of the system as

L(qaqvt) = T((an t) - V(qvt)v (21)
where T: Y — R is the kinetic energy which is given by the quadratic form
1
T= §<v,v>, veT,U

and V: M x R — R is the potential energy of the system (which may be independent
of time).

For natural mechanical systems, the kinetic energy is a positive-definite symmetric
quadratic form of the generalized velocities,

T(q.6.0) = 5 "W, 1) (22)

It is further known from Lagrangian mechanics and as can be derived using the D’Alem-
bert’s principle of virtual work or Hamilton’s principle of least action [3,7,8], that the
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motion of a holonomic conservative' mechanical system satisfies Lagrange’s equations of

motion given by
d (0L oL
— — =0 L =1,...,n. 2.3
i (5) -G =0 =t (23)

Then the above equation (2.3) may always be written in the form

q=9(g,4,1), (2.4)

for some function g: TU x R — R".
On the other hand, in the Hamiltonian formulation, we choose to replace all the ¢; by
independent coordinates, p;, in such a way that

OL
i — ~ Z’:].,...7n. 2.5
Pi =5 (2.5)
If we let
pPi = hi(q,q'), 1= 1, .., N, (26)

then the Jacobian of h with respect to ¢, using (2.1), (2.2) and (2.5), is given by ¥(q)
which is positive definite, and hence equation (2.5) can be inverted to yield

q.i:gi(qlw"aqnapla"'7pn7t)7 7;:1,...,717 (27)
for some continuous functions gi,... ,g,. The coordinates ¢ = (q1,q2,...,¢,)T, in this
framework, are referred to as the generalized coordinates and p = (p1,pa,...,pn)T are

the generalized momenta. Together, these variables form a new system of coordinates for
the system known as the phase space of the system. If (U, ) where ¢ = (q1,q2,... ,qn)
is a chart on M, then since p;: TU — R, they are elements of T*U, and together with the
q;’s form a system of 2n local coordinates (g1, ... ,qn,P1,--- ,pn), Where p;i(q) € Ty M,
i=1,...,n, for the phase-space.

We now define the Hamiltonian function of the system H: T*M x R — R as the
Legendre transform [3,5] of the Lagrangian function with respect to ¢ by

H(g,p,t)=p"¢— L(q,q,1). (2.8)

Consider now the differential of H with respect to ¢, p and t as

OH\" oH\" ~ OH
dH = — ) d — | dq+ —dt. 2.
(519) p+(3(1) T (29)
. . . . oL
The above expression must be equal to the total differential of H = pg— L for p = 8—
q
aL\" oL\ "
dH =¢qdp— (-~ ) dg— (=) dt 2.10
g dp ( 3q) q ( 81&) (2.10)

! Holonomic if the constraints on the system are expressible as equality constraints. Conservative if

there exists a time-dependent potential.
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Thus, in view of the independent nature of the coordinates, we obtain a set of three
relationships:
. OH oL OH oL OH
(=—7—, —=—F7, and —=——-.
dp dq dq ot ot

Finally, applying Lagrange’s equation (2.3) together with (2.5) and the preceding results,

d,
one obtains the expression for p. Since we used Lagrange’s equation, ¢ = d—z and p = dit)
The resulting Hamiltonian canonical equations of motion are then given by

dg OH

—_— = t 2.11
o ib@md, (2.11)
dp OH

— =——(q,p, ). 2.12
7 8q(q p,t) (2.12)

Thus, we have proven the following theorem.

Theorem 2.1 [3] The system of Lagrange’s equations (2.3) is equivalent to the system
of 2n first-order Hamilton’s equations (2.11), (2.12).

In addition, for time-independent conservative systems, H(q, p) has a simple physical
interpretation. From (2.8) and using (2.5), we have

. . T OL .

oT
=T = —T(q,
@ B (q,4,t) + Ulq,t)

=2T(q,q,t) —T(q,q,t) + U(q,t) = T(q,4,t) + Ul(q, 1),

(2.13)

i.e., the total energy of the system. This completes the Hamiltonian formulation of the
equations of motion, and can be seen as an off-shoot of the Lagrangian formulation. It can
also be seen that, while the Lagrangian formulation involves n second-order equations,
the Hamiltonian description sets up a system of 2n first-order equations in terms of the
2n variables p and g. This remarkably new system of coordinates gives new insight and
physical meaning to the equations. However, the system of Lagrange’s equations and
Hamilton’s equations are completely equivalent as the above theorem asserts.

Furthermore, because of the symmetry of Hamilton’s equations (2.11), (2.12) and
the even dimension of the system, a new structure emerges on the phase space T*M
of the system. This structure is defined by a nondegenerate closed differential 2-form
w? € Q%(M) which in the above local coordinates is defined as

w2 =dpAdg= dei A dg;. (2.14)

i=1

Thus, the pair (T*M,w?) form a symplectic manifold [1,3,11], and together with a C”
Hamiltonian function H: T*M — R define a Hamiltonian mechanical system. With this
notation we have the following representation of a Hamiltonian system.
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Definition 2.2 Let (7*M,w?) be a symplectic manifold and H: T*M — R the
Hamiltonian function. Then the vector field Xy determined by the condition

W (Xy,Y)=dH(Y) (2.15)

for all vector fields Y, is called the Hamiltonian vector field with energy function H. The
tuple (T*M, w?, Xp) is called a Hamiltonian system.

Remark 2.1 It is important to note that, the nondegeneracy of w? guarantees that
Xy exists, and is a C™~! vector field. Moreover, on a connected symplectic manifold,
any two Hamiltonians for the same vector field Xy have the same differential (2.15), so
differ by a constant only.

We also have the following proposition [1].

Proposition 2.1 Let (q1,... ,qn,P1,--- ,Pn) be canonical coordinates so that w? is
given by (2.14). Then, in these coordinates

OH OH OH OH
Xp=|—, ..., —, —=—, ..., —— | =J-VH
" (8p1 Opn” Oq &Jn)

(50,

Thus, (q(t),p(t)) is an integral curve of Xp if and only if Hamilton’s equations (2.11),
(2.12) hold.

where

Now suppose that a transformation of coordinates is introduced ¢; — @;, p; — Pi,
i=1,...,n, defined by

a = ¢:(Q, P, 1), (2.16)
pi = ¥i(Q, P,t) (2.17)

such that every Hamiltonian function transforms as

H(q17"' ydn,P1y - - - 7pn7t)_>K(Ql7"' aQn7P1a"' 7P7‘ut)

in such a way that the new equations of motion retain the same form as in the former
coordinates, i.e.,

iQ 0K

P %(Q,Pﬂf)a (2.18)
dP 0K

e *afq(QJth)- (2.19)

Such a transformation is called canonical or contact and can greatly simplify the solution
to the equation of motion, especially if @, P are selected such that K(-,-,+) is a constant
independent of Q and P. Should this happen, then () and P will also be constants and the
solution to the equations of motion are immediately at hand (given the transformation).
We simply transform back to the original coordinates; under the assumption that the
transformation is univalent and invertible. Hamilton (1838) has developed a method for
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obtaining the desired transformation equations using what is today known as Hamilton’s
principle [3,7,8,10].

3 The Transformation Generating Function

A given Hamiltonian system can often be simplified considerably by a suitable transfor-
mation of variables such that all the new position and momentum coordinates (Q;, ;)
are constants. A particular type of transformation is discussed in this section.

Accordingly, define the Lagrangian function of the system L: TU x R — R as the
Legendre transform [3] of the Hamiltonian function by

L(g,4,t) =p ¢ — H(g,p.?). (3.1)

Then, in the new coordinates, the new Lagrangian function is

L(Q,Q.t) = PTQ — K(Q, P,t). (3.2)

Since both L(-,-,-) and L(-,-, ") are conserved, each must separately satisfy Hamilton’s
principle. However, L(-,-,-) and L(:,-,-) need not be equal in order to satisfy the above
requirement. Indeed we can write [8]

Lig.d.) = L@.Q.0+ 2 (4.0.Q. 1) (33
for some arbitrary function S: X x X x R — R, where X C T*M is open.

The next step is to show that, first, if such a function is known, then the transformation
we seek follows directly. Secondly, that the function can be obtained by solving a certain
partial differential equation.

The generating function S relates the old to the new coordinates via the equation

S— / (L—L)dt = o(q,p, Q, P,1) (3.4)

for some function o: X x X x R — R. Thus, S is a function of 4n+1 variables, and hence
no more than four independent sets of relationships among the dependent coordinates
can exist. Two such relationships expressing the old sets of coordinates in terms of the
new set are given by (2.16), (2.17). Hence only two independent sets of relationships
among the coordinates remain for defining S and no more than two of the four sets of
coordinates may be involved. Therefore, there are four possibilities

Sl :fl(q7Qat)a Sgifg((LP,t), (35)
S3:f3(p7Q7t); 54:f4(p,P,t).
Any one of the above four types of generating functions may be selected, and a transfor-

mation obtained from it. For example, if we consider the generating function S, taking
its differential, we have

=051, =081 08
ds, = > g dq1+; 30, dQi + — = dt. (3.7)
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Again, taking the differential as defined by (3.1), (3.2) (3.3), we have
Sy = pidg - PidQ; + (K — H)dt. (3.8)
i=1 i=1

Finally, using the independence of coordinates, we equate coefficients, and obtain the
desired transformation equations

0%
pi = Tqi(‘ant)
951
o 3.9
P 8Qi(q,Q,t) (3.9)
— aSl ;s
K*H—W(q,Q,t), Z—l,...,n.

Similar derivation can be applied to the remaining three types of generating functions.

4 The Hamilton—Jacobi Equation

In this section, we turn our attention to the last missing link in the Hamiltonian trans-
formation theory; an approach for determining the transformation generating function,
S. There is only one equation available for this purpose

H(g,p,t) + aa—f = K(P,Q,t). (4.1)
However, there are two unknown functions in this equation: S and K. Thus, the best
we can do is to assume a solution for one and then solve for the other. In this regard,
suppose we arbitrarily introduce the condition that K is to be identically zero? Under
this condition, Q and P vanish; resulting in @ = a, and P = (3, constants. The inverse
transformation then yields the motion ¢(a, 8,t), p(a, 8,t) in terms of these constants of
integration, o and (.
Consider now generating functions of the first type. Having forced a solution on K,
we must now solve the partial differential equation (PDE)

S S
H — — = 4.2
(a.500) + 5 =0 (4.2

oS oS
for S, where — = —,..., —
dq (8(11 qn

equation (HJE), and was improved and modified by Jacobi in 1838. For a given func-
tion H(q,p,t), this is a first-order PDE in the unknown function S(g,«,t) which is
customarily called Hamilton’s principal function. We need a solution for this equation
which depends on n arbitrary constants ay,as, ... ,a, in such a way that the Jacobian

T
> . This equation is known as the Hamilton—Jacobi

determinant of with respect to (wrt) the a; satisfies

qi
928
‘8%6% #0. (4.3)
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The above condition excludes the possibility in which one of the n constants o is additive;
that is, one must have

S(qvaat) #g(qaalva%"' aanflat)"i-arv (44)

A solution S(q,«,t) satisfying (4.3) is called a “complete solution” of the HJE (4.2),
and solving the HJE is equivalent to finding the solutions of the equations of motion
(2.11), (2.12). Conversely, the solution of (4.2) is nothing more than a solution of the
equations (2.11), (2.12) using the method of characteristics [5, 6]. However, it is generally
not simpler to solve (4.2) instead of (2.11), (2.12).

If a complete solution S(q,«,t) of (4.2) is known, then one has

a8

87% = Di, (4.5)
a8 .

Do =—0;, i1=1,...,n. (4.6)

Since the condition (4.3) is satisfied, the second algebraic equation above may be solved
for g and the first solved for p(«, 3,t). One thus has a canonical transformation from
(o, B) to (q,p). And it follows from the definition of canonical transformation that the
inverse transformation a = a(q,p,t), 8 = B(q,p,t) also is canonical.

On the other hand, if the Hamiltonian is not explicitly a function of time or is inde-
pendent of time, which arises in many dynamical systems of practical interest, then the
solution to (4.2) can then be formulated in the form

S(q,a,t) = —ht + W(q, «) (4.7)

with h = h(a). Consequently, the use of (4.7) in (4.2) yields the following PDE in W

H<q, %V;/) =h, (4.8)

where h is the energy constant (if the kinetic energy of the system is homogeneous
quadratic, the constant equals the total energy, E). Moreover, since W does not involve
time, the new and the old Hamiltonians are equal, and it follows that K = h. The
function W, known as Hamilton’s characteristic function, thus generates a canonical
transformation in which all the new coordinates are cyclic. Further, one may choose
h = a,, for example, so that

W=W(q,a1,... ,an-1,h) (4.9)
depends on n — 1 additional arbitrary constants besides h. Noting that the Jacobian
determinant of S wrt the n arbitrary coordinates, and the n constants ai,...,a,—1, h
may not vanish, then from (4.5), (4.6) and (4.7), we have the following system

ow

o =—0;, i=12...,n—1,

ow

— =t f,, 4.10
=t (10
ow

9
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where the term ¢ — 3, in the preceding equation follows directly from the fact that
the system is autonomous. The above system of equations may be solved for n — 1
components of ¢, say, for ¢i,q2,... ,q,—1 resulting in

q1 = q1<a1;a27"' 7a’n7h>/617/627"' ;ﬁnflaqn%

q2 = Q2(0!1,0427--- 7anah7ﬁlaﬂ27"' aﬂn—l;qn)a (4 11)

dn—-1 = anl(aho@w o 7an7h751762u"' 76n717qn)7

where the time t is replaced as the parameter ¢,. These equations are then the solution
for the system.

5 The Toda Lattice

The Toda lattice as a Hamiltonian system describes the motion of n particles moving
in a straight line with “exponential interaction” between them. Mathematically, it is
equivalent to a problem in which a single particle moves in R™. Accordingly, let the
positions of the particles at time ¢ (in R) be ¢1(t),... ,qn(t), respectively. We assume
also that each particle has mass 1, and therefore the momentum of the i-th particle at
time ¢ is p; = ¢;. Consequently, the Hamiltonian function for the finite (or non-periodic)
lattice is defined by

n n—1
1
H(q,p) = 3 Zp3 + Z e2(4i—aj+1) (5.1)
Jj=1 Jj=1
Thus the canonical equations for the system are given by
dg; _
dt

dpl 2(aq1 —
— =9 (g1—¢2)
dt ‘ ’

% = —2e26—0+1) 4 92 @1=w) s =92 | p—1,

dp 2
" _ 962(dn-1-0n)
ar

It may be assumed in addition that Z?:l q; = Z?Zl p; = 0, and the coordinates
q1,--- ,qn can be chosen so that this condition is satisfied. While for the periodic lattice
in which the first particle interacts with the last, the Hamiltonian function is defined by

n n—1
~ 1
H(q,p) = 3 Zp? + Z e2(4i—a5+1) + e2(an—a1) (5.3)
j=1 j=1

We may also consider the infinite lattice, in which there are infinitely many particles.
Using the inverse scattering method of solving the initial value problem for the
Korteweg-de Vries equation (KdV) formulated by Lax [13], the solution for the lattice
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can be derived using matrix formalism which led to a simpliﬁcation of the equations of
motion. To introduce this formalism, define the following (n x n) matrices

p1 Qi 0 - 0
Qi2 p2 Q23 - 0
0 Q@23 p3 - 0
L= . . . . (5.4)
0 0 0 ce Pn—-1 Qn 1,n
0 0 0 - Qu-in
0 Q1,2 0 0 0
—Q1,2 0 Q2,3 0 0
0 —Qss O 0 0
M= _ ; (5.5)
0 0 0 s 0 Qn—l,n
0 0 0 e 7Qn—1,n 0

where Q;; = e(%=9)  We then have the following proposition [9].

Proposition 5.1 The Hamiltonian system for the non-periodic Toda lattice (5.2)
is equivalent to the Lax equation L = [L, M], where the function L, M take values in
sl(n, R) and [cdot, ] is the Lie bracket operation in sl(n, R).

Using the above matrix formalism, the solution of the Toda system (5.2) can be
derived [9,13].

Theorem 5.1 The solution of the Hamiltonian system for the Toda lattice is given
by L(t) = Ad(exp tV); 'V, where V = L(0) and I represents the identity matriz.

The can explicitly write the solution for the case of n = 2. Letting ¢1 = —¢q, ¢ = q,
p1 = —p and ps = p, we have

L:(é i) M:(_OQ cg) (5.6)

where Q = ¢~24. The solution of I = [L, M] with

o= (9 1),
s=ufoae (0 3]0 8)

oxD ¢ 0 v\ (coshtv sinhtv
PPy 0) 7 \sinhtv coshtv )’

is

Now

and hence,

{expt<0 “)]1_ 1 (Cosh tv smhm>
v 0 I \/sinh2 tv + cosh? tv sinh tv  cosh tv
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Therefore,
Lit) = —, v i <2 sinh tv cosh tv - 1 ) ,
sinh® tv 4+ cosh” tv 1 2sinh tv cosh tv
which means that _
pt) = —v % Q(t) = wshﬁ

Furthermore, if we recall that Q(t) = e~29(®) it follows that

1 v 1 1
t)=—=1 (7):—71 — 1 sh 2ut. .
q(t) og “osh 20 ) og v+ 5 og cosh 2v (5.7)

6 Solving the Hamilton—Jacobi Equation

It is clear from the preceding discussion that the success of the Hamiltonian approach
to mechanics depends heavily on the ability to solve the HJE. Because the prospects of
success are limited by the inadequate state of the mathematical art in solving nonlinear
PDEs. At present, the only technique of general utility is the method of separation of
variables. If the Hamiltonian is explicitly a function of time, then separation of variables
is not readily achieved for the HJE. However, if on the other hand, the Hamiltonian
is not explicitly a function of time or is independent of time, which arises in many
dynamical systems of practical interest, then the HJE (4.2) degenerates to the HJE
(4.8). Nevertheless, solving this resulting HJE still remains a very difficult problem in
general.

