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1 Introduction

One of the important problems arising in the investigation of nonlinear systems is the
problem of absolute stability [1, 3, 8]. This problem is of both theoretical and applied
significance. The main approach for the determination of conditions for the absolute
stability is the Lyapunov direct method. By means of this approach, the criteria of
absolute stability for many types of systems are obtained. However, it should be noted
that until now there are no general methods of construction of Lyapunov’s functions for
nonlinear systems.

In the present paper a certain class of differential equations systems is investigated.
The method of construction of Lyapunov’s functions for these systems is suggested. The
main goal of the paper is to prove that for the absolute stability of systems considered it
is necessary and sufficient that the Lyapunov’s functions in the given form exist satisfying
the assumptions of the Lyapunov asymptotic stability theorem [3].
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2 Statement of the Problem

Consider the system of differential equations

ẋs =

n∑

j=1

psjfj(xj), s = 1, . . . , n. (2.1)

Here psj are constant coefficients, functions fj(xj) are defined and continuous for xj ∈
(−∞, +∞) and possess the property xjfj(xj) > 0 for xj 6= 0. Hence, system (2.1)
has the zero solution. Equations of this kind are widely used in the design of automatic
control systems [3, 10].

The problem of absolute stability for system (2.1) was investigated in the works
[3, 10, 14]. For the solution of this problem in [3] it was suggested to construct Lya-
punov’s function in the form

V =

n∑

s=1

λs

xs∫

0

fs(τ) dτ, (2.2)

where λs are positive constants. Thus, V is a positive definite function. In [3, 14] the
sufficient conditions are obtained under which one may choose numbers λs for the function

dV

dt

∣∣∣
(2.1)

=

n∑

s,j=1

λspsjfs(xs)fj(xj)

to be negative definite.
Suppose that coefficients psj in (2.1) satisfy the conditions

pss < 0, psj ≥ 0 for s 6= j. (2.3)

For instance, inequalities (2.3) are valid if (2.1) is obtained as a comparison system for
complex system [5, 11].

In this case the criterion of absolute stability for (2.1) was established by S.K. Per-
sidsky [10]. It is proved that system (2.1) is absolutely stable if and only if there exist
positive constants θ1, . . . , θn such that

n∑

j=1

psjθj < 0, s = 1, . . . , n. (2.4)

It should be noted that the existence of a positive solution for (2.4) is equivalent to the
fulfillment of the Sevast’yanov–Kotelyanskij conditions [11]:

(−1)k det (psj)
k
s,j=1 > 0, k = 1, . . . , n. (2.5)

On the other hand, it is known [11] that if inequalities (2.5) are valid, then one may

choose numbers λs for the function W =
n∑

s,j=1

λspsjysyj to be negative definite. Thus,

system (2.1) is absolutely stable if and only if for this system there exists Lyapunov’s
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function in the form (2.2), satisfying the assumptions of the Lyapunov asymptotic sta-
bility theorem.

The main goal of the present paper is to extend the above results to the system of the
form

ẋs = asfs(xs) +

ks∑

j=1

bsjf
α

(j)
s1

1 (x1) . . . f
α(j)

sn
n (xn), s = 1, . . . , n. (2.6)

Here as and bsj are constant coefficients, functions fj(xj) possess the same properties

as in system (2.1), α
(j)
si are nonnegative rationals with odd denominators.

3 Construction of Lyapunov’s Functions

Let the inequalities
n∑

i=1

α
(j)
si > 0, j = 1, . . . , ks, s = 1, . . . , n, be valid. The fulfillment of

this assumption provides the existence of the zero solution for system (2.6). Furthermore,
we suppose that coefficients as and bsj satisfy the conditions

as < 0, bsj > 0. (3.1)

Definition 3.1 We call (2.6) absolutely stable if the zero solution of this system is
asymptotically stable for any admissible functions fj(xj).

Let us investigate the conditions of absolute stability for (2.6). Along with equations
(2.6), consider the system of inequalities

asθs +

ks∑

j=1

bsjθ
α

(j)
s1

1 . . . θ
α(j)

sn
n < 0, s = 1, . . . , n. (3.2)

Definition 3.2 We shall say that (2.6) satisfies the Martynyuk–Obolenskij condi-
tion [9] (MO-condition) if for any δ > 0 there exists solution θ1, . . . , θn of system (3.2)
such that 0 < θs < δ, s = 1, . . . , n.

Let us note that in the case, where fj(xj) are nondecreasing functions, (2.6) is the
Wazewskij’s system [5, 11]. In the paper [9] the autonomous Wazewskij’s systems were
treated. The criterion for the asymptotic stability in the positive cone of the zero solution
was obtained. Using this result, we get that the MO-condition is a necessary one for the
absolute stability for system (2.6).

To prove sufficiency of this condition for the absolute stability, construct Lyapunov’s
function in the form

Ṽ =

n∑

s=1

λs

∫ xs

0

fµs
s (τ)dτ. (3.3)

Here λs > 0 are constant coefficients, µs > 0 are rationals with odd numerators and
denominators.