In this section we propose a parametrization approach for solving the Hamilton—Jacobi
equation for a fairly large class of Hamiltonian systems, and then apply the approach
to the As-Toda lattice as special cases. To present the approach, let the configuration
space of the class of Hamiltonian systems be a smooth n-dimensional manifold M with
local coordinates ¢ = (q1, ... ,qn), i-€. if (p,U) is a coordinate chart, we write ¢ = ¢ and

G = in the tangent bundle TM|y = TU. Further, let the class of systems under
qi
consideration be represented by Hamiltonian functions H: T*M — R of the form:

H(gp)= 5 > 7 +V(a), (61)
i=1

where (p1(q), ... ,pn(q)) € Ty M, and together with (g1, ... ,¢) form the 2n symplectic
coordinates for the phase-space T*M of any system in the class, while V: M — R, isthe
potential function which we assume to be nonseparable in the variables ¢;, i =1,... ,n.
The time-independent HJE corresponding to the above Hamiltonian function is given by

£ (2

where W: M — R is the Hamilton’s characteristic function for the system.
We then have the following theorem concerning the solution of this HJE.
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Theorem 6.1 Let M be an open subset of R™ which is simply connected and let
q=1(q1,-..,qn) be the coordinates on M. Suppose p, 0;: M — R for i=1,..., L%‘HJ,

0= (6, - ’HL%J)' and i+ R x RU"3*) 5 R are C? functions such that

G 9¢;

5o (p(0).0(0) = 52 6(). @), Virj=1,..m (63)
and
5> pla),6a)) + Via) = h (6:4)
i=1

is solvable for the functions p, 0. Let

n

wl = Z Gi(p(q),0(q))dgi,

i=1
wl € QPrime(M), and suppose C is a path in M from an initial point qo to an arbitrary
point g € M. Then
(i) w! is closed;
(i) w! is e:cact
(iii) of Wi(q fw then W satisfies the HJE (6.2).

Proof (i)

n n 8
:225; 0(q))dg; A dgi,

j=14i=1 _*J

which by (6.3) implies dw! = 0; hence, w! is closed.

(ii) Since by (i) w! is closed, by the simple connectedness of M (Poincaré’s lemma [1]),

w! is also exact.

(iii) By (ii) w' is exact, therefore the integral W (g f w! is independent of the

I and

path C. Therefore, W corresponds to a scalar function. Furthermore, dW = w
8W
= (i(p(q),0(q)), and thus substituting in the HJE (6.2) and if (6.4) holds, then W

satrsﬁes the HJE.

In the next corollary we shall construct explicitly the functions (;, ¢ = 1,... ,n, in
the above theorem.

Corollary 6.1 Assume the dimension n of the system is 2, and M, p, 0 are as in
the hypotheses of Theorem 6.1, and that conditions (6.3), (6.4) are solvable for 6 and p.
Also, define the functions (;, i = 1,2, postulated in the theorem by (1(q) = p(q) cosb(q),
C(q) = p(q)sinb(q). Then, if

w—Z@ g, W= [

C
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and q: [0,1] — M s a parametrization of C' such that q(0) = qo, q(1) = q, then
(i) W is given by

W(g.0) = [ VT =Viao) [cosb(als)di(5) + sinbla(0)a(s) ds (65)
0

do
where v = +v/2 and ¢} = qczliS) ;

(ii) W satisfies the HJE (6.2).

Proof (i) If (6.3) is solvable for the function 6, then substituting the functions
Ci(p(q),0(q)), i = 1,2 as defined above in (6.4), we get immediately

plq) = £v/2(h =V (q)).
Further, by Theorem 6.1, w! given above is exact, and W = [w'dq is independent of

C
the path C. Therefore, if we parametrize the path C by s, then the above line integral
can be performed coordinate-wise with W given by (6.5) and v = ++/2.
(ii) follows from Theorem 6.1.

Remark 6.1 The above corollary constructs one explicit parametrization that may be
used. However, because of the number of parameters available in the parametrization
are limited, the above parametrization is only suitable for systems with n = 2. Other
types of parametrizations that are suitable could also be employed.

If however the dimension n of the system is 3, then the following corollary gives a
procedure for solving the HJEs.

Corollary 6.2 Assume the dimension n of the system is 8, and M, p, are as in
the hypotheses of Theorem 6.1. Let (;: RX RxXx R — R, i = 1,2,3, be defined by

Gi(q) = plg)sinb(q) cosp(q), Calg) = plg)sinb(q)sinp(q), C3(q) = plg)cosb(g), and
assume (6.3) are solvable for 6 and @, while (6.4) is solvable for p. Then, if

3
W'=Y Glp(a). 0, ¢)dai,
i=1

W = [w', and q: [0,1] — M 1is a parametrization of C' such that q(0) = qo, q(1) = q,
c

then
(i) W is given by

1
W(ah) = [ V= V@) {sind(a(s) cos e(a(s))a; (4

+sin 0(q(s)) sin 0 (q(s))ga(s) + cos H(q(S))qé(S)}d& (6.6)
where v = +/2;
(ii) W satisfies the HIE (6.2).
Proof Proof follows along the same lines as Corollary 6.1.

Remark 6.2 Notice that, the parametrization employed in the above corollary is now
of a spherical nature.
The following theorem gives bounds on the solution W and its derivatives.
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Theorem 6.2 Let N C M be the region in which the solution W of the HJE given
in Corollaries 6.1 and 6.2 exists. Then if C is a path q: [0,1] — N in N parametrized
by s €[0,1] such that q(0) = qo, q(1) = q¢ we have the following bounds on the solution
and its derivatives:

HW (8)s )]l < [V[VEG(8)] 215
= |V2p(q)/;

ol
w 2], -

Proof (i) From (6.5) or (6.6),

W (a.h ||msw|z / sup_ VTRV (@) a}(s) dais)

q(s)eEN

1

< \Wlﬁ/(\qi(S) ds| + lg5(s) ds| + ... + |q,(s) ds])

0

< yIVhla(s)|l .-

(ii) Using the definition of 0W /dq; given in Corollaries 6.1 and 6.2, we have

1% 2 — 1V30(a) /P,

8qi Q_Z

i=1

hence the result.
(iii) Follows by taking the sup over ¢ € M of oW /9q;, i =1,... ,n.
Furthermore, the following proposition gives regularity of the solution.

Proposition 6.1 If the functions p, 8;, i=1,..., L"T'HJ in Theorem 6.1 and Corol-
laries 6.1 and 6.2, n = 1,2, or 3 exist and the HJE (6.2) is solvable for W, then if 0;,
i=1,..., L"T'HJ, are C1, then W is C2%, and consequently if 0;, i =1,..., L"THJ, are
Cr, r>1, then W is C"t1,

Proof From the expressions (6.5), (6.6) for W, we see that p is a smooth function,
since V' is smooth. Hence, the differentiability of W depends on the differentiability of the
0;, i = 1,2, or 3. Further, it is clear that, the integration increases the differentiability
of W by 1 over that of the 6;, i =1,2, or 3.

We can combine Corollaries 6.1 and 6.2 for any n in the following proposition.

Proposition 6.2 Let M be an open subset of R™ which is stimply connected and let
qo be a fived point in M. Suppose there exists a C' matriz function R: R' — SO(n, R)
for some smooth vector function 6 = (61,...,6;), 6;: M — R, i =1,...,1, and a C*
vector function o(q) = [p(q),-..,p(q)], p: M — R, such that the Jacobian matriz

+-R(0(q))e(q) (6.7)
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is symmetric and

5{e(a)le(q)) +V(g) = h. (6.8)
Let

ot = [R(O(a))e(a)]ida;

i=1

and suppose C' is a path from qo to an arbitrary point ¢ € M. Then,

(i) @' is closed;
(i) @' is exact;

(iii) if W(q) = [ &', then W satisfies the HJE (6.2).
c

Proof (i)

a5 = 33 S (RO elada; A da

which by (6.7) implies that do! = 0; hence, @' is closed.
(ii) Again by simple-connectedness of M, (i) implies (ii).
(iii) By (ii) the integral I/IN/(q) = [,@' is independent of the path, and W corre-

sponds to a scalar function. Moreover, if dW = @' and W /dq; = [R(0(q))o(q)]i, then
substituting in the HJE (6.2) and if (6.8) holds, then W satisfies the HJE (6.2).

If the HJE (6.2) is solvable, then the dynamics of the system evolves on the n-
dimensional Lagrangian submanifold [1,11] N which is an immersed submanifold of max-
imal dimension, and can be locally parametrized as the graph of the function W, i.e.,

ow
N = {(q, 8(]) : ge NC M, W is a solution of HIE (6.2)}

as described in Section 1. Moreover, for any other solution W’ of the HJE, the volume
enclosed by this surface is invariant. This is stated in the following proposition.

Proposition 6.3 Let N C M be the region in M where the solution W of the HJE
(6.2) exists. Then, for any orientation of M, the volume form of N

is given by

Ww'=(/14+2(h—V(q)))dg Ndgs ... dg,.
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Proof From the HJE (6.2), we have

1-1-2((?;/) =v1+2(h—-V(q), VgeN
0

n 8W 2
w" = 1+Z(8Q') dql/\.../\dqn:( 1—|—2(h7V(q)>dq1/\.../\dqn
j=1 /

Vqe N.

We now apply the above ideas to solve the HJE for the two-particle As-Toda lattice.
We consider the nonperiodic system described in Section 5.

6.1 Solution of the Hamilton—Jacobi equation for the A;-Toda system

Consider the two-particle nonperiodic Toda system (or Ay system) given by the Hamil-
tonian (5.1)

H(q1,q2,p1,p2) = = (p7 + p3) + 20722, (6.9)

1
2

Then, the HJE corresponding to the system is given by

1 /ow\> [ow\? )
- _ - (m—qz): 1
2{(%) +(5e) }+e h. (6.10)

The following proposition gives the solution of the above HJE corresponding to As-Toda
lattice.

Proposition 6.4 Consider the HJE (6.10) corresponding to the As-Toda lattice.
Then a solution to the HJE is given by

/ /

q; a

v . T
W(dq1, g3, he) = Cosz/p(q) dqy +msmz/p(q) dq
1 1

— — _ _e—2(b+m—1)

m—1

= (1—|—m){

Vhs

m—1

\/hg —e—2-2(m=1)d; _ \/h; tanh~! [\/hz,e—zbfmfl)q;}
}7 q1 > q2,
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and
4 a4
/A ™ .
W(q1, g5, he) = cos 1 p(q) dg1 + msin 1 0(q) dg1
1 1

— — _ A/ —e—2(b—m+1)
Vhy —e=20=m+1) _ /R tanh ™! [%}

m—1

:(l—i—m){

vV h2

m—1

Vg — ¢ BRI g tanh " [Viame 2]

}7 q2 > q1.
Furthermore, a solution for the system equations (5.2) for the Ay with the symmetric
initial conditions q1(0) = —q2(0) and ¢1(0) = ¢2(0) =0 is

alt) = — 5 log /I + 5 logleosh 24/Fa( — 1) (6.11)

where ho s the energy and

20
b= oum, ot <m>

Proof Applying the results of Theorem 6.1 we have

ow ow

9g, ~ Pla)eostle), 5 = plg)sinb(q)

and substituting in the HJE (6.10) we immediately get

pla) = £1/2(hy — 2l -2))
and

P4 (q) c0s0(q) — b4, p(q) sin 0(q) = pq, (q) sin6(q) + b4, p(q) cos 0(q). (6.12)

The above equation (6.12) is a first-order PDE in 6 and can be solved by the method
of characteristics [5,6]. However, the geometry of the system allows for a simpler solu-
tion. We make the simplifying assumption that 6 is a constant function. Consequently,
equation (6.12) becomes

Pgs(q) cosl = pg, (¢)sinf = tanf = Paz (1) =-1=0= —%.

P ()

Thus,

p1 = p(q) cos g, p2 = —p(q) sin g,
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and integrating dW along the straightline path from (1, —1) on the line

+1 5+ 1Y de
L: ¢= 0 1+( +q,2 >d=fmCI1+b
Q1 1 q—1

(this follows from the configuration of the lattice) to some arbitrary point (qi,q5) we
get

! !’
g1 a1

™ .o
W(inqlg’hﬁ = COSz/P(Q) dq —|—msmz/,0(61) dqy
1 1
/o —e—2(b+m—1)
/h 2_6—2(b+m 1) \/>tanh 1|: ha—e :|
=1+m { — Vs

Vha

\/the 2b=2(m-1)qi _ /B tanh™ 1{\/%}
m—1 }

Similarly, if we integrate from point (—1,1) to (q1,4¢5), we get

q; q
T .o
W(q1,qs, ha) :COSZ/p(q) dq +m8m1/p(q) dq
—1 —1

/h2 _ e_Q(b_7,L+1) _ /h2 tanh_l |: \/ }Lz—(i*;(b—m+l)i|
=1+ m){ T 2
m —

Vha

Vhy — e=20+20-m)d; _ /Iy tanh ™ [W}
m—1 }

Finally, from (2.11) and (6.9), we can write

. ™

41 =p1 = plg)cos (6.13)
. .

G2 =p2 = —plq)sin . (6.14)

Then ¢; +¢2 = 0 which implies that g; +¢2 = k, a constant, and by our choice of initial
conditions, k = 0. Now integrating the above equations from t =0 to ¢t we get

L a1 C)) Y
2\/h2 2h2 2\/}12 2h2
1 1 p(q) 1 —1 p(q(0))
—— tanh! = tanh —t.
oy oy /iy 2k,
If we let (€(0)
1 1 p(g
= tanh™! ,
=g b~ o
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then upon simplification we get

G —q = %log {hz (1 — tanh22m(ﬁ - t))}

= % log [ha sech? 2\/@(ﬁ —1)].

Since k =0, then g = —g2 = —¢, and we get

alt) = — 3 log v/ — 1 loslsech 2/ha (5 — 1)

- _% log \/ha + %log[cosh 2v/ha (3 — t)).

Now, from (6.10) and (6.13), (6.14),

p(a(0)) = 47 (0) + ¢3(0),

and in particular, if ¢;(0) = ¢2(0) = 0, then 8 = 0. Therefore,
1 1
a(t) = —5 log V'ha + 3 log(cosh 2/hat)

which is of the form (5.7) with v = V/h.

Next, we consider a more general solution to the HJE for the As-Toda lattice. We try
to solve the equation (6.12) under the fact that

P1t+p2=a (6.15)

a constant, which follows from (5.2). Then, from the proceeding, the above equation
implies that
p(q) cosb(q) + p(q) sinb(q) = a. (6.16)

Now suppose we seek a solution to (6.12) and (6.16) for 8(q) such that

20(q) _ 00(q)

oq 9q2 ( )
The above condition is satisfied if
0(q1,q2) = f(q1 + q2) (6.18)
for some smooth function f: R — R of one variable, and
00 00
D) _ 09D _ pi(g, 4 q0), (619

oq B 0qz

where f'(-) is the derivative of the function with respect to its argument. Then substi-
tuting in (6.12) and using (6.16), we get

Pas (@) cos f(q1 + q2) — pg, (@) sin f(q1 + q2) = af'(q1 + ¢2) (6.20)
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which after substituting for py, (¢) and pg,(¢) and making the change of variables = =
¢1 + 42, ¥y = q1 — g2 becomes

V2e%
Vho — ey

The above equation represents a first-order nonlinear ODE in the function f(z), and can
be integrated in this way

(cos f(x) +sin f(z)) = af'(z). (6.21)

2 2y y /
VW / of(z) d (6.22)
), Vhy — ey ) (cos f(x) + sin f(x))
to yield
V2
=2tan"! [tanh | ———x= | + 1 6.23
f(z) an [an (a o + ( )
This implies that
2(q1—q2)
0(q1,q2) = 2tan™" |tanh Vae +1. (6.24)
o/ hy — e2(a1—a2)

We can now obtain W by taking the line integral of pi(q) = p(q)cosf(q) and ps =
p(q)sinf(q) along the straightline path from (1,—1) on the line

! /

+1 4+ 1Y def

L: quqf c]1—<1+q,2 >—emq1+b
¢ —1 ¢ —1

to some arbitrary point (¢}, ¢5) for g1 > ¢2 and from (—1,1) to (¢1,¢5) for g2 > ¢1.
Hence we have

W (g, a,hy) = / [p(q) cos8(q) + mp(q) sin (q)] day . (6.25)
L

Using the half-angle formula, we can write

T(q) 4 tan blar) = tanh Vacnt +1 (6.26)
2 a/hy — 20 (1=m)=b ’ '
1-17?
cos0) = Ty (620
) 2T'(q1)
S g(ql) = 1+7§'2(q1) (628)

Therefore,

W(g,0,h2) = / Vatha = et (G EER o)

a
1—2mT(x) — T?(x)
— _ p22(1—m)—b
= /\/Q(h2 e2a( ) )( T T202) dr for ¢ > qo
1



344 M.D.S. ALIYU AND L. SMOLINSKY

and

a
1 —2mT(x) — T?(x)
— _ s2z(1—m)—>b
Wi(q,a, hy) = /\/2(h2 e2z(1-m) )( T2 dr for g9 > q.
Z1

Unfortunately the above integrals cannot be computed in closed-form.

7 Conclusion

In this paper, we have presented a review of Hamilton—-Jacobi theory and a new approach
for solving the HJE for a fairly large class of Hamiltonian systems in which the variables
may not be separable. The approach can also be extended to the case in which the
Hamiltonian is not time-independent, and relies on finding a parametrization that allows
for the equation to be solved.

The approach has been applied to the As-Toda lattice, and computational results
have been presented to show the usefulness of the method. It has been shown that, for
the two-particle non-periodic As-Toda system, the HJE can be completely integrated
as expected to obtain the characteristic function and subsequently a complete solution
to the equations of motion. The approach can also be applied to a fairly large class of
Hamiltonian systems.
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1 Introduction

Of concern is the following nonlocal history-valued boundary value problem for a partial
functional differential equation,

ow d*w
E(m,t) =aq W(m,t) + flw(z, t), wz,t — 7)),
t>0, 0<.’1§'<7T'7 (11)

w(0,t) = w(m,t) =0, t>0,
h(w|_rg)(z,t) = ¢(z,t), —-7<t<0,7>0, 0<z<m,
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where w is the sought-for function in the space C_. r) = C([0, 7] x[—7,T]), for arbitrarily
fixed 0 < T < oo, of all continuous functions endowed the supremum norm, h is a
function defined from the space C_, ¢ into itself, ¢ € C_, ¢, the function w|_, g €
Cl—r,0) is the restriction of w € Cl_; 7} on [0,7] x [~7,0], a > 0 is a constant.

Let X be the Banach space C[0,7] of all real-valued continuous functions on [0, ]
endowed with the supremum norm

[€llx = sup [(2)], €€ X,
0<z<w

and for t € [0,T], 0 < T < o0, let C; = C([-7,t]; X), 0 < T < 00, be the Banach space
of all continuous functions from [—7,¢] into X endowed with the supremum norm

[¥lle = sup [[¥(0)]x, ¢ €Ce.
<0<t

Let Co(x) = {x € Co: x(0) = x(0)}. Define a function F from Cy(x) into X by

F(x) = f(x(0),x(=7)), x € Co.

Then (1.1) can be written as the following nonlocal history-valued functional differential
equation
u'(t) + Au(t) = F(w), t€ (0,71,

H(up) =¢ on [—7,0], (12)

where A is a linear operator defined on D(A) = {£ € C[0,7]: ¢’ € C[0,7], £(0) =
&(m) =0} with A = —af” for £ € D(A), for uw € Cr and t € [0,T], u € Cy given by
ut(0) = u(t +46), 0 € [—7,0], the map H is defined from Cy into itself and ¢ € Cy.

For the earlier works on existence, uniqueness and stability of various types of so-
lutions of differential and functional differential equations with nonlocal conditions we
refer to Byszewski and Akca [2], Byszewski and Lakshmikantham [4], Byszewski [5], Bal-
achandran and Chandrasekaran [3], Lin and Liu [7] and references cited in these papers.

Our main aim is to consider various types of nonlocal history conditions H and their
applications. We use the ideas and techniques used by Bahuguna [1] to study such
conditions and their applications.

A few examples of H are the following. Let g be map from Cy into X be a map given
by one of the following.

(I) Let k € L*(0,7) such that x = [k(s)ds # 0. Let
0

0

9(6) = / k(—s)é(s)ds, € € Co.

—T

l
(IT) Let -7 <t1 <ta<---<t; <0, ¢; >0 with C =5 ¢; #0. Let
i=1

l

9(&) =Y ciklts), €€l

i=1
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(III) Let t; and ¢; be as in (II) and let ¢ >0, 4 =1,2,... 1. Let

t;

l
9(&) =>_ EZ_ £(s)ds, € €.
i=1 )

t;—e

o

If we define ¢ € Cy given by ¢(f) = « for all § € [—7,0] and H: Cy — Cy given
by H(&)(0) = g(§) for all 8 € [-7,0] and all ¢ € Cp, then the condition g(¢) = = is
equivalent to the condition H(§) = ¢.

Let x € Co be such that H(x) = ¢. The function u € Cz, 0 < T < T, such that

x(t) tel-n0
ut) = SOX(O) + [ St - 9)F(u.)ds. t e [0, "
0

is called a mild solution of (1.2) on [—7,T]. If a mild solution u of (1.2) on [—7,T] is
such that u(t) € D(A) for a.e. t € [0,T], u is differentiable a.e. on [0,7] and

u'(t) + Au(t) = F(ug), a.c.on [0,T],

it is called a strong solution of (1.2) on [—7,T]. If a mild solution u of (1.2) on [—7,T]
is such that u € C*((0,T]; X), u(t) € D(A) for t € (0,T] and satisfies

u'(t) + Au(t) = F(uy), te (0,7,

then it is called a classical solution of (1.2) on [—7,T].
We first establish the existence of a mild solution u € Cz of (1.2) for some 0 <

T < T and its continuation to the whole of [-7,00). Under the additional assumption
of Lipschitz continuity on ¢ on [—7,0], we show that the mild solution u is a strong
solution of (1.2) on the interval of existence and it is Lipschitz continuous. Under further
additional assumption that S(t) is analytic, we show that u is a classical solution of (1.2)
on the interval of existence. We also show that u is unique if and only if y satisfying
H(x) = ¢ is unique. Next, we establish a global existence result. Finally, we study the
finite dimensional approximation of solutions in a Hilbert space.

2 Local Existence of Mild Solutions

We first prove the following result establishing the local existence and uniqueness of a
mild solution of (1.2).

Theorem 2.1 Suppose that —A is the infinitesimal generator of a Cy-semigroup
S(t), t >0 of bounded linear operators in X. Let H: Cy — Cqy be such that there exists
a function x € Co such that H(x) = ¢. Let Co(x) = {x € Co: X(0) = x(0)}. Let
F: Co(x) — X satisfy a Lipschitz condition

[F(x1) — F(x2)llx < Lrlx1 — xzllos
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for all x; € Co(x), @ = 1,2, where Lr is a non-negative constant. Then there exists a
mild solution u of (1.2) on [—7,To] for some 0 < Ty <T. Moreover, the mild solution
u s unique if and only if x is unique.

Proof Let M >1 and w > 0 be such that [|S(t)||px) < Me“" for t > 0. Here
B(X) is the space of all bounded linear operators from X into itself. We choose 0 <
To < T be such that

ToMe“T Ly < 3/4.

Define a map F: Cp,(x) — Cr,(x) by

X(t) le [_Tv O]’

Fult) = S(t)x(0) + j S(t— s)F(ws)ds, te€[0,Tp). (2.1)

Here and subsequently, any function in Cr(x) = {¢ € Cr: ¥(0) = x(0)} is also in
C#(x), 0< T < T, as its restriction on the subinterval. Also, for w; € Cr,(x), i = 1,2,
we have

| Fwi(t) — Fwo(t)||x < ToMe“" Li||lw; — wa| 7,

Since TyMe“T Ly < 3/4, F is a strict contraction on Cr,(x) and hence has a unique
fixed point u € Cr, ().

Clearly, if x € Cr satisfying H(x) = ¢ on [—7,0] is unique on [—7,0], then w is
unique. If there are two x and x in Cy satisfying H(x) = H(x) = ¢ on [—7,0], with
X # x on [—7,0], then the corresponding solutions v and @ of (1.2) belonging to Cr,(x)
and Cgp (x) are different. This completes the proof of Theorem 2.1.

3 Global Existence of Solutions

Theorem 3.1 Assume the hypotheses of Theorem 2.1. Then the local mild solution
u of (1.2) exists on the whole interval [—T,00).

Proof Let 0 < T < oo be arbitrarily fixed. If Ty < T, consider the functional
differential equation

V() + Av(t) = F(v), 0<t<T—Ty,
N 3 (3.1)
H(UO) = ¢7

where H: Co(x) — Co(x) given by Hx = x for x € Co(x) and ¢(0) = u(Tp + ) for
6 € [—7,0]. Since all the hypotheses of Theorem 2.1 are satisfied for problem (3.1), we
have the existence of a mild solution w € Cr,(x), 0 < Ty < T — Ty of (3.1). This mild

solution w is unique as H in (3.1) is the identity map on Cy(x). We define

at) = { u(t), te[—7,To] (3.2)

w(t—To), te [TO7T0+T1].

Then @ is a mild solution of (1.2) on [—7, Ty + T1], unique for fixed x. Continuing
this way, we get the existence of a mild solution u either on the whole interval [—7,T]
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or on the maximal interval [—T,tmax) of existence. In the later case we may use the
arguments similar in the proof of Theorem 6.2.2 in Pazy [9, P.193-194], to conclude
that , ltim lu(t)]|x = oc.

In order to show the global existence, we show that |lu(t)||x < C for t > 0. Let
M, = max{M,e“7, (M/w)||F(0)| x,|xllo}. For t € [—7,0], e “!|u(t)||x < M; and for
t€[0,T), we have

t

e “Hlu®)||lx < M + MLF/ e sup. [u(s + 6)]|x]ds. (3.3)
—T 0
) <0<

From (3.3), for any 0 < r <, we have

t

e “Hu(r)|x < My + M LF/ [67“5 s2£)< |lu(s + 9)||X]ds. (3.4)
—T 0
/ <6<

Putting r =t +n, —t <n <0, in (3.4), we get
t

e “Hult+n)|lx <M+ MLp / [e““s S3£)<0 l|lu(s + 9)||X]ds. (3.5)
J <6<

Now, if —7 < —t, then

e sup u(t+n)|x <e™ sup  u(t+n)|x +e" sup u(t +n)|x
—7<n<0 —r<n<—t —t<n<0

t
§2M1+MLF/[6_“’S sup ||u(s+9)||x]ds,

—7<6<0
0

and for the case —t < —7, we have

e sup |u(t+n)lx <e " sup Ju(t+n)lx
—7<n<0 —t<n<0
t
<20+ MLe [ [ sup fuls+6)]]ds

—7<0<0
0

Thus,

t

e " sup lu(t+mn)|x <2M; + MLF/ le™@* sup [lu(s +0)]|x]ds.
—7<n<0 5 —7<0<0

Gronwall’s inequality implies that

t

et sup [t )l <2000+ ML [ f(s)exp 2MIFO)x(t—s)}bds.  (36)
—7<n<0 A

Inequality (3.6) implies that ||u(t)||x is bounded by a continuous function and therefore

[lu(t)]|x is bounded on every compact interval [—7,7T], 0 < T < oco. Since T is arbitrary,

the global existence follows.
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4 Regularity of Solutions

Theorem 4.1 Assume the hypotheses of Theorem 2.1. If, in addition, x € Cy
satisfying H(x) = ¢ is Lipschitz continuous on [—7,0] and x(0) € D(A), then the
solution u corresponding to x is Lipschitz continuous on every compact subinterval of ex-
istence. If, in addition, X is reflexive, then u is a strong solution of (1.2) on the interval
of existence and this strong solution is a classical solution of (1.2) provided S(t) is an
analytic semigroup.

Proof We shall prove the result for the first case when the mild solution u exists on
the whole interval. The proof can be modified easily for the second case.

We need to show the Lipschitz continuity of « only on [0, T]. In what follows, C;’s are
positive constants depending only on R, T and ||x||o. Let ¢t € [0,7] and h > 0. Then

0
[u +h) —u@)|[x < [1(S(h) = 1)S()x(0)]lx + / [S(t — s)F(ussn)llx ds
—h

t

+ / st — $)[F (ussn) — Fus)]llxds
0

t (4.1)
<Ci|h+ /[Hus—i-h - us”Co] ds
0
t
§01h+/ wp|ww+h+®—uﬁ+om4d&
—7<6<0

For the case when —7 <t <0 and 0 <t+ h (clearly, t+ h < h in this case), we have

[ut +h) = u@®)l[x < [[(SE+h) = Dx(0)]x + [Ix(t) = x(0)llx

7 (4.2)
+ / ISt +h — s)F(us)||xds < Cah.
0
Combining the inequalities (4.1) and (4.2), we have for —7 <t <t,
t
lu@+h) —u(@®)||x < Cs|h+ / sup |lu(s+h+0)—u(s+ 9)|de] . (4.3)
—r<6<0
J —T<6<

Putting t =t+60, —t—7 <6 <0, in (4.3), and taking supremum over § on [—,0], we
get

t

h—l—/ sup ||u(s+h+9)—u(s+9)||xds]. (4.4)

—7<6<0

sup Ju(t+h+0)—u(t+0)||x < 2C5
—7<6<0
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Applying Gronwall’s inequality in (4.4), we obtain

lu(t +h) —u@®)]|x < sup |u(t+h+0)—u(t+0)|x < Cih.
—7<6<0

Thus, u is Lipschitz continuous on [—7,T7.

The function F: [0,7] — X given by F(t) = F(u;), is Lipschitz continuous and
therefore differentiable a.e. on [0,7] and s in LY((0,T); X). Consider the Cauchy
problem

V'(t) + Av(t) = F(t)

, te(0,T],
v(0) = u(0),

(4.5)

By the Corollary 2.10 on page 109 in Pazy [9], there exists a unique strong solution v of
(4.5) on [0,T]. Clearly, v defined by

{u@% te[-7,0]
v(t), tel0,T],

is a strong solution of (1.2) on [—7,T]. But this strong solution is also a mild solution of
(1.2) and © € Cp(x). By the uniqueness of such a function in Cr(x), we get o(t) = u(t)
on [—7,T]. Thus u is a strong solution of (1.2). If S(¢) is analytic semigroup in X then
we may use Corollary 3.3 on page 113 in Pazy [9] to obtain that u is a classical solution
of (1.2). This completes the proof of Theorem 4.1.

5 Finite Dimensional Approximations

In this section we assume that X is a separable Hilbert space. Furthermore, we assume
that in (1.2), the linear operator A satisfies the following hypothesis.

(H1) A is a closed, positive definite, self-adjoint linear operator from the domain
D(A) C X into X such that D(A) is dense in X, A has the pure point spectrum

O0< X <A< <.
and a corresponding complete orthonormal system of eigenfunctions {u;}, i.e.,
Aui = )\iui and (ui7uj) = (52‘j7

where §;; =1 if ¢ = j and zero otherwise.
If (H1) is satisfied then the semigroup S(t) generated by —A is analytic in X. It

follows that the fractional powers A® of A for 0 < a < 1 are well defined from D(A%) C
X into X (cf. Pazy [9], pp. 69-75). D(A®) is a Banach space endowed with the norm

[zlla = [[A%2x, @€ D(A®). (5.1)
For t € [0,T], we denote by C¥ = C([—r,t]; D(A%)) endowed with the norm

ICllta = sup_[[C()[las € €CF-

—r<n<t
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In addition, we assume the following hypotheses.

(H2) There exists a function x € C§ satisfying H(x) = ¢.
(H3) The map F is defined from C§'(x) = {x € C5': x(0) = x(0)} into D(A®) for
0 < B8 <a< 1 and there exists a non-negative constant Ly such that

I1F'(¢1) — f()llx < Lrp||¢i — Clloa;

for ¢; € C§(x), fori=1,2.
Let X,, denote the finite dimensional subspace of X spanned by {ug,u1,...,u,} and
let P": X — X, be the corresponding projection operator for n = 0,1,2,.... Let
X € Cp be such that H(x) = ¢. Let Y be the extension of x by the constant value x(0)

n [0,7]. We set
. 31—a)\™°
T() = mln{T, (M> },

where C,, is a positive constant such that ||[A*S(¢)|| < Cqt™* for ¢ > 0.
We define
Fy: CO(X) — Xn,

given by
Fo(Q) = P"F(P"C), ¢ €Colx),

where (P™()(0) = P™((0), —7 < 6 < 0. We denote 1, = P™ for any ¢ € Cr.
Let A%: C — C; be given by (A*Y)(s) = A%(¢(s)), s € [-nr,t], t € [0,Tp]. We
define a map F,,: Cr,(x) — Cr,(x) as follows:

A%xn(t), tel-n0,
(Fré)(t) = S(t) A%y (0) + jAaS(t —s)F (A7) ds, te€]0,Tp], (52)
0

for € € Cr, (x)-
Proposition 5.1 There exists a unique wy, € Cr,(x) such that Fpw, = w, on [—r,Tp].

Proof For €,6 € Cry(x), (Faf1)(t) — (Faa)(t) = 0 on [7,0] and for ¢ € [0,T}],
we have
T, 3
1(Fa€2)(t) = (Fu&2)W)llx < 2LpCay— 161 — &lln < 7 16 = &2llz0-

Taking the supremum over [—7,Tp], it follows that F, is a strict contraction on Cr, (x)
and hence there exits a unique w, € Cr,(x) with w, = F,w, on [—7,Ty]. This
completes the proof of Proposition 5.1.

Let w, = A~%w,,. Then u, € C%U and satisfies

un(t) = ¢ (5.3)
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Proposition 5.2 The sequence {un} C Cr,(x) is a Cauchy sequence and therefore
converges to a function u € Cr,(X).

Proof For n,m € N, n>m, t € [—1,0], we have
[un (8) = tm (B)la < [JA* (xn () = xm ()l x < (P = PT)A%X(#)[[x — 0 as m — oo.
For t € (0,Tp] and n, m as above, we have
[[un (t) = wm (D)]lo < [|(P™ = P™)S(#)A%x(0)[|x

4 [ 148 = )F((wn).) = Fnl ) ) ds.

Now, using the fact that F((u,)s) € D(A?), m >ng and 0 < a < 8 < 1, we have

[Fn((un)s) = Fn((um)s)|x < [[(P™ = P™)F(P™(um)s)llx
+ Lr[[|[(P™ = P™)A%(um)sllo] + Lrllun — tmlls,a
1
g CIE + CQHUn - um”s,aa
for some positive constants C; and Cs independent of n and m. Thus, we have the

following estimate
[t (£) =t () la < Col| (P™ = P™)A%x(0)]l x

t

C\T” 5.4
+IT+02/(t_S)a”un_um||s,ad87 ( )
A
0
where Cp = Me“T. Since u, — Uy = Xn — Xm on [—7,0], we have for 0 <f<t,
[un(®) — um@lla < IxXn — Xmllo,a + Col|(P™" — P™)A*X(0) x
t
T _ (5.5)
+ % + Cs /(t = 8)Y|tn, — U s,a ds.
Am
0
Weput t=t+n, —t <n <0, to obtain
[un(t +n) = un(t +n0)lla < [Xn — Xmllo,a + Col[(P" — P™)A%X(0)[|x +
t4n
T 5.6
A%JFCE/(t+77*5)a||unfum|8,ad5- ( )
m 0
Now, we put s —n =35 to get
[un(t+n) = un(t +n0)lla < [Xn — Xmllo,a + Coll(P" — P™)A%X(0)]|x
t
T
+ =+ Co [ (t = 5)*[|un — tmls4n.ads
A, E
! (5.7)

< Ixn = Xmllao + Col[(P™ = P™) A% (0)]

t
o
+ S+ Gy /(t 5[ — 5.0 5.

0
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For t > 7, we have

sup lun(t +n) — um(t +n)lla < sup o [wn(t +1) = um(t +n)lla

—7<n<0 —t<n<
t
n AW ClT s\« s
< Ixn = xmllayo + Coll(P™ = P™)A%x(0)[| + VA Ca [ (t=5)[lun — umls.qds.
" 0
(5.8)
Since un(t+n) = x(t +n) for t+n <0 for all n > ng, for 0 <¢ <7, we have
sup  [Jun(t +n) — um(t +n)lla
—7<n<0
< sup un(t+n) —umE+n)lla+ sup  un(t+n) — um(t +n)lla
—T<n<—t —t<n<0
t
n my g ClT N\ _
< lIxn = Xmlla,o + Coll(P™ — P™)A%x(0)[| + SRR (t = 8)*[[un = um|5.a ds.
" 0
(5.9)
Combining (5.8) and (5.9), we have
[un — umllt,a < X0 = Xmlla,0 + Col| (P — P™)A%x(0) |
t
C\T (5.10)

+ 0 /(t 5 — .0 5.
0

Application of Lemma 5.6.7 on page 159 in Pazy [9] gives the required result. This
completes the proof of Proposition 5.2.

With the help of Propositions 5.1 and 5.2, we may state the following existence,
uniqueness and convergence result.

Theorem 5.3 Suppose that assumptions (H1)— (H3) hold. Then there exist functions
un € ([-7,T0]; Xn), n €N, and u € Cr, (0<Ty <T) unique for a given x € Cy with
H(x) = ¢, such that

Xn (1), te[-70],
un(t) = S(t)xn(O)+OftS(t—s)Fn((un)s)ds, t e [0,T], (5.11)
e (), teln,
ult) = S(t)x(o)+b/t‘5(t—s)F(us)ds, t e [0, Ty, (5.12)

such that u, — w in Cp, as n — oo, where P,(t) = P"Y(t) for ¢ € Cr, and
Fo(Q) = PTE(P(), ¢ € Co.

6 Applications

As an applicability of the theory developed in previous sections, we cite two examples of
partial differential equation with retarded arguments and a nonlocal history condition.
These problems are closely related to a mathematical model for population density with
a time delay and self regulation (cf. [6,10]).
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Ezxample 6.1

ow 0%w
T et) =0 5 0) + bt — 1)1~ we 1),

t>0, 0<£C<7T, (61)

h(wl—ro)(2,t) = ¢(x,t), —7<t<0, 7>0, 0<z<m,

where w(-,t) is the population density at time ¢, b is the constant rate of growth for
the species. 7 is a fixed positive constant and ¢ € C|_; g = C([0,7] x [-7,0]). Let
X = C[0,x]. For each ¢, define an operator A by

Au = —au”,

for uw € D(A) = {u € C([0,7]): v € C([0,n]), w(0) =u(m)=0}. It follows that —A
generates an analytic semigroup in X. The nonlinear map H can be defined as mentioned
in the first section.

Let Co(x) be the set consisting of all continuous function y: [—7,0] — X such that
X(0) = x(0) and define F': Co(x) — X by

F(x) = bx(=7)(1 = x(0)), x € Co(x)-

It is easily verified that F' satisfies Lipschitz condition. The problem (6.1) now take the

abstract form
W (1) + Ault) = F(ug), t e (0,T],

H(up) = ¢, on[—7,0], (62)

Then the theorems ensure the existence of a unique solution of the problem (6.2) (hence
a unique solution of the problem (6.1)).

Ezample 6.2

ow 8w

0
E(m,t) =a w(m,t) + bw(z,t) [1 - /wt(x, s) dn(s)] ,

t>0, O0<x<m, (6.3)

w(0,1) = w(mt) =0, 150,
h(w|[—770])(xvt) :(]S(l‘,t), _T<t§07 T>O7 OSZESTF,

which is a population model when diffusion occurs within the population. Here 7(-) is
bounded, nondecreasing function on [—7,0], 7 > 0. All other functions and maps are as
described in Example 6.1.

Let X = C(]0,7]). The linear operator A is defined as in the previous example. Also
we define F': Co(x) — X by

F(x) = bx(0) [1 -

|
S
=
&
QU
3
—
VA
N—
| I
=
m
aQ
)
—
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Then clearly F' satisfies Lipschitz condition and problem (6.3) transforms into the ab-
stract form (6.2).

Since all the assumptions taken into account for establishing the existence and unique-
ness results are satisfied, we can apply these results to considered problem which shows
that there exists a unique solution of (6.3).
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Abstract: In this paper, we deal with the stability analysis problem of per-
turbed nonautonomous nonlinear systems. Uniform exponential stability is
studied by using Lyapunov techniques. The question addressed is related to
the restriction about the perturbed term under the assumption that the ori-
gin of the nominal system is globally exponentially stable. A new Lyapunov
function is used to obtain a large class of stable dynamical systems.
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1 Introduction
Consider the nonautonomous perturbed system
t=Alt)x + g(t, z), (1)
where A(n x n), g are plecewise continuous in ¢ and g is locally Lipschitz in z such that
g(t,0)=0, Vt=>0.

It is known [3] that, if the linearization of the nonlinear system (1) about the origin
has an exponentially stable equilibrium point then the origin is an exponentially stable
equilibrium for the perturbed nonlinear system and it turns out that exponential stability
of the linearization is a necessary and suflicient condition for exponential stability of the
origin of (1). For the global case, the stability analysis problem is to find sufficient con-
ditions under which the perturbed system (1) is globally asymptotically or exponentially
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stable with the assumption that the nominal system is globally exponentially stable.
Therefore, to obtain stability of the whole system, we shall make some restrictions on
the perturbed term. Suppose that the origin of the nominal system

= A(t)x (2)
is globally exponentially stable with
W(t,z) = 2T P(t)x

as an associate Lyapunov function, where P(¢) is a continuous differentiable symmetric
and bounded positive definite matrix, such that

0<al <P(t)<cl, Vit>0, (3)
which satisfies the matrix differential equation
P(t) + P(t)A(t) + A®)TP(t) = —Q(¢)
with Q(t) is continuous, symmetric and positive definite that is
Q) >csl >0, Vt>0.

Here the constants ¢q, ¢g, ¢3 > 0 and I is identical matrix.
Then calculating the derivative of W along the trajectories of the system (1) one can

obtain the definiteness of W by imposing some conditions on g(t,x).
For the case when

lg(t, )| < n(@®)ll=l],

where 7(t) is a continuous function, we obtain after taking the derivative of W along the
trajectories of the whole system,

W(t,z) < —2"Q(t)z + 22" P(t)g(t, ).
Then, one gets the following estimation on the derivative of W,
W (t,x) < (—cs + 2¢can(t)) |||

which implies the global exponential stability of the equilibrium point of (1) under the
condition .
C3
t)<k<-—
nt) <k <3
with £ > 0.
Moreover, one can obtain exponential convergence to zero for system (1) especially,
where

g(t,x) = B(t)z

under the conditions B(t) is continuous and

B(t)—0 as t— oo.
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Similar conclusions can be obtained (see [5]), where

+oo
[ 18] < o0
0

or
+oo
/nmmﬁ<m.
0

Actually, the synthesis of stability of perturbed systems is based on the stability of
the nominal system with W (¢, z) as a Lyapunov function candidate for the whole system
provided that the size of the perturbation is known (see [1,2,4—-7,11,12]). Panteley and
Loria [8, 9] studied this problem for cascaded time-varying nonlinear systems, which can
be regarded as perturbed systems, where growth conditions are given to ensure the global
uniform asymptotic stability of some classes of time-varying nonlinear systems.

Our approach is to find more general classes of perturbed systems which can be globally
exponentially stable by considering a new Lyapunov function which has the following
form

V(t,z) = 2T P(t)z + U(t, ),

where W(¢,z) is a C'-function which will be chosen, for some classes of systems, in such
a way that V(¢,z) is positive definite radially unbounded and its derivative along the
trajectories of (1) is negative definite. We use a cross term in the Lyapunov function,
as in [10] introduced for cascade nonlinear systems, to obtain a large class of stable per-
turbed systems. The proposed new method is based on the non uniqueness of Lyapunov
functions with a stable nominal system, which guarantees exponential stability with the
requirement on the upper bound of the perturbed term. We prove that the system can
be globally uniformly exponentially stable. The perturbation term is a known function
which could result in general from errors in modelling, aging of parameters or distur-
bances. Naturally, the choice of the function ¥(¢,z) depends on the perturbation term
g(t,x) and its smoothness is given under some restrictions on the dynamics of the sys-
tem. Furthermore, we give an illustrative example in dimensional one and we show for
a certain class of perturbed systems that the proposed method gives better result than
the classical method.

2 Stability
In this paper the solution of a differential time-varying equation
&= A+ g(t,)

with initial conditions (tg,xg) € Ry x R™, 2(tg) = x¢ is denoted (¢, to, xo)-

V(*) (t,z) is the derivative of Lyapunov function V(¢,z) along the trajectories repre-
sented by the differential equation ().

According to [3,5], the equilibrium point = 0 of (1) is uniformly stable if for each
€ > 0 there is 6 = §(¢) > 0 independent of tg, such that

lz(to)|| < d = |lz(t)]| <e, Vit>ty>0.
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The equilibrium point z = 0 of (1) is globally uniformly asymptotically stable if it is
uniformly stable and for any initial state x(to), one has

z(t) -0 as t— +oo
uniformly in tg, that is there exists T'= T'(¢) > 0, such that
lz@®)]| <e, Vt>to+T(e), Va(to).

The equilibrium point = 0 of (1) is globally exponentially stable if the following
estimation holds for any initial state xz(to),

Jz(t)]| < Me 2710 Ve > 1 >0,

where \; > 0 and Ay > 0.

Throughout this paper, we suppose that

(A7). There exists a continuous differentiable, symmetric, bounded, positive definite
matrix P(t) which satisfies (3).

(Az). There exist a continuous function p: Ry — R, and k > 0, such that

V20, VzeR", |[g(tz)| <pt)z|

with
p(t) <k, Vt>0
and
+oo
/ p(t)dt < +o0.
0

Note that, the quadratic function
W(t,z) = 2T P(t)x
implies by the assumption (A4;) the two following inequalities,

crl|zl* < W(t,2) < eaflz]?,

. 4
Wig)(t,z) < —csl|z||*. @
Our goal is to seek a suitable function ¥ which is of class C' to compensate the
perturbed term which is not always possible only for some restrictive dynamical sys-
tems. Thus, we will consider a Lyapunov function for system (1) of the form V(¢,z) =
2T P(t)z + U(t,x), where ¥ is a C'-function which will be chosen later such that V is
definite positive function and V definite negative for some restriction on g. Notice that,
continuity of the partial derivatives of the cross term can be proven for some classes of
system of the form (1). Thus, if we consider the derivative of V (¢, z) along the trajectories
of the system (1) we get

Vi (t,x) = Wy (t,x) + 22T P(t) - g(t, x) + U(t, ).
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The first term of the right-hand side constitute the derivative of V' (¢,z) along the
trajectories of the nominal system, which is negative definite and satisfies (4). The
second term is the effect of the perturbation while the third one is the derivative of the
cross term. We choose

+o0
W(t.a) = [ 267 (5,00 P(s)g(s, 005, t,)) .
t
Thus, one can verify the following statement

20T P(t) - g(t,x) + U(t,2) = 0
for all (t,x) € Ry x R".
It follows with this choice, that
Vi (t,2) = Weay (t,2) < —esllz]®.

This yields by (A1), the exponential stability of (1) provided that ¥(¢,z) exists and it
is a C'l-function or simply uniformly continuous rending V (¢, z) definite positive for a
given perturbed function g(¢, x).

First, one can state the following proposition which provides a stability result.

Proposition 2.1 If (A1) and (As) are satisfied, then the origin of the system (1) is
uniformly stable.

Proof Let (t,z) € Ry x R™ be an initial condition. The derivative of W along the
trajectories of (1) is given by

d
= %(W(Sv ¢(57 t .%‘)))

ow
= E(Sv ¢(S7 t’ Jj)) + 2¢T(87 t? J?)P(S)A(S)(b(87 ta Jf)

+ 2¢T(5, t,x)P(s).9(s, d(s,t,x)).

W(l)

Thus,
W(l) < 2¢T(s,t,x)P(s).g(s,¢(s,t,x))
< 2eap(s)||o(s, t, 7))
<272 p(s)W (s, 6(s,1,1))

which implies that

+oo
M—exp{262</p(u)du>}.
e
0
C2
(s, t,2)| < m||m||, Vs>t

Then the equilibrium point of the system (1) is uniformly stable.

where

We conclude that

The above proposition is conceptually important because it shows the stability of the
origin for all perturbations satisfying the condition (As).
Now, concerning the cross term, we have the following lemma.
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Lemma 2.1 Under assumptions (A1) and (Az), the function U(t,x) exists and is
continuous on Ry x R™.

Proof Observe that, using the above proposition and the fact that for all (¢,z) the
function ¥(t, x) exists, we have each solution of (1) which starts at (¢,z) is bounded for
all (t,z) € Ry x R™ and for all s > t.

Indeed, on the one hand

|67 (5,1, 2)P(s)g(s, ¢(s,t,2))| < c2p(s)]|9(s, 8, )|
which gives
|67 (s, t.2) P(s)g(s, ¢(s,t, )| < Mip(s)|?

which belongs to L'(R), where M; = M %

Cc1 :
Thus, the integral exists for all (¢,x) € R + xR™ and then (¢, z) exists.
On the other hand, the continuity of ¥ can be shown by observing that, for all s > ¢,
the function

(t7 x) — ¢(S7 t’ .%')TP(S)g(& ¢(S7 t7 ‘,I:))

is continuous on Ry x R™ and the fact that for all (¢,2) € Ry x K, s > t, where K is a
compact set in R™, we have

\qST(s,t,x)P(s)g(s,¢(s7t,x)| < MKIO(S)'

The upper bound Mg p(s) is in L'(R) where M is a positive constant which depends
only on K.

Next, the proposed Lyapunov function candidate for (1) must be definite positive and
we will use this fact to show the exponential stability of the origin of system (1).

Theorem 2.1 If the assumptions (A1) and (As) hold, then there exist some positive
constants dyi, ds such that

di|z]* < V(t ) < do|]|*.

It means that, the Lyapunov function V (¢, x) is a decreascent function.

Proof Observe that,
/ Wiy (1, 6, 2)) du = W (s, (s, £, 7)) — W (t, ).
t

Then, we obtain

W(s, (5.t 7)) — W(t,z) = /W@) (u, $(u, £, 7)) du

S

+ [ 267 (. t.) Pludgu o, t.2)) du

t
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Because W (s, ¢(s,t,x)) is bounded and ¥(t, x) exists, it means that the integral

—+oo

/ 207 (u, t, 2)P(u)g(u, p(u,t,x)) du

t

exists.
Then
lm W(s,¢(s,t,x)) = Wy (t, )
s—4o00
exists.

It follows that,

V(b z) = Wao(t, ) — / Wiy (s b(ust, 7)) du

Vit,z) > — / W(g) (u, d(u,t,x)) du (5)

+
/c3||¢ 5.t,2)|ds.

Remark also that

S

o(s,t,x) =z + /A(u)q’)(u, t,x) + g(u, p(u, t,x)) du

t
which gives

S

g, 8, )| > ]| = /(LIW(u,t,w)H + p(u)llo(u, t, z)[)du

t

Thus,
p(s,t,2)|| > ||zl — /(L+ E)|lé(u, t, z)||du
t
> [z — A(s = )=l
> M for se€ |t,t+ i
- 2 b) ) 2A )
where
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Hence from (5), we obtain
V(t,x) > dilz||*.

Still to prove the existence of ds, which implies in conjunction with the above expres-
sion that V(¢,z) is a decreascent function.
For any (t,x), we have
V(t,z) =W(t,x)+ V(¢ z).

Thus,
+oo

V(t.o) < callelP + [ 2407 (s,t.) P(s)g(s. 65, t,))ds.

t

It follows that,

+oo
V(t,z) < cofllf* + / Mip(s)|z|*ds < ealla|* + Mal|z||?
t
< da|z||*.
Theorem 2.2 Suppose that the assumptions (A1), (As2) hold and the function g is

chosen in such a way that

—+oo

U(t,z) = /2¢T(s,t,m)P(s)g(s,qb(s,t,x))ds

t

is a Cl-function, then x = 0 is globally exponentially stable equilibrium point for (1).

Proof Still to prove that
U(t, ) = =207 P(t)g(t, ).

We have

(t,0) = (W5, 0(5,1,2))

s=t

+o0
Wit z) = d% ( / 2¢T(u,t,m)P(u)g(u,d)(u,t,x))ds)

t

s=t

Since the solutions of (1)
ur— D(u,t, )

and
ur— D(u, s, (s, t,x))

are equal for u = s, this implies that, for all u > s >t > 0,

D(u,t,x) = P(u, s, P(s, t,x)).
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Thus,
+oo
U(t,z) = Ci( / 2¢T(u,t7m)P(u)g(u7¢(u7t,x))ds>
So,
U(t,x) = (20" (5,1, 2) P(s)g(s, (s, 1, x))ds) -
Hence,

\il(t’ 1’) = *2¢T(57 i, x)P(S)g(tv l‘)
Using the fact that V is a decreascent function in conjunction with the above expres-
sion yields the global exponential stability of (1).

Finally, we give an example to illustrate the applicability of the result of this paper.
Moreover, we will compare in the next section our approach with the classical one for a
certain class of nonlinear system.

Ezample As a simple example, to compute the cross term, we consider the following
scalar linear equation
&= —azx+ p(t)x, a>0, (6)

with p(t) satisfies (Ag). If we choose

W(z) = 2?
as a Lyapunov function of
T = —ax
we obtain
o(s,t,z) = exp < —a(s—1t)+ /p(u) du)az.
t

Thus,

+oo s

U(t,x) = 22 / p(s) exp (2/p(u) du> e—2a(s—t) Jg

t t

So,

—+o00 S

U(t,z) = —2° 4 2ax? / exp <2/p(u) du) e 2=t s,
t i

It follows that, ¥ is a C'-function and then 2 = 0 is an exponentially stable equilibrium
point for (4).

3 Stability of a Certain Class of Perturbed Systems

Consider the following system

&= Az + p(t)B(z)x, (7)
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where z € R™, ¢t > 0, A(n x n) is a constant matrix which is supposed Hurwitz and p(t)
satisfies (As).

Moreover, We assume that

(A3). B(:) is a C!-function and there exists a positive constant M, such that

VeeR" ||B(x)|| <M.

We have the following result of stability for system (7).

Proposition 3.1 If (A1), (A2) and (A3) are satisfied, then ¥ is C! in Ry x R™ and
x =0 is a globally exponentially stable equilibrium point for (7).

Proof We denote

0
X(s) = 5 (2(s,1,2))
and 5
Y(s) = g (P(s,t,2)), s>t
Thus, X and Y satisfies the following two statements

X = (A + p(s) 0B (®(s,t,2))D(s,t, ) + p(s)B(@(s,Lx)))X

Ox
with
X(t)=1I
and
Y = (A + p(s)g—f (®(s,t,2))D(s,t,2) + p(s)B(P(s,t, m)))Y
with

Y (t) =0.
Let K be a compact set of R™. Because ®(s,t,z) is uniformly bounded and B(:) is a
C'-function, then there exists Mg > 0, such that Vs >¢ >0, Vz € K,

Hp<s> O (0.5, 0.0) 4 () B8, 1,0) | < Mico(s).

Note that Lemma 2.1 implies that X (s,¢,2) and Y (s, ¢, z) are bounded when x leaves
in K.
Thus, we have
“+oo

W(ta) = [ S (05,100l BoLs.t.)o(s. t.2) .

Because X and Y are bounded when x € K, then there exist M; and M>, such that

g (aW <¢<s,t,x»p(s)B@(S,t,x)M@,t,z>>

— — <
Oox \ Ox < Mup(s)

B |51 (G Gt Bl L0 ) | < Maple)

forall s>t>0and x € K.
Hence, we conclude that ¥ is a C'-function on R, x R™ and then z = 0 is globally
exponentially stable equilibrium point of system (7).
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Remark To compare the result given in this paper with the usual techniques of
stability for perturbed systems, we shall consider the Lyapunov function of the nominal
system as a Lyapunov function for the whole system. Let V (t,2) = 27 Pz, where P > 0
is symmetric and positive definite so that

ATP 4+ PA=—-Q

with @ symmetric and positive definite matrix. Then the derivative of V (¢, z) along the
solutions of system (7) gives

Vioy(t.2) = =2 Qu + p(t)a” (BT (2)P + PB(x) ).

It follows that,

Vi (:2) < (= Anin(@Q) + 2hmaa (P [B@)]) 2],
Vi) (t,7) < f(Amin(Q) - QkMAmM(P)) 2.

Then, if we choose
Amin (@) — 2k M Ao (P) > 0

which implies that & must satisfy the following inequality

N S e (P)

(®)
Hence, the system (7) is globally exponentially stable. Notice that, with our choice of
Lyapunov function we don’t need that the upper bound of p(¢) is limited as in (8). So, we
obtain a class of stable differential system more large than by using the classical method.
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Abstract: Several linear and nonlinear fuzzy models stability conditions are
developed in the literature. Some of them concern the linear fuzzy Takagi—
Sugeno (TS) model and are based on the determination of a common positive
definite matrix, solution of linear matrix inequalities.

A new explicit formulation of stability conditions and an extension to the
case of nonlinear TS fuzzy continuous models are given in this paper.

The proposed criteria are based on the use of the vector norm approach
associated, in the state space description, to a specific characteristic matrix
form, called arrow form matrix. This representation is such that only the
elements of the diagonal, those of the last row and those of the last column
can be different from zero.

The obtained stability conditions, explicitly expressed by the studied mod-
els and fuzzification parameters, applicable for TS fuzzy models in particular,
make the approach useful for the synthesis of stabilizing fuzzy control law.

For a class of considered Lur’e—Postnikov continuous case, the stability
criterion corresponds to a simple condition on the instantaneous characteristic
polynomial of the nonlinear studied system.
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1 Introduction

Takagi-Sugeno (TS) fuzzy models, proposed by Takagi and Sugeno [16] and further de-
veloped by Sugeno and Kang [15], are nonlinear systems described by a set of IF-THEN
rules which gives a local linear representation of an underlining system. It is well known
that such models can describe or approximate a wide class of nonlinear systems. Hence,
it is important to study their stability or to synthesize their stabilizing controllers.

In fact, the stability study constitutes an important phase in the synthesis of a control
law, as well as in the analysis of the dynamic behavior of a closed loop system. It has
been one of the central issues concerning fuzzy control, refer to the brief survey on the
stability issues given in [14].

Based on the stability conditions, model-based control of such systems has been de-
veloped for the continuous case in [5—-7, 13,19, 20] by using state-space models.

In recent literature, Tanaka and Sugeno [17], have provided a sufficient condition for
the asymptotic stability of a fuzzy system in the sense of Lyapunov through the existence
of a common Lyapunov function for all the subsystems.

This kind of design methods suffer mainly from a few limitations:

(1) one can construct a T'S model if local description of the dynamical system to be
controlled is available in terms of local linear models;

(2) a common positive definite matrix must be found to satisfy a matrix Lyapunov
equation, which can be difficult especially when the number of fuzzy rules required
to give a good plant model is large so that the dimension of the matrix equation
is high;

(3) it appears that a necessary condition, for the existence of this common positive
definite matrix, is that all subsystems must be asymptotically stable.

To overcome those difficulties, we propose, in this paper, to study the stability of TS
fuzzy nonlinear model through the study of the convergence of a regular vector norm.

If the vector norm is of dimension one, then this is like the second Lyapunov method
approach; therefore, if it is of higher dimension, then we deal with a vector-Lyapunov
function [9-12].

The vector norm approach, based on the comparison/overvaluing principle, has a ma-
jor advantage: it deals with a very large class of systems, since no restrictive assumption
is made on the matrices of state equations, except that they are bounded for bounded
states, in such a way that a unique continuous solution exists.

Nevertheless, although the overvaluing principle allows the simplification of the study,
it also presents the corresponding drawback: overvaluation means losing information on
the real behavior of the process. Thus, the cases of state equations which are the most
resistant of this type of method are the ones in which replacement of coefficients by their
absolute values leads to an overvaluing system which is far from reality, for instance an
unstable one, whereas the initial system was stable. In many cases, this type of drawback
can be bypassed by using changes of state variables leading to a good performance of the
representation [2—4]. For instance, for continuous control, a particularly interesting case
is the one in which the off-diagonal elements are naturally positive or equal to zero; in
this case, the overvaluing is carried out without loss of information.

This paper is organized as follows: TS fuzzy nonlinear continuous model description
is presented in Section 2. Section 3 reviews some existing stability conditions of such
system. In Section 4, the vector norm approach combined with the arrow form matrix
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are employed to give the new stability criterion for TS fuzzy nonlinear continuous mod-
els. The case of Lur’e-Postnikov continuous system is studied in Section 5. Finally,
conclusions are drawn in Section 6.

2 TS Fuzzy Nonlinear Continuous Model Description

Consider a TS fuzzy model when local description of the plant to be controlled is available
in terms of nonlinear autonomous models

X(t) = A(X)X(t) (1)

where X € R™ describes the state vector, A;(-) are matrices of appropriate dimensions,
A;(-) ={a;;(")} and a;;(-): R® — R, are nonlinear elements.

It is assumed that X = 0 is the unique equilibrium state of the studied system.

The above information is then fused with the available IF-THEN rules, where the i-th
rule, i =1,...,r, can have the form:

Rule i: IF {X(t) is H,(X)} THEN {X(t):Ai(-)X(t)}

where H,(X) is the grade of the membership of the state X (¢).
The final output of the fuzzy system is inferred as follows:

X(t) =Y hil(X)Ai(-) X (t) (2)
i=1

with, for i =1,...,r, 0<hy(X) <1 and > hi(t) =1.
i=1

3 Stability Conditions — Problem Statement

It is straightforward to show that a sufficient condition for asymptotic stability in the
large of the equilibrium state X = 0 of the unforced fuzzy model, obtained by lineariza-
tion of (2),

(1) = 3" heA, X (1) o)

is that there exists a common symmetric positive definite matrix P such that, for i =
1,2,...,r
ATP + PA, <. (4)

The necessary condition for the existence of matrix P is that each matrix must be asymp-
totically stable [17], i.e. all the subsystems are stable, or that matrices:

Z Ay (5)

where i; € {1,2,...,r} and k=2,3,...,r, are asymptotically stable [18].
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The linear matrix inequality (LMI) based approaches have been used to determine the
existence of a common symmetric positive definite matrix [20]. Their computation can

be expensive in the case of high number of rules.

As it was shown, the stability study of the nonlinear model (2) requires the lineariza-
tion of the nonlinear subsystems described by the instantaneous characteristic matrices
A;. If those matrices are in arrow form [2], stability conditions of the nonlinear system

(2), as we will see in the next section, can be formulated easily.

4 New TS Fuzzy Nonlinear Model Stability Criterion

Let us consider the continuous process whose model is in the controllable form, that

matrices A;(+), of equation (2), are written as

0 1 0o ... 0
Ai() = 0
0 0 1

—ai,o(-) e —aiyn_1(~)

A change of base under the form:

1 1 1 0
(&3] (6] Q1 0
A
a?_Q ag_Q aﬁ:% 0
™t apt a1

allows the new state matrices, denoted by F;(), to be in arrow form (2)

Qg B
F()=T7"A40)T = A S
Qp—1 anl
Yia() o Yime1() Yin(o)
where
n—1
Bi=1[(; —ar)™ Vvji=1,2,...,n-1,
k=1
k#j
’Yﬂj(')zipAq‘,(Waj) Vj:1,2,...,7l71,

n—1
Vi (") = =ai,n-1() = Y .
i=1
Pa, (-, A) is the A;(-) instantaneous characteristic polynomial such that

n—1
Pa, (o) = A"+ ) an ()N
=0
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and o, j=1,2,..., n— 1, are distinct arbitrary parameters.
Let us note that the determinant of the arrow form matrix F;(-) is computed as [2]

|E5()] = |:7i,n(') - Z_: a; i () ﬂj] 1:[ Q. (10)
j=1 k=1

The final output of the fuzzy system is then inferred as follows

where Y (¢) is the new state vector such that X (t) = TY (t),

Q)= ihiFi('), (11a)
i=1
a B
Q) = | ; 1 ﬂn:_l . (11b)
; hivia(s) - z; hiYipn—1(") ; hiYim (-)
In such conditions, if p(Y") denotes a vector norm of Y, satisfying component to compo-

nent the equality

p(Y) = Y| (12)
it is possible, by the use of the aggregation techniques [2,9], to define a comparison
system (13), Z € R, of (11)

Z=M(@)Z. (13)
In this expression, the matrix M(-) is deduced from the matrix Q(-) by substituting
only the off-diagonal elements by their absolute values; it can be written as

aq |51|
M()= ’ - Bl |- (14)
éhz%l()‘ éhzyznl()‘ E;hz%n()

Noting that the non-constant elements are isolated in the last row of matrix M (-), then
the stability condition of the continuous nonlinear system (2) can be easily deduced from
the Borne and Gentina criterion [8,11]. It comes

(-1)'A; >0, i=1,2,...,n, (15)

with A; the i-th M(-) principal minor.
It is clear that, for ¢ = 1,2,..., n — 1, the condition (15) is verified for «; € R_,
therefore, for ¢ = n and using the relation (10), it leads to the stability condition (16).
Then, the TS fuzzy nonlinear model stability, in the continuous case, can be studied
by the following proposed theorem.
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Theorem 4.1 If there exist o € R_, i =1,2,...,n—1, a; # «a; forall i #j and
€ € Ry such that the inequality

T n—1 r
=Y hivin () + YD hivi()B|e;t > e VX €R® (16)
i=1 j=1"4i=1

is satisfied, the equilibrium state of the studied continuous nonlinear system (3) and (7)
is asymptotically globally stable.

If there exist o, j =1,2,..., n — 1, such that

D hivig()8;>0 =12, n-1, (17)

i=1

the Theorem 4.1 can be simplified and the comparison system (13) can be chosen iden-
tically to (11).
Since for Q()

A, = i:hiPAi(-,O), (18)
i=1
T n—1 T n—1 r
- Z hivin(-) + Z aj_l Z hivij(1)By = H (*%‘)71 Z hiPa,(:,0). (19)
i=1 j=1 i=1 j=1 i=1

Hence to Corollary 4.1.

Corollary 4.1 If there exist o € R—, «; # ay for all j # k and € € Ry such
that:
(i) the inequalities (17) are satisfied for all X € R",

(ii) > hi(t) Pa,(-,0) > ¢ for all X € R™, (20)
i=1

the equilibrium state of the continuous system described by (2) and (6) is globally asymp-
totically stable.

Ezxample 4.1. Unstable TS fuzzy model case
Given the unforced fuzzy linear system model described by (3), where r = 2 and

0 1 0 1
Al_[z —1]’ AQ_[—l —1}'

Obviously, the first subsystem is unstable whereas the second one is stable. However,
there is no common positive definite matrix P to verify the stability condition (4).

The matrices A; and Ay can be transformed to arrow form matrices F; and Fs, by
the same change of base under the form

_ 1 0 =1 _ (% 1
T—{ ], P =T AlT—|:_(a2+a_2) —1—04]’

=1 . « 1
F=T AQT_[_<a2+a+1) _1_a]
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h,
L 0.4

AN

L 0.3

- 0.2

0.1

o -1 -08 -06 -04 -02 0
Figure 4.1. Stability domain for example 1.

where « is an arbitrary non zero parameter.
Since hy + he = 1, the global fuzzy system is then described by

« 1

y(t) = (hFy+ hoFy)Y (1) = —a?—a+2h;—hy —-1-qa

Y).
The application of Theorem 4.1 leads to the following stability conditions
(i) & <0,
—a? — 2hy — h
|—a? — a+ 2hy — ho| -
@

since hg =1 — hy, hy € [0;1], the corresponding stability domain is represented by the
hatching domain in Figure 4.1.

5 Lur’e—Postnikov System Case

Consider the nonlinear system given in Figure 5.1, with e = —Co, 0 = [y, yV), ...,y V]T,
o€ R", C = cg, €1, ..., Cn—g, Cp—1] I8 & vector with constant elements, ¢,—1 = 1,
feA={f:R" =R, f(Co)/Co= f*(Co), Ca#0; f*(ye[f f]CR,VoecR"}
and

0 < f(e) 1 y
Nt D; (s)

A4
v

N(s) |e

Figure 5.1. The i-th Lur’e-Postnikov model.
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n—1 n
DZ(S) = s" + Z di’jsj = H (S — pi,j)v (21)
7=0 7j=1
n—2 ) n—1
N(s) :s"_l—l—chsJ = H (s — zj). (22)
7=0 7j=1

Thus, the i-th unforced Lur’e—Postnikov system can be described by
Di(s)y(s) = fe) = f*(-)e = = f*(-)N(s)y(s) (23)

witch leads to the nonlinear differential equation

n—1

Y+ 37 (i + £ (es)y? =0, (24)
=0

With the choice of arbitrary parameters a; such that

aj=z25, j=1,...,n—1, (25)
this system can be described [1], in the state space arrow form, by
<1 ﬂi
Fl() = : (26)
/
Zn—1 n—1
Vi) o V() iR
with
n—1
B =1]G—=)" Yi=1,..,n-1, (26a)
k=1
k]
n—1
Yin() = =(dim1+ () =D 2, (26b)
j=1
vij()=—=Py(2), VYi=1,...,n-1, (26¢)
P, (- zj) = Di(zj) + f(-) Ni(2;) = Di(2;). (26d)
The final output of the fuzzy Lur’e-Postnikov system is then inferred as (11)
Y(t)=> hF()Y() (27)
i=1
with
21 B
E;hiFl'() = 1 - . (27a)

;hl’%,l() s ;hl’y;,nfl() ;hlr%,n()

The stability conditions of the studied Lur’e-Postnikov system can be deduced by using
the following proposed theorem.
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Theorem 5.1 The Lur’e—Postnikov system described by (24) is globally asymptoti-
cally stable if there exist € € Ry such that the following conditions are verified

zie€eR_,j=1,....,n—-1, z#z Vi#j; (28)

n—1
—Zh Pin()+D (2 ﬂZh (ti;()| = e>0. (29)
j=1

Proof The non-constant elements in (27a) are isolated in the last row. Hence, the
stability conditions can be easily deduced from the Theorem 4.1.

If for parameters z;, j =1,...,n, the following condition is verified
85 2 hanis () >0 (30)
i=1

the inequality (29) can then be written:

n—1 T
I (=207 hiPl,(-,0) > e > 0. (31)
=1 1=1

Hence to Corollary 5.1.

Corollary 5.1 If zyje R_, j=1,2,...,n—1, z; # 2z, Vj#k, and € € Ry such
that VX € R"

(i) the inequality (30) is satisfied; (52)
(ii) > hiPy,(-,0) =€, (33)
=1

the Lur’e—Postnikov continuous system described by (24), (26) and (27) is globally asymp-
totically stable.

Ezample 5.1 Consider the Lur’e-Postnikov system shown in Figure 5.1 with n = 2,
r=2, f(e)=f"()e, prp=—1, pr2=-3, po1 =2, pp2=—4 and z; = —2.5.

From (21) and (22), one can obtain then di1 = 4, dig = 3, da1 = 6, dag = 8,
and cg = 2.5.

According to (26), the characteristic matrices, in the arrow form, are given by

B —(22 442 4+3) —4—f*()—z| |07 —15—F()|"
F() = % 1 [-25 1
T T (224621 +8) —6—f*()—2| |075 =35—f()|"
The global fuzzy system is then described by

2
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h \\\

N \

; \\\\

-3

£%()=2h;-3.2

o

12 16 hy

Figure 5.2. Stability domain of the studied Lur’e-Postnikov system.

such that

Py = o !
—(Z% + (4h1 + 6h2)21 + 3h1 + 8h2) —4h1 — 6h2 — f*() — 21

or, for z; = -2.5
. [-25 1
F)= [0.75 ~1.5h — 3.5hy — f*(~)]

The stability condition of the global fuzzy system, using Theorem 5.1, is then given
by
0.75

1.5h1 + 3.5h2 + f*() + 75 > 0.

Since hy =1 — hy, hy € [0; 1], it can be written as
() >2h —32

which is represented by the hatching domain in Figure 5.2.

6 Conclusions

The new stability conditions, formulated for nonlinear TS fuzzy continuous models case,
are based on the use of the vector norm approach combined with an arrow form matrix
description.

The obtained stability conditions, explicitly expressed by the studied models and
fuzzification parameters, applicable for TS fuzzy models in particular, make the approach
useful for the synthesis of stabilization fuzzy control law.
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For an important class of Lur’e-Postnikov continuous system, the stability criterion
corresponds to a simple instantaneous characteristic polynomial condition.

The considered illustrative examples showed the efficiency of the proposed new ap-
proaches.

Other similar results can be obtained easily for nonlinear TS fuzzy discrete systems.
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Abstract: This paper presents a simple control strategy of feedback stabiliza-
tion for the extended nonholonomic double integrator. The strategy presents
a time-varying feedback law based on the model reference approach, where the
trajectory of the extended system is chosen as the model reference trajectory.
The controllers are designed in such a way that after each time period , the
trajectory of the nonholonomic double integrator intersects the trajectory of
the model reference, which can be made asymptotically stable. The proposed
feedback law is as a composition of a standard stabilizing feedback control
for a Lie bracket extension of the original system and a periodic continuation
of a specific solution to an open loop control problem stated for an abstract
equation on a Lie group. This approach does not rely on a specific choice of
a Lyapunov function, and does not require transformations of the model to
chained forms.
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1 Introduction

There has been much interest over the last few years in the problem of stabilization
of nonholonomic systems. From practical point of view, nonholonomic systems often
arise in the form of robot manipulators, mobile robots, and space and marine robots
that are either designed with fewer actuators than degrees of freedom or must be able
to function in the presence of actuator failures. From a theoretical stand point, there
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is considerable challenge in the synthesis of control laws for the nonholonomic systems
since as pointed out in a famous paper of Brockett [6], they cannot be stabilized by
continuously differentiable, time invariant, state feedback control laws. To overcome the
limitations imposed by the Brockett’s result, a number of approaches have been proposed
for the stabilization of nonholonomic control systems to equilibrium points, see [11] for
a comprehensive survey of the field. Among the proposed solutions are smooth time
varying controllers [16,17,8,12,13,15, 4], discontinues or piecewise smooth control laws
[3,5,7,9,19], and hybrid controllers [5, 10, 20].

Despite the vast amount of papers published on the stabilization of nonholonomic
systems, the majority has concentrated on the kinematics models of mechanical systems
controlled directly by velocity inputs. Although in certain circumstances this can be
acceptable, many physical systems (where forces and torques are actual inputs) will not
perform well if their dynamics are neglected.

As a contribution to overcome this limitation, this paper derives a time-varying control
law for the so-called the extended nonholonomic double integrator (ENDI) system. The
extended nonholonomic double integrator (ENDI) system can be viewed as an extension
of the so-called nonholonomic integrator [6]. Its importance stems from the fact that it
captures the dynamics and kinematics of a nonholonomic system with three states and
two first-order dynamics control inputs, (e.g., the dynamics of a wheeled robot subject
to force and torque inputs).

This article presents a feedback stabilization control strategy based on model reference
approach for ENDI. The trajectory of the extended system for ENDI model is chosen as
the model reference trajectory. The extended system has equal number of inputs and
state variables i.e. m = n therefore can be made asymptotically stable by choosing
an arbitrary Lyapunov function. This classical state feedback is then combined with a
periodic continuation of a parameterized solution to an open loop steering problem for the
comparison of flows of the original and extended systems. In combination with the time
invariant state feedback for the extended system, the solution to this open loop problem
delivers a time varying control, which provides for periodic intersection of the trajectories
of the controlled extended system and the original system. For stabilizing the original
system, the extended system trajectory serves as a reference. The time-invariant feedback
for the extended system dictates the speed of convergence of the system trajectory to
the desired terminal point, the open loop solution serves the averaging purpose in that
it ensures that the “average motion” of the original system is that of the controlled
extended system. The construction proposed here demonstrates that synthesis of time
varying feedback stabilizers for ENDI with two control input can be viewed as a procedure
of combining static feedback laws for a Lie bracket extension of the system with a solution
of an open loop trajectory interception control problem.

2 The Kinematics Model of the Extended Nonholonomic Double Integrator

In [6], Brockett introduced the nonholonomic integrator system

Ty =1Uy, T2 =1U2, T3 = T2U1 — T1U2,

where (z1,72,23)T € R? is the state vector and (u,u2)T € R? is a two-dimensional
input. This system displays all basic properties of nonholonomic systems and is often
quoted in the literature as a benchmark for control system design [3, 10, 14].
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The nonholonomic integrator captures (under suitable state and control transforma-
tions) the kinematics of a wheeled robot. However, the nonholonomic integrator model
fails to capture the case where both the kinematics and dynamics of a wheeled robot
must be taken into account. To tackle this realistic case, the nonholonomic integrator
model must be extended. It is shown in [2] that the dynamic equations of motion of a
mobile robot of the unicycle type can be transformed into the system

r1 = U, T2 = U2, I3 = (Eli'g — l'g.fl. (1)

By defining the state variables x = (x1,%2, 23,74, 75)" = (z1, 22,23, @1,42)", system
(1) becomes as &1 = x4, &9 = x5, T3 = T1T5 — Taky, T4 = U1, &5 = ug, which can be
written in the following standard form:

& = go(x) + g1(z)ur + g2(z)ua, (2)

where

gO('r) = (1'4, 5, T1X5 — T2T4, 0; O)Ta gl(m) = (Oa0707 1>O)T7 92(x> = (anvovov 1)T

As in [1], the system (2) will be referred to as the extended nonholonomic double inte-
grator (ENDI).
The ENDI system (2) satisfies the following properties:

H1. The vector fields gg, g1, g2 are real analytic and complete and, additionally,

go(0) = 0.

H2. The ENDI system is locally strongly accessible for any & € R® as this satisfies
the LARC (Lie algebra rank condition) for accessibility (see [18]), namely that
L(go, g1, 92), the Lie algebra of vector fields generated by go(z), g1 (z) and g2(x),
spans R® at each point = € R® that is

span{g1, g2, g3, g4, g5 } (x) = R° for all z € R’, (3)

where

93(33) = [90(17)7 gl('r)] = (1307 _x27070)T7 g4(x) = [go(l‘), gQ(I)] = (O’ lazlvOaO)Tv
95(x) = [[90(z), 91()], [g0(), g2(2)]] = [95(2), ga(x)] = (0’0’27070)T'

H3. The controllability Lie algebra L(go,g1,g2) is locally nilpotent i.e. all other Lie
brackets which are not involve in accessibility rank condition are zero when eval-
uated at zero.

3 The Control Problem

(SP) Given a desired set point rqes € R®, construct a feedback strategy in terms of
the controls u;: R® — R, i = 1,2, such that the desired set point zges is an
attractive set for (2), so that there exists an € > 0, such that x(¢;to, o) — Zdes,
as t — oo for any initial condition (tg, 7o) € RT X B(Zqes;€)-
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Without the loss of generality, it is assumed that z4es = 0, which can be achieved by
a suitable translation of the coordinate system.

4 Basic Approach of Designing Stabilizing Control Law for ENDI
4.1 Extended system

The construction of the stabilizing feedback, presented in the next section, employs as its
base a Lie bracket extension for the original system (2). This extension is a new system
whose right hand side is a linear combination of the vector fields, which locally span the
state space. The “coefficients” of this linear combination are regarded as “extended”
controls. The extended system can be written as:

& = go(x) + g1(x)v1 + g2(x)va + g3(x)vs + ga(@)va + gs(x)vs. (4)
Henceforth, equations (2) and (4) are referred to as the “original system”, and the “ex-
tended system”, respectively. The importance of the extended system for the purpose of
control synthesis lies in the fact that, unlike the original system, it permits instantaneous
motion in the “missing” Lie bracket directions gs, g4 and gs.

4.2 Stabilization of the extended system

The extended system (4) can be made globally asymptotically stable if we define the
following control inputs

v(x) = (n(x), va(a), vs(w), vale), vs(x))"
00 1 0 07" —ay — 1y
0 0 0 1 0 —T9o — Ty
= {G(I)} 1(—33 — go(ﬂ]‘)) =10 0 —T2 X1 2 —X3 — X1T5 + ToZy
1 0 0 0 0 —xy
01 05 0 O —I5
or
V(.%‘) = (Vl(m)7 VQ(x)a V3($)7 V4(J}), V5(w))T
0 0 0 1 0 —X1 — X4 —24
0 0 0 0 1 —X9 — Iy —x5 (5)
= 1 0 0 0 0 —T3 —T1T5 +Toxg | = | —x1 — 24 |,
0 1 0 0 0 —Iy —T2 — Is
0.5 —0527 05 0 O —Ts5 Vs
where

Vs = *%1’2(11 +x4) + %M(Iz +x5) — %(1’3 + 2123 — T2xy)
G(z) = (91(z,) g2(z,) g5(z,) g4(x,) g5(2, ).

The existence of {G(z)}~! is guaranteed by the LARC condition.
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Lemma The extended system (4) can be made asymptotically stable by using the
feedback control as given in (5).

Proof By considering a Lyapunov function V(z) = %xTQx, where @ is some sym-
metric and positive definite matrix, it follows that, along the controlled extended system
trajectories,

Ly (@) = a7Qgo(x) + G){G@)} (=2 — go(+a)) = —2Qx = —2V(x) <0,

dt
Yz € R\ {0}.

Confirming the asymptotic stability of (4) with feedback controls (5).

The discretization of the above control in time, with sufficiently high sampling fre-
quency 1/T, does not prejudice stabilization in that if the feedback control (5) is substi-
tuted by the discretized control

vl (z(t)) &2 vi(x(nT)), te[nT,(n+1)T), n=0,1,2,..., i=12,...,5

?

This leads to a parameterized extended system

&= go(x) + g1(z)ar + g2(x)az + gs(x)as + ga(x)as + g5 (x)as, (6)
where a; = vl (x(t)), i = 1,2,...,5, (which are constant over each interval [nT,

(n+1)T)). For a sufficiently small T, the discretization of the extended controls preserves
their stabilizing properties.

4.3 The trajectory interception problem

(TIP) Find control functions m;(a,t), i = 1,2, in the class of functions which are con-
tinuous in a = (a1, as,as,as,as) and piece-wise continuous and locally bounded
in ¢, such that for any initial condition z(0) = xo the trajectory z®(t;x0,0) of
the extended, parameterized system (6) intersects the trajectory x™(¢;x0,0) of
the system (2) with controls m;, i = 1,2, i.e. the trajectory of the system

& = go(x) + g1 (x)ma(a, t) + g2(z)ma(a, t) (7)
intercept with the trajectory of
& = go(z) + g1()ar + g2(w)az + g3(x)as + ga(x)as + gs5(x)as

precisely at time 7', so that

x(T;z9,0) = 2™ (T'; 0, 0). (8)
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4.4 The TIP in logarithmic coordinates of flows

To solve the TIP, we employ the formalism of [21] by considering a formal equation for
the evolution of flows for the system (6)

~~

5
Ut) = U(t)(z gw> wo=1, U0)=1, (9
=0

and its solution can be expressed locally as

Ut)=JJe ™, (10)
=0

where the functions ~;, i =0,1,...,5, are the logarithmic coordinates for this flow and
can be computed approximately as follows.
Equation (10) is first substituted into (9) which yields

gowo + grwi + -+ + gsws = Fogo + Y1(€7°4990) gy + o (e70AW0 1AM ) gy 4

11
+ 45 (e’YoAdQO V1 AdgL g2 Adg2 o3 Adgs ¥4 Adga )95 ( )

)

where (e49X)Y =eXYe X and (AdX)Y = [X, Y].
Employing the Campbell-Baker-Hausdorff formula

(XY = eXve X =V + [X, Y]+ [X, [X,Y]]/2! + ...,

and ignoring all other Lie brackets which are not involved in LARC equation (3). This
gives

(e104490) g) = 7090 g1 077090 = gy + (79/1!)[g0, 91] + (78 /21 g0 (g0, 1]] + - .-

(12)
~ g1+ 7093-
Similarly
(e'YoAdgo e Adg Vg2 = eY0Adgo (e’YlAdgl g2) = eV0Afg0 (92) (13)
~ g2 + Y0[90, 92| = g2 + Y094,
(e'YoAdgo e’YlAdgle'YQAd92)gg — ¢Y0Adgo 71 Adgy (e“yzAdgz g3)

~ 10Adgo 11 Adg (93 +Y2[g2, g3]) = eYoAdgo ;1 Adgy (g93) (14)

r €040 (g3) = g3.

In a similar way we can obtain

(e’)’oAdgo 1 Adgr ;72 Adgs 73 Adgs )94 ~ ga + 7305, (15)

(e Adgo o711 Adg yv2 Adgz 73 Adgs o4 Adgs )g5 = gs. (16)
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Substituting (12)—(15) into equation (11) and comparing the coefficients of ¢;, ¢ =

0,1,...,5, yields the following approximate equations for the evolution of the logarithmic
coordinates y;, 1 =0,1,...,5,

7./0 = 1a

’yl = wq,

;}/2 = W2,

: (17)

Y3 = —Yow: + ws,

Y4 = —Yowsz + Wy,

Y5 = Yoyswe — Ysws + w5 with  ;(0) =0, i=0,1,...,5.

The TIP problem can thus be recast in the logarithmic coordinates as follows.

[TIP in LC:] On a given time horizon T > 0, find control functions m;(a,t), i = 1,2,
in the class of functions which are continuous in a = [ay, as, as, a4, as], and piece-
wise continuous, and locally bounded in ¢, such that the trajectory ¢ +— ~%(¢)
of

¥ =M(y)a, ~(0) =0, (18)

intersects the trajectory ¢ +— ~v™(t) of

Y= M(y)m(a,t), ~(0)=0, (19)
in which m(a,t) = [m1(a,t), ma(a,t), 0,0,0] at time T, so that
Y(T) =~+™(T). (20)

The TIP in logarithmic coordinates now takes the form of a trajectory interception
problem for the following two control systems

Jo =1,

Y1 = wy,

Y2 = wa,

Y3 = —Yow: + w3,
Y4 = —Yows + wy,

5 = Yoy3we — 3w + w5 with ~;(0) =0, i=0,1,...,5.

CSl: A =1, CS2: Ay =1,
1 =ma, Y1 = ar,
o B (21)
Y3 = —Yomu, Y3 = —7Yo01 + a3,
Y4 = —Yoma, Y4 = —70a2 + aa,
Y5 = YoY3 M2, Y5 = Y0302 — Y304 + a5

with initial conditions ~;(0) =0, i =0,1,...,5.
A solution to TIP is calculated by approximating the flow of & = go + [g0,91] by

2rt
the flow of y = go + kg1 sin %, and the flow of & = go + [[g0,91], [90,92]] by ¥ =
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2wt 2mt
go+kgi sin % +kgo cos %, where k is some constant. Therefore we adopt the following

parameterizations of m;, 1 =1,2:

27t 27t 27t
my = c¢1 + (c3 + ¢5) sin T and Mo = Co + ¢4 sin il =+ ¢5 cos l, (22)
T T T
where ¢;, i = 1,2,...,5, are found as ¢; = a1, ca = aa, ¢35 = 6.28319a3/T, ¢y =

6.28319 a4/T and c5 = 6.28319a5/T, or ¢; = a1, ca = ag, c3 = kaz, ¢4 = kay and
¢s = kas, where k = 6.28319/T.
The time varying stabilizing controls for model (2), are thus given by

.27t cos 27t
Uy =c1 +czsin—— +c¢ 3 ——
1 1 3 T 5 T ) (23)
.27t 2nt
= o + ¢4 8in — + ¢5 cos —.
U C2 Cq4 S T Cr COS T

Theorem 4.1 Suppose that a solution to the TIP problem can be found. Then, there
exists an admissible time horizon Tya.x and a neighborhood of the origin R such that
for any T < Tmax the time-varying feedback controls given in (23) are asymptotically
stabilizing the system (2) with the region of attraction R.

Proof By considering a trivial Lyapunov function V(z) = 12Tz, z € R it follows

2
that along the controlled system trajectories,

Ly (a) = 2T = 2" (go(x) + g1 (@)us + gol)uz)

dt
27t 27t
=27 go(z) + g1 () <01 + ¢z sin il + c5 cos il
T T
+ go(@) n . 2wt n 2nt
)| ea + casin — + ¢5 cos —
g2 2 4 T 5 T
. 27t . 2wt
=27 (go(x) + g1(x)a; + kzaszg (x) sin T + ksasg1(x) sin T

. 2wt 2mt
+ g2(z)az + kgasge(z) sin % + ksasgs(x) cos ;)

~ 2" (go(x) + g1(2)ar + ga(x)as + g3(x)az + ga(x)as + gs(x)as)
=2 (go(z) + Gv) = —2Tx <0,

where G = [g1 g2 g3 g4 g5)(2), v = G~ {—z — go(x)} for all z € R®\ {0}.

Confirming the asymptotic stability of (2) with feedback controls (23).

The simulation results employing the above controls are depicted in Figures 4.1 -4.6.
In first simulation we choose x(0) = [0.9 0.7 0.4 0.8 0.6]7 and T = 0.9. The results are
shown in Figures 4.1-4.4. In 2nd simulation we choose x(0) = [0.5 0.5 0.5 0.5 0.5]T
and T = 0.9. The results are shown in Figures 4.5-4.8.
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5 Conclusion

A time varying control law is derived for the extended nonholonomic double integrator
(ENDI) system that captures any kinematics completely nonholonomic model with three
states and two first order dynamic control inputs, e.g., the dynamics of a wheeled robot
subject to force and torque inputs. The controller yields asymptotic stability and con-
vergence of the closed loop system to an arbitrarily small neighborhood of the origin.
Simulation results captured some of the features of the proposed control laws and their
performance.
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Figure 4.1.  Collective Plots of the controlled state trajectories t — (1 (t), x2(t),
..., x5(t)) versus time.
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Figure 4.2. Plots of the controlled state trajectories t — (z1(¢t), xa2(t), ...,
x5(t)) versus time.
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trolled state trajectories versus time.
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Figure 4.5. Collective plots of the controlled state trajectories t — (z1(¢), z2(1).
..., z5(t)) versus time.
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Figure 4.6. Plots of the controlled state trajectories ¢ — (z1(t), z2(l), ...,
z5(t)) versus time.
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trolled state trajectories versus time.
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Abstract: In this paper we study the periodic solutions of an autonomous
Hamiltonian system

(M) &= JH'(z)

where H is convex and superquadratic.

We prove by using the Ambrosetti—-Rabinowitz theorem and perturbation
techniques that for all T > 0 the system (H) has a nontrivial T-periodic
solution.
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1 Introduction

In this paper we consider the Hamiltonian system:
(H) &= JH' (x)

where H: R?N — R is a continuously differentiable function and

(0 —Iy
(o)
is the standard symplectic matrix.

In 1979, under the following assumptions:

(1) H is strictly convex,

(2) Vo e R*N, H(x) > H(0

(3) v > 2: Vm€R2N H’(m)az>7H( )
(4) 3k >0: Vo € R*N, H(z) < k|2,
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(c)2005 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 395
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Ekeland in [1] proved that the system () has for any T > 0 at least one nonconstant

T-periodic solution.

In the present paper, we try to find the same result under some more general hypothe-
ses. Precisely, we assume that H satisfies the following hypotheses:

(H1) H is convex;
(Hy) Yz € R?N, x#0, H(z) > H(0) = 0;
(H3) there exist a > 2 and (> 2 such that:

V(p.q) € R*N, H(p,q) <

[@5)
SIS

R+

(Hy) There exists [ > 0 such that V(p,q) € R?N

[Hy(p.a)| <0 (1+1p°7" + gl

|Hy(p ) < 1(1+ gl + [p|°

(Hs) there exist m > 0, n > 0 such that ¥(p,q) € R?YN

|H,(p,q)| = mlp|*~" —n.
|H(p,q)| > ml|q|°~" —n.

Ezample 1.1 This is an example of Hamiltonian H

1
(p,q)p +

(a—1)

B

O o D
5ag PO

@

).
).

—1)
B

which verifies the hypotheses

(Hy)—(Hs). Let G, K: RY — R be two functions of class C!, convex such that:

Vo e RN,

x#0, G(z)>G(0)=0,

Vo € RV, lG'(x)glc > G(x), %K’(m
a

Ja,b>0: Yz e RY, G(z)<alz|®,

K(z) > K(0) =0,

)z = K(z),

K(z) < blz|°.

Then the Hamiltonian H(p, q) = G(p) + K(q), verifies the hypotheses (Hy)— (Hs).

Our main result is the following.

Theorem 1.1 Under the hypotheses (Hy) —(Hs), the

system (H) possesses for any

T > 0 a non constant T-periodic solution. Moreover, the energy h verifies the condition:

1

2

1

(%

47
a?T

1

2

1

g

a+ 0 4

<Tess )|

b2T

G-+

=min{H (p,q), |p|* + |¢|” = 1}.

a® b8
with — = —
«

5

(a+p)a”

claf—a—p) "

8
] B
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2 Preliminaries

Definition 2.1 Let E be a Banach space and f: E — R be a function of class C*.
The function f satisfies the Palais-Smale condition (PS) if every sequence (x,) such
that (f(xy)) is bounded and f'(x,) — 0 as n goes to infinity, possesses a convergent
subsequence.

Theorem 2.1 (Ambrosetti-Rabinowitz Theorem) [7] Let E be a Banach space and
f: E — R be a function of class C*. Assume that:
(i) there exists a >0 such that:

m(a) = inf{f(z): ||z = a} > f(0),

(i) there exists z € E such that ||z]| > a and f(z) < m(w),
(iii) f satisfies the Palais-Smale condition (PS).

Then there exists T € E such that f'(z) =0 and f(z) > m(«a). Moreover

1(®) = inf max f(v(1)),

where ' = {y € C([0,1], E): v(0) =0 et v(1) = z}.
We have the version of the theorem of Krasnoselskii [5].

Theorem 2.2 Let Q be a measurable bounded set of R™ and f: Qx RN x RN — R
be a function verifying the following condition.

For almost every t € Q, f(t,-,-) is convez, of class C*, and that for all (x,y) €
RN x RN, f(-,x,y) is measurable.

Let o, > 1 be two reals, we assume that there exist ¢ € L*(0,T;RN), i €
LP(0,T;RY), w € L* (0,T;RN), © € L?(0,T;RN) where o' +ax' =1, g~ +
Bt =1, such that

/\ftf 1) dt < oo, /If a(t)) dt < oo,

and there exists a constant a > 0 such that for all t € Q and (p,q) € RV,

of
o
of
bz

(a—1)

2

(t,p. q>| < amax{1, [p/*~, |q’?

(8-1) _
(t,p,q)‘ﬁamaX{L P 1glP ),

so the functional



398 N. KALLEL AND M. TIMOUMI

is of class C' and

P l(t) = 507 (t.pl0).a(t).

3 Proof of Theorem 1.1

We will proceed by successive lemmas.
The hypothesis (Hs) is equivalent to the following

(Hs) YA>1, V(p.g) € RN, HOYp, \Pq) > AH(p,q).
Let ey € ]0,m[ be a fixed real. For all 0 < € < ¢y, we consider the Hamiltonian

He(p,q) = H(p,q) + (|p|* + [q]”).

It’s clear that H. is strictly convex and verifies (Hz)— (Hs).

Set
ag b e
== ——i—e le=l4+¢, me¢=m—e¢.

a p

Lemma 3.1 Let a* and B* be such that é i = % + BL* =1, so

(7) H? is of class C*;

(8) V(r,s) € R?N, L (H*) (r s)r 4 4 3= (HZ)s(r,s)s < He (1, 5);

(9) Help,q) = %~ pl“ +1gl” > 1, He(p,q) > “=(Ip|* + [a]® — 1)

for all (p,q) € R*N;

(10) V(r,s) € R®N, H*(r,s) < lr|*” + ﬁ bﬁ*
(11) there exists ke > 0 such that V(p, q) € R2N H(p,q) < kc(Ip|* + |q|®);
(12) VY (r,s) € R?*N H*(r,s) > W r|* + s|%", where c. and d. are given

a®

|57

@ a* aa*

g dﬁ*

o dﬁ
by %:ﬁ:ké.

Proof (9) Set S = {(p,q) € R*™: |p|* +|q|® = 1}. For (p,q) € R?>"N such that
Pl +1g? > 1, we set 5= lp|" +|gl?, so (s~/*p, s1/7g) € § and by (Hg) we have

Hc(p,q) > s min {H (P, q)}-

(p,9)€S

For |p|®+|q|® < 1, we have H.(p,q) > (|p\a +]g|? —1). This is the desired result.
(7) By the inequality (9) we have for |p|“ +1q/® >1

Hc(p,q)

2@?( pl*, _ld” )
Il +1ql = a \[|pl+la| |p|+ gl

i e (pa)
(p.a)|—oo [p| +lal

and since «, 3 > 1, so
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Since H, is strictly convex and of class C', so by a result of convex analysis the conjugate
H? of H, is of class C*.

(8) Let (r,s) € R* and (p,q) = H}'(r,s) = (H.*).(r,s),(H.*),(r,s)), so by the
Fenchel reciprocity and the hypothesis (H3) we obtain

1) = (1= D)+ (15 )t

hence the result.
(10) Let (r,s) € R?N, we have

H:(T,S) = sup {pr+5q7He(p7Q)}a
(p,@) RN

thus by the inequality (9)

. o b2 ag
H:*(r,s) < sup {pr+sq—lp —q|‘3+}
(p,q) ER2N B @

S
a*al

* 1 * a
|+ 7@*|3|ﬁ +
f*be
(11) For (p,q) € R?*N such that [p|® + |g|® > 1, there exists 6 € |0, 1[ such that

fe (0(p,q))p + %(9(% 9))q

H =
(p.q) o a4

<122 (6p. 1)\ 1p] + | ZZ2< (00, 0)) | I
< 6p pa P 3(] p, q

so by the hypothesis (Hy)

1)
He(p,0) <1 (Ip] + ol + pllal” = + lal + lal” + lallpl* 7 )

Ip* IqIﬁ lq|? Ipo‘>
a B B*

(p| g+ i+ 1l +

So there exists l;;e > 0 such that

H(p,q) < k(Ip|* + |q|?).

For (p,q) € R*V such that ,s = [p|* + |q|® < 1, we have by (Hp)

H(p,q) < sH(s~ 1/, 571/7)
< max, {H(p,q)} < k(]p|* + |q|?),

where k = max {H(p,q)}.
(p,9)es

Hence, by picking k. = max(k, k + €), we obtain the result.
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(12) Let (r,s) € R*N,
Hi(r,s)= sup A{pr+sq— Hc(p,q)}

(p,a) RN
> sup  {pr+sq—ke(|p|* +1a|”)}
(p,@)ER?N
o 1 8
> — I+ —5=lsl”
aree® B*de
Denote for p a real > 1
T
LS—{pEL“OTRN//p }———???
0
We define on L§~ x Lg " the dual action functional f. by
. T T
felp,q) = §/<J(p, q)m(p,Q)>dt+/H§(p, q) dt,
0 0
where
t ) T
(m)(®) = [wts)ds— 1 [t [y(s)as
0 0o 0

is the primitive of y with zero mean.
We are interested in the search of a non trivial critical point of f., by using the
Ambrosetti-Rabinowitz theorem.

Lemma 3.2 f. is of class C* and for all (p,q) € L§ x Lg*, there exists (&, pe) €
RN x RN such that

fip.a) = —Jm(p,q) + HZ (p,q) + (&, pe)-
The proof is a simple application of the version of the theorem of Krasnoselskii.
Lemma 3.3 There exist p >0 and v >0 such that
1P D o= o =P = fep,q) 2 -
0 < |l(ps q)HLg*ng* <p= fp,q) > f(0,0)=0

Proof Tt’s easy to verify that for all (p,q) € L§ x Lg* we have

T T
1.1
/ < p(t ) - dt‘ = ‘ — / < mp(t),q(t) = dt| < T=T5(|p|3a + |q|3s-).
0 0
So, by the inequality (12) for all € € ]0, €] and (p,q) € L§ x Lg*,
1 1 1 B
> _Tat5(|p2 .- 2 0) + ——|p|%as + .
fe(p,q) > (Iplpax + lalps-) + o plT > dg* lal7 s
141 1 . 1 "
> —TO‘+B|p|2La* + =Pl — T“+ﬁ|CI|L5* + 5*|Q|§ﬁ*
CEO 6 d60

hence, since a* < 2, * < 2, the desired result is obtained.
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Lemma 3.4 There exists (po,qo) € (L X Lg*) \ {(0,0)} such that fc(po,qo) = 0.
Proof Let Z = (p,q) € R?N, setting w(t) = Zsin (— 25t) + JZ cos (25t), we have

Vte[0,T), |wt)®=12]*=|p* +|ql*.
Thus
1 ’ T ’ T2
- — dt = —— t|?dt = ——|Z|%
2/-< Jrw,w = 47T/|<,u()| 471_| |
0 0

So, it follows by the inequality (10), that for all s > 0 we have
T

a*a.®

T2 . * * * a®
fe(sw) < 7—52|Z|2 + sT|Z1* + _gP |Z|B 4+ =T
47 «

Since a* < 2 and (* < 2, we obtain the result by applying the Lemma 3.3.

Lemma 3.5 f. verifies the Palais—Smale condition.

Proof Let (wn)nen = ((Pn, qn))nen a sequence of L§ x Lg verifying (fe(wn))n is
bounded and f!(w,,) converges to zero as n goes to infinity. So, there exist two constants
A and B such that

A< _%/ < Jrwn(t), w(t) > dt+/H:(wn(t))dt < B, (13)
0 0
and
(_ﬂ'qn,ﬂ'pn) + ((HE*);(wn), (HE*);(wn)) + (fe,nvﬂle,n) = ()\nvnn) (14)

converges to zero in LOO‘* X Lg T asn goes to infinity.
By taking 7p, and mg, from the expression (14) and substituting it into (13), we
obtain:

T
<+ *)/H* w’ﬂ dt+7*/[-<77n7Qn>'_‘<Me,n7Qn >']dt
B B
1 ) 1 T
_§/<(He*);(wn),qn>dt+5/[< Ay Pn = — = &eny Do > dt
0 0
1 ’ 1 1
- H < B,
[ = )b i < ( ﬂ*>

0

thus

(;ﬁ—i—;‘)/TH:(wn(t))dt—/T[al*<(H€ )p(w )pn>+%<(H )’(wn),qn>}dt
0 0

T
1 1
+*/'</\n7pn>'dt+*/'<77naQn>'dt<( *>B
ar ) B g
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We deduce by the inequality (8) that:

T
11 . 1 1
(2 + 5 1) [ Hu@)at = L aluebalier = 3 bluslanl oo
0

O[* I@*

1 1
<(=+—)B
<(a+7)

1

Hence, since — + ,8% —1 >0 and by the inequality (12), we have

L ) e =il | = S alie Ploer — — [l
a* 3 arcr Plrax ﬂ*d?* d\ys* oF Lo |PlLe 3 Mn|Ls|dn|Ls

1 1
< <04*+5*>B.

Since a*,* < 2 and |A\y|pe — 0, |9n|s — 0 as n — oo, we deduce that there exists
a constant d > 0 such that for all n € N |p,|e*, |gn|s= < d and up to a subsequence,

we may assume that (p,,q,) is weakly convergent to w = (p,q) in L§ x Lg*.
Consider the set

D = {—J7r(pn,qn), n € N} C C([0,T], R*).

By (Hs), we verify that (HE*/ (Pn,qn)) is bounded in Lg x Ly and since (An,7,) goes
to zero in LT x Lg as n goes to infinity, so by the formula (14), (&cn,, the,n,) is bounded
in R?M and therefore we can suppose that (& ., , fen,) converges to (&, ).

Finally, since

H: (pnk7an) = (/\nkannk) + Jﬂ-(pnk7an) - (Ee,nk7,u'e,nk)7

we have by the Fenchel reciprocity:

(pnk bl an) == Hé((ATLk b nnk) + Jﬂ'(pnk ) an) - (fe,nk bl ,Ue,nk ))a

By (H4) and the version of the theorem of Krasnoselskii, the map (u,v) — H/(u,v)
defined on L§ x Lg into L® x L? is continuous. Thus the sequence (Prgs @) =
H (Mg i)+ IT (D> @y ) — Ecomps Hemy,)) is convergent in L x LP" and the lemma
is proved.

The functional f. verifies all the hypotheses of the Ambrosetti-Rabinowitz theorem,
consequently there exists 7. = (pe,Gc) € L§ X Lg such that

and
fe (ge) > 7.
By the Lemma 3.2, there exists (&, u.) € R*V such that

0= —Jﬂ'(ﬂg) + He*/(ﬂe) + (557#5)7
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which gives by the Fenchel reciprocity
Je = Hi(Jm(Fe) — (&, he))-
Setting T, = (te, Ve) = J7(Ye) — (&, pte), we have
Te = (e, 0e) = J(Pe) = JH((te, 0e) = JH{(Zc)-
Thus the Hamiltonian system
(He) & = JH(z)
possesses a T-periodic solution.

Lemma 3.6 Let h. be the energy of the found solution T.. Then

o 8
a+ 1 1 4 =2 1 1 4 P2 a+pB af
heﬁaﬁ—a—ﬁ[@‘aﬂm] “(375) %) ]+aﬁ—a—ﬂa'(15)

Proof We have

- T
: 1 Ye) = l L 1 1=\ = B B
( + /B)fe(ye> = ( + ﬂ) 0/2 < He(l'e)al‘e = dt O/HE('TE) dt‘|
1 [ 1 ’ 1 ) T
= O‘o/ < (He)y(Te), ue >dt+50/< (He )y (Te), ve >dt—(a+/8)0/H€(xe)dt

which implies that

On the other hand, by the Ambrosetti-Rabinowitz theorem we have

«(ye) = inf e\"Ve y
Je(ge) = Inf, max fe(ve(s))
where T = {y € C([0,T], L§” x Ly )/7(0) =0 and ~(1) = (po,qo)}-
For s € R, we set w,(t) = sw(t) where w is defined in the proof of Lemma 3.4. We
have

fe(@e) < sup fe(s(po,qo)) < sup fe(sw)
s€10,1] 5>0

T x X « . o
< sup{ — =2+ 5120+ 5712 + aeT}
$>0 m *ag B3*bE @
2 T . . «
<sup{32|22+ —s* | Z|* }—I—CLET
5>0 a*a¥ o

T? T 50,5
—l—sup{ - 8782|Z|2+ o VA }

€
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Setting

et T , 5 T g5
o o _ B 8
— —=s" 121, ls) = — 2P+ 7121

T2 2 12 T
=-—s|z
Plo) =~ 1P+ o .

So ¢ attains its maximum at

@l
Il

Ar T 1
a® T |Z|’

and 1 attains its maximum at

VAl

{ Ar rlﬁ* 1
LT 1Z|

A simple computation gives

and

SO
B

~ 1 IN\[ 47 ]5=2 (1 1\[ 4r 172] a®
fe(yf)STKfa){a?*T] +<2‘,3)L§*T] ]+QT~

Consequently

a B8
a+ 0 1 1 4 |2 1 1 4 |72 a+p  a?
heﬁaﬂaﬂ[(z‘aﬂag*ﬂ +(2_5)L}?*T} }Jraﬂaﬂa

and the Lemma 3.6 is proved.
Lemma 3.7 The set E={7.: 0<e<ey} is relatively compact in C([0,T], R*N).
Proof We have for all € € ]0, 9],

aa aOt «
0< — <= < —+e¢.
« o o

Thus, by (15), there exists R € R’ such that
H(z(t)) < R

for all t € [0,7] and € € ]0, €].
Since lim H(x) = 400, so there exists A € RY such that for all ¢t € [0,7] and

|z]|— o0
€ € ]0,e] Zc(t) € B(0,\). Consequently, for all ¢t € [0,T], the set E(t) is relatively
compact in R?N.
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On the other hand, since H’ is continuous, there exists 1 > 0 independent of € such
that for all € €]0, €] and t,t' € [0,T), ||Z(t) —Z(t")|| < n|t —t'|*/2. Thus E is equicon-
tinuous. Hence, by the theorem of Ascoli, E is relatively compact in C([0,T], R*V).

So, we may extract from E a subsequence (Z, ), €, — 0, which is convergent uniformly
in [0,7T]. Let Z = (@,v) be its limit; we have

Fe, = JH! (Zc,) = J(H'(Zc,) + en(]tc, |* @, flo., " *5.,))
— JH'(1,v) uniformly,

which implies that

r=JH'(z).

So it’s clear that H7 (p, ,qc,) is convergent uniformly to H*(Z) and

0<y< lim fe,(Fe,) = f(2).

Since f(0,0) =0,s0 T # 0 and T is not constant. B B
Finally, we have lim a., = a and lim b, = b, thus lim h., = h and so h =

H(z) < h.

n—oo n—00 n—0o0
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Abstract: The main objective of the present paper is to study minimum fuel
maneuvers to change the position of a spacecraft in orbit around the Earth.
The control used is a bi-impulsive maneuver, where the first impulse is applied
in the initial position of the satellite to send it to a transfer orbit that will
cross the desired final position of the spacecraft. Both initial and final position
of the satellite belongs to the same Keplerian orbit. The goal is to find the
transfer that has the minimum total increment in velocity and that performs
the desired maneuver.

Keywords: Astrodynamics; orbital maneuvers; bi-impulsive control.

Mathematics Subject Classification (2000): 70M20, 70H12.

1 Introduction

In this paper, the problem of transfer orbits from one body back to the same body (known
in the literature as the Henon’s problem) is used to study maneuvers that has the goal
of changing the position of a satellite, in the sense of sending it to a different point (true
anomaly) of the same orbit. The net result is a relocation of the satellite in the same
orbit. The problem of transfer orbits from one body back to the same body has been
under investigation for a long time. Hénon [6] originally developed a timing condition
for orbits that allow a spacecraft to leave a massless body Ms, go in an orbit around the
primary M; and meet M, again, after a certain time. This was treated as the problem
of consecutive collision orbits in the restricted three body problem. Several authors then
worked on improvements of this problem. Hitzl [7] and Hitzl and Hénon [8,9] studied
stability and critical orbits. Perko [12] derived a proof of existence and a timing condition
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Figure 2.1. Orbit transfer from M5 back to Ms.

for what was shown later to be a special case of Hénon’s work. Results for the perturbed
case where p (mass of Ms divided by the mass of Mp) is not zero also appeared in
the literature. Some examples are the papers published by Gomez and Olle [3,4] and
Bruno [1]. Howell [10] and Howell and Marsh [11] extended Hénon’s results for the case
where the orbit of Ms is elliptic.

In the present research this problem is formulated as that of an orbit transfer, as
done previously in Prado [13], which can be solved with Gooding’s implementation of
the Lambert’s problem [5]. In the approach used here, the second body M- is a fixed
point in the orbit of the spacecraft and not a real body, but this nomenclature is used to
facilitate the comparison with the results obtained from the consecutive collision orbits
problem approach. Both cases, with the circular or elliptic orbits for the spacecraft are
considered in the present research. The implementation developed here is generic with
respect to the angle that the spacecraft has to be shifted. These transfer orbits are
studied in terms of the AV and the time required for the transfer. The AV's are plotted
against the transfer time for several cases and a family of transfer orbits with very small
AV (on the order of 0.001 in canonical units, a system of units where the gravitational
constant of M7, the angular velocity of the spacecraft and the distance between M; and
the spacecraft are all unity) is shown to exist in almost all cases studied. These orbits
are studied in detail. They consist of a family of slightly different orbits (when compared
to the orbit of M) that meet all the requirements to provide the transfer desired. A
relocation of a geostationary satellite is shown as an example of a practical application
of this theory.

2 Formulation of the Problem

Let M; be the main body of the system (the Earth, in the example used here) and M;
be a fixed point in a circular or elliptic orbit around M. The massless spacecraft Mj
leaves the point Ms from a position denoted by P (t = —7 ), follows an orbit around
M; and meets again with M5 at a point @@ (£ = 7). The basic equations of the Kepler
problem apply. The canonical system of units is used. Figure 2.1 shows a sketch of the
transfer.
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The solution to be found is the coordinate of the point P as a function of the transfer
time. The solution is not unique, and a graph including many solutions was published by
Hénon [6]. He plotted n/7 (where 7 is the redefined “eccentric anomaly” of the point P)
against 7/ (where 7 is half of the transfer time). Another problem that is considered in
the present research is the calculation of the AV and the time required for each of these
transfers, in a search for transfer orbits with small AV. The solution consists of plots of
the AV against the time required for the transfer (both in canonical units). A detailed
study of the transfer orbits with small AV is included.

2.1 Lambert’s problem formulation

A different approach used in the present research formulates Hénon’s problem as a Lam-
bert’s problem. The Lambert’s problem can be defined as [5]:

“An (unperturbed) orbit, about a given inverse-square-law center of force is to be
found connecting two given points, P and @, with a flight time At (= t2 — ¢1) that
has been specified. The problem must always have at least one solution and the actual
number, which is denoted by N, depends on the geometry of the problem — it is assumed,
for convenience and with no loss of generality, that ¢ is positive.”

Using this formulation, Hénon’s problem can be defined in the following way: “Find
an unperturbed orbit for M3, around M, which leaves the point P at t = —7 and goes
to point @ at ¢t = 7”. Since M, is assumed to have zero mass, it has no participation
in the equations of motion of the system. Its only use is to relate the time 7 with the
eccentric anomaly 7, in such a way that M3 has the same position as My at P and @ at
the times ¢t = —7 and t = 7, respectively.

3 Mathematical Formulation

In terms of mathematical formulation, Hénon’s problem formulated as a Lambert’s prob-
lem can be described as follows. The following information is available:

1. The position of M3 at t = —7 (point P). It can be specified by the radius
vector Ry and the angle —7. R; can be related to —7 by using the equation R; =
a(1—e?)/(1+ecos(—7)) for the orbit of My, since My and M3 occupy the same position
att = —7.

2. The position of M3 at t =7 (point Q). It can be specified by the radius vector Ro
and the angle 7. Ry can be related to 7 by using the same equation used in the above
paragraph.

3. The total time for the transfer, At = 27. Remember that the angular velocity of
the system is unity, so 7 can be considered to be the time as well as the angle.

4. The total angle the spacecraft must travel to go from P to @, that is called ¢. For
the case where the orbit of Mj is elliptic this variable has several possible values. First
of all, there are two possible choices for the transfer: the one that uses the direction
of the shortest possible angle between P and @ (that is called the “short way”), and
the one that uses the direction of the longest possible angle between these two points
(that is called the “long way”). Which one is the shortest or the longest depends on
the value of 7. After considering these two choices, it is also necessary to consider the
possibilities of multi-revolution transfers. In this case, the spacecraft leaves P, makes
one or more complete revolutions around M, and then goes to Q). Then, by combining
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these two factors, the possible values for ¢ are: 27 + 2mm and 2(7w — 7) + 2mm, where
m is an integer that represents the number of complete revolutions during the transfer.
There is no upper limit for m, and this problem has an infinite number of solutions. In
the case where the orbit of M3 is parabolic or hyperbolic, ¢ has a unique value. The
multi-revolution transfer does not exist anymore (the orbit is not closed), and the only
direction of transfer that has a solution is the one that makes the spacecraft goes in a
retrograde orbit passing by periapse at ¢ = 0.

The information needed (the solution of the Lambert’s problem) is the Keplerian orbit
that contains the points P and @ and requires the given transfer time At = 27 for a
spacecraft to travel between these two points. This solution can be specified in several
ways. The velocity vectors at P or () are two possible choices, since the corresponding
position vectors are available. The Keplerian elements of the transfer orbit is also another
possible set of coordinates to express the solution of this problem. In the implementation
developed here, all three sets of coordinates are obtained, since all of them are useful
later.

To obtain the AV's, the following steps are taken:

1. Find the radial and transverse velocity components of My at P and (). They are
also the velocity components of M3 just before the first impulse and just after the second
impulse, respectively, since they match their orbits at these points. They are obtained

from the equations [2]:
esin(v) (1)
a(l —e?)’

1+ ecos(y
2
Va(l—e

where V,. and V; are the radial and transverse components of the velocity vector, a and
e are the semi-major axis and the eccentricity of the transfer orbit and v is the true
anomaly of the spacecraft.

y, = Ltecosy) 2)
)

2. Find an unperturbed orbit for M3 that allows it to leave the point P at t = —7
and arrive at point @) at ¢ = 7. This orbit is found by solving the associate Lambert’s
problem, as explained in the next section. At this point the total time for this transfer,
27 is already known.

3. Find the velocity components at these points (P and @) in the transfer orbit
determined above. They are the velocity components for M3 just after the first impulse
and just before the second impulse. They are provided by Gooding’s Lambert routine [5].

4. With the velocity components just after and just before both impulses it is possible
to calculate the magnitude of both impulses (AV; and AVs) and add them together to
get the total impulse required (AV) for the transfer.

4 Gooding’s Implementation of the Lambert’s Problem

The solution of the Lambert’s problem, as defined in the previous paragraphs, has been
under investigation for a long time. The approach to solve this problem is to set up a
set of non-linear equations (from the two-body problem) and start an iterative process
to find an orbit that satisfies all the requirements. There is no closed-form solution



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(4) (2005) 407-417 411

available for this problem. The major difficulty is to choose the best set of equations and
parameters for iterations to guarantee that convergence occurs in all cases. The routine
used in this research is due to Gooding [5]. He chooses ++/1— $/2a as the parameter
for convergence, where a is the semi-major axis of the transfer orbit and s the semi-
perimeter of the triangle formed by P, @ and M;. He also makes several substitutions of
variables, trying to find the best set of equations to guarantee convergence in all cases.
His implementation is able to find all the possible solutions of the Lambert’s problem,
including “long way”, “short way” and “multi-revolution” transfers. He gives the velocity
vectors at P and Q and the Keplerian elements of the transfer orbit in his solution.

Including all phases of the present research, Gooding’s routine has been called about
3 million times with no failure detected.

5 Results

In this section some results are shown in the problem of finding the AV's required for
the transfers to be able to get the transfers with the minimum consumption. Plots of
(AV) x (7/7) were made for thousands of possible transfer orbits. Five orbits for M,
around M are used:

(1) The circular orbit with a = 1.
(2) The elliptic orbit with e = 0.4 and a = 1, with Ms passing by periapse at ¢ = 0.
(3) The elliptic orbit with e = 0.4 and a = 1, with M, passing by apoapse at t = 0.
(4) The elliptic orbit with e = 0.97 and a = 1, with M5 passing by periapse at ¢ = 0.
(5) The elliptic orbit with e = 0.97 and a = 1, with M3 passing by apoapse at ¢ = 0.
The results for orbits 1, 2 and 4 are shown in Figures 5.1-5.3. The vertical axis
shows the total AV in canonical units and the horizontal axis shows /7, where 7 is
half of the transfer time. Only elliptic transfer orbits are included in these plots, since
the hyperbolic or parabolic transfer orbits are too expensive, in terms of AV (always
more than 1.6), to be useful. In these figures, /7 varies from 0 to 14 and the maximum
number of complete revolutions allowed for Ms, while in its transfer orbit, is also 14.
This means that we restrict ourselves to the orbits contained in a square region with side
14 (0<7/7<14 and 0 < v/7 < 14).
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Figure 5.1. (AV) vs (7/m) for Orbit 1 for Ms.
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Figure 5.3. (AV} vs (7/m) for Orbit 4 for Mo.

An examination of those figures shows the existence of points (orbits) with very small
AV . They appear in several locations in the plot and they reveal a whole family of small
AV transfer orbits. In all cases studied in this research, this family appears in the “short
transfer time” part of the graph (small 7). A more detailed plot of (AV)vs(r/xw) is
shown in Figure 5.4. It includes only the orbits where AV < 0.5 and it is restricted to
orbit 1 (circular orbit) only. Plots for the orbits 3 and 5 are similar to the plots for orbits
2 and 4, respectively, and are omitted in the present text to save space. It is possible
to see that the local minimums increase with time after 7/7 = 6. An investigation for
7 /7 varying from zero to 200 (and with the maximum number of complete revolutions
for M5 equal to 200) was done, and no more orbits with AV < 0.1 were found.

Table 5.1 shows the main characteristics of the orbits with AV < 0.1 found in the
circular and elliptic cases. It is interesting to see that for the circular case (see the part
e =0 in Table 5.1) most of the orbits appear in pairs, with almost identical values of 7/m.
A good example is the pair formed by the first two orbits in Table 5.1: 7/7 = 1.400 and
7/7 = 1.410. In each pair one orbit has the periapse in a positive abscissa and the other
one has the periapse in a negative abscissa. In this Table the orbit of M> is assumed to
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Figure 5.4. (AV) vs (7/7) for AV < 0.5 (Orbit 1 for M3).

L M3 makes one M3 makes 5 and M2 makes e=0.2,
p complete revolution 6 complete revolutions 93=1
Orbit
of M, Trar?sfer
Orbit for
t/n=1.41
v > Orbit M; [p=Q
1 of M7
Transfer
Orbit for Transfer
Q t/n=1.40 orbit
Figure 5.5. Some transfer orbits with small AV

be elliptic with several values for the eccentricity. Both cases, My at periapse at ¢t = 0
and M> at apoapse at t = 0 are considered. Figure 5.5 shows some of those orbits.

Table 5.1 and Figure 5.5 show the mechanism of the majority of these transfer orbits.
They counsist of orbits with slightly different semi-major axis and eccentricity (compared
with the orbit of M3) and they have a periapse coincident with the periapse of the orbit
of M;. They have mean angular velocity (n) such that 27(1—n) = £27. Then, after M3
makes m complete revolutions in its transfer orbit, My makes m+1 or m — 1 complete

revolutions in its own orbit and they can meet each other at the common periapse, after
the time 27.

Here 7 is half of the transfer time in canonical units, v is redefined true anomaly, 7 is
redefined eccentric anomaly, a is semi-major axis of the transfer orbit, e is eccentricity of
the transfer orbit, S3 =1 if M is at periapse at t =0 and -1 if it is at apoapse, L =1
for “short way” transfer, 0 for “long way” transfer, P = 1 if periapse is in a positive
abscissa, 0 if in a negative abscissa, S = 1 if transfer is direct, 0 if transfer is retrograde,
A =1 if M3 pass by the periapse at ¢ = 0, 0 if it pass by the apoapse, AV is Velocity
increment in meters/second.
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Table 5.1. Transfer orbits with AV < 0.1 for the circular and elliptic case.

R a e n/n v/n L P S A AV
1.400 0.993 0.0216 1.406 1.400 1 1 1 1 0.0417
1.410 1.003 0.0105 1.406 1.410 1 0 1 0 0.0204
2.440 0.997 0.0167 2.445 2.440 1 0 1 0 0.0331
2.450 1.002 0.0149 2.445 2.450 1 1 1 1 0.0295
e=0 3.460 0.999 0.0036 3.461 3.460 1 1 1 1 0.0072
3.470 1.003 0.0279 3.461 3.470 1 0 1 0 0.0555
4.460 0.997 0.0310 4.469 4.460 1 0 1 0 0.0618
4.470 1.000 0.0005 4.469 4.470 1 1 1 1 0.0010
5470 0.998 0.0169 5475 5.470 1 1 1 1 0.0336
5.480 1.001 0.0146 5.475 5.480 1 0 1 0 0.0292
6.990 1.108 0.9777 5.991 6.990 0 0 1 1 0.0955
1.410 1.4386 1.0025 0.1085 1.4729 1 0 1 0 0.0453
2.440 24133 | 09979 | 0.1125 23793 1 0 1 0 0.0435
e2=0.1 3.460 3.4930 0.9995 0.0962 3.5238 0 0 1 0 0.0404
$3=-1 4470 4.4380 | 1.0002 | 0.0975 44078 1 0 1 0 0.0398
5.480 5.5072 1.0011 0.1142 5.5436 0 0 1 0 0.0500
7.000 6.0000 | 1.1082 | 0.1879 6.0000 0 0 1 1 0.0869
1.400 1.3747 0.9962 0.1132 1.3420 1 1 1 1 0.0411
e2=0.1 2.440 24772 | 0.9970 | 0.0829 2.5036 0 1 1 1 0.0503
S3=+1 3.460 3.4293 0.9999 0.1009 3.3982 1 1 1 1 0.0389
4.470 45018 | 1.0000 | 0.1003 4.5337 0 1 1 1 0.0402
5.470 5.4435 0.9989 0.1148 5.4078 1 1 1 1 0.0479
€2=0.2,83=-1 7.000 6.0000 1.1082 0.2782 6.0000 0 0 1 1 0.0793
€2=0.2, S3=1 6.000 5.0000 | 1.1292 | 02916 5.0000 1 1 1 0 0.0917
e2=0.5, S3=-1 5.000 4.0000 | 1.1604 | 0.5691 4.0000 1 0 1 1 0.0789
€2=0.5 4.000 3.0000 | 1.2114 | 0.5873 3.0000 1 1 1 0 0.0993
S3=+1 4.000 5.0000 | 0.8618 | 0.4198 5.0000 1 1 1 0 0.0939
6.000 5.0000 | 1.1292 | 0.5572 5.0000 1 1 1 0 0.0655
¢2=0.6 4.000 3.0000 | 1.2114 | 0.6698 3.0000 1 1 1 0 0.0863
S3=+1 4.000 5.0000 0.8618 0.5358 5.0000 1 1 1 0 0.0810
6.000 5.0000 | 1.1292 | 0.6458 5.0000 1 1 1 0 0.0568
3.000 2.0000 | 13104 | 0.7711 2.0000 1 0 1 1 0.0985
€2=0.7 3.000 4.0000 0.8255 0.6366 4.0000 1 0 1 I 0.0897
S3=-1 5.000 4.0000 1.1604 0.7415 4.0000 1 0 1 1 0.0577
7.000 5.0000 12515 0.7603 5.0000 1 0 1 0 0.0837
4.000 3.0000 1.2114 0.7524 3.0000 1 1 1 0 0.0728
e2=0.7 6.000 4.0000 1.3104 0.7711 4.0000 1 1 1 1 0.0985
S3=+1 4.000 5.0000 0.8618 0.6519 5.0000 1 1 1 0 0.0679
6.000 5.0000 | 1.1292 | 0.7343 5.0000 1 1 1 0 0.0478

6 Practical Applications

To show one possible practical application for these orbits, this theory is applied in a
transfer for a satellite from one point in a circular geostationary orbit to another point in
the same orbit (a point 180 degrees ahead of the initial point is used as an example, but
the scheme proposed here can be used for any transfer angle desired). This problem is
very important nowadays. Its solution can be used to transfer a geosynchronous satellite,
to use it above a point with different longitude on Earth. Figure 6.1 shows this situation.

Figure 6.2 shows the (AV)uvs(r/7) for elliptic transfer orbits. Hyperbolic transfer
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Figure 6.1.

Orbit transfer for a geosynchronous satellite.
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orbits are also available, but they have AV too large to be useful. It is assumed that the
change in longitude desired for the satellite is 180 degrees. Table 6.1 shows the whole
family of small AV orbits. Under the assumption that the orbital velocity of the satellite
is 3075 m/s [14] and its orbital period is 1 day, Table 6.1 shows the real values of AV and
27 (total time required for the transfer). The mechanism used by these transfers is to
insert M3 in an elliptic transfer orbit that have a periapse coincident with the periapse
of the orbit of Afs. These transfer orbits have a mean angular velocity (n) smaller than
1, such that (1 —n)27 = 7. Then, in the same time that M3 makes m revolutions in its
transfer orbit, Ms makes m + (1/2) revolutions in its own orbit and M3 meets with a
point 180 degrees ahead of its initial point at €.

Delta—V

Figure 6.2.
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(AV') vs (1/7) to transfer a geosynchronous satellite (Elliptic Trans-
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The same comment about other multi-revolution possible transfer orbits with a lower
AV made in the previous cases are valid here. In this case M> does not exist as a real
body. It is only a reference point in orbit and, in consequence, its mass is really zero.
For this reason, this example fits very well the model used and the results found here are
expected to be in close agreement with the real world.

Table 6.1 Transfer orbits with AV < 0.1 for the transfer in the geosynchronous orbit.

T/m n/m a e vim | L|P|S|A| AV, | AT | AV

3.500 | 3.0000 | 1.1081 | 0.0976 | 3.0000 111]0]0.09 |349 | 292

3.500 | 4.0000 | 0.9149 | 0.0931 | 4.0000 010 ]0.095 | 3.49 | 292

4.500 | 4.0000 | 1.0816 | 0.0755 | 4.0000 01 [11]0.074 |4.49 | 228

4.500 | 5.0000 | 0.9322 | 0.0727 | 5.0000 0.074 | 4.49 | 228

5.500 | 5.0000 | 1.0656 | 0.0616 | 5.0000 1110 ]0.061 | 549 | 188

5.500 | 6.0000 | 0.9437 | 0.0597 | 6.0000 010 ]0.061 | 549 | 188

o | Ol Ol O] O] ©o| ©
—
—
—

6.500 | 6.0000 | 1.0548 | 0.0520 | 6.0000 01 |11]0.051 |6.49 | 157

The symbols are the same ones used in the previous tables.

7 Conclusions

The problem previously called “consecutive collision orbits” in the three-body problem is
formulated as a problem of transfer orbits from one body back to the same body. Using
this approach, Hénon’s problem became a special case of the Lambert’s problem.

Gooding’s implementation of the Lambert’s problem [5] is used to solve this problem
with great success.

The AV's and the transfer time required for these transfers are calculated. Among a
large number of transfer orbits, a small family is found, such that the AV required for
the transfer is very small. These orbits and their properties are shown in detail.

A practical applications for these orbits are studied in detail: a transfer for a satellite
from a point in a circular geosynchronous orbit to another point in this same orbit, 180
degrees ahead of its initial point.

The possibilities of transfers like this one is open for several types of missions and the
algorithm developed here can be used to relocate a satellite to a different position in one
orbit.
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