Function Ṽ is positive definite. By differentiating Ṽ with respect to (2.6), one arrives
to

dṼ

dt

∣∣∣
(2.6)

=

n∑

s=1

λsasf
µs+1
s (xs) +

n∑

s=1

λsf
µs
s (xs)

ks∑

j=1

bsjf
α

(j)
s1

1 (x1) . . . f
α(j)

sn
n (xn).
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Our aim is to determine the conditions under which one may choose coefficients λs

and exponents µs for the function

W̃ =
n∑

s=1

λsasy
µs+1
s +

n∑

s=1

λsy
µs
s

ks∑

j=1

bsjy
α

(j)
s1

1 . . . y
α(j)

sn
n (3.4)

to be negative definite.

Let us denote hs = 1/(µs + 1), s = 1, . . . , n. By the use of generally-homogeneous

functions properties [12], we get that W̃ may be negative definite only in the case, where
the inequalities

−hs +

n∑

i=1

α
(j)
si hi ≥ 0, j = 1, . . . , ks, s = 1, . . . , n, (3.5)

are valid.

Remark 3.1 Let positive rationals h1, . . . , hn with odd numerators and even denom-
inators satisfy conditions (3.5). Suppose that for some values of indices j and s corre-
sponding inequalities in (3.5) are strict. In this case one may construct, instead of (3.4),

new function Ŵ by setting bsj = 0 for all such j and s. If there exist positive coefficients

λ1, . . . , λn for which Ŵ is negative definite, then for these values of λ1, . . . , λn function

W̃ possesses the same property [12].

Remark 3.2 If there exist positive rationals h1, . . . , hn for which all the inequalities
in (3.5) are strict, i.e.

−hs +
n∑

i=1

α
(j)
si hi > 0, j = 1, . . . , ks, s = 1, . . . , n, (3.6)

then for corresponding values of µs and for any admissible values of as, bsj and λs

function W̃ will be negative definite.

4 Auxiliary Results

In this section we will investigate the relationship between the fulfillment of the MO-
condition and the existence of positive solutions for systems (3.5) and (3.6).

Lemma 4.1 If there exists a positive solution for (3.6), then system (2.6) satisfy the
MO-condition.

Proof Let for positive constants h1, . . . , hn inequalities (3.6) be valid. Then the
numbers θs = τhs , s = 1, . . . , n, satisfy conditions (3.2) for sufficiently small values
of τ > 0.
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Lemma 4.2 Let (2.6) satisfies the MO-condition. Then for any set of indices j1, . . . ,
jn (js ∈ {1, . . . , ks}, s = 1, . . . , n) there exists a positive solution for the system

−hs +
n∑

i=1

α
(js)
si hi ≥ 0, s = 1, . . . , n. (4.1)

Proof For specified values of indices j1, . . . , jn consider the inequalities

asθs + bsjs
θ

α
(js)
s1

1 . . . θ
α(js)

sn
n < 0, s = 1, . . . , n. (4.2)

If for (2.6) the MO-condition is fulfilled, then in any neighborhood of the state

(θ1, . . . , θn)∗ = (0, . . . , 0)∗ there exists a positive vector (θ̃1, . . . , θ̃n)∗ satisfying (4.2).
Along with (4.1), we investigate the system

−hs +

n∑

i=1

α
(js)
si hi = cs, s = 1, . . . , n, (4.3)

where cs are nonnegative constants. Let us apply the Gaussian elimination procedure [4]
to linear system (4.3). This procedure generates equivalent systems of equations with the
coefficients changed in the similar way as the orders of θ1, . . . , θn under the successive
elimination of these variables from (4.2).

Since in any neighborhood of the state (θ1, . . . , θn)∗ = (0, . . . , 0)∗ there exists a pos-
itive solution for inequalities (4.2), one may assume, without loss of generality, that
application of the Gaussian elimination procedure to the system (4.3) yields the system

n∑

i=s

βsihi = c̃s, s = 1, . . . , r,

n∑

i=r+1

βsihi = c̃s, s = r + 1, . . . , n.

Here 1 ≤ r < n; βss < 0 for s = 1, . . . , r; βsi ≥ 0 for s = 1, . . . , r, i = s + 1, . . . , n
and for every s = 1, . . . , r there exists is > s such that βsis

> 0; βsi ≥ 0 for s, i =
r + 1, . . . , n; c̃s ≥ 0 for s = 1, . . . , n.

Let h̃r+1, . . . , h̃n be arbitrary positive numbers,

h̃s = −
1

βss

n∑

i=s+1

βsih̃i, s = 1, . . . , r.

For these values of h̃1, . . . , h̃n we get cs = c̃s = 0 for s = 1, . . . , r and cs = c̃s ≥ 0 for

s = r + 1, . . . , n. Hence, the vector (h̃1, . . . , h̃n)∗ is a positive solution for (4.1).

Lemma 4.3 If (2.6) satisfies the MO-condition, then there exists a positive solution
for system (3.5).

Proof Consider the system

−hs +
n∑

i=1

α
(j)
si hi = c(j)

s , j = 1, . . . , ks, s = 1, . . . , n, (4.4)
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where c
(j)
s are nonnegative constants. This system may be splitted into n subsystems.

Let us apply to (4.4) the modified Gaussian elimination procedure. On the s-th step of
this procedure we keep in the s-th subsystem only equations with negative coefficients
of hs. Each of the equations kept is used for the elimination of hs from the (s + 1)-th,
etc., and n-th subsystems. This results in a new set of subsystems with (generally) the
number of equations other than that in the initial system.

According to Lemma 4.2, for any set of indices j1, . . . , jn, system (4.1) possesses a
positive solution. Hence, one may assume, without loss of generality, that after the
application of the above procedure we obtain the system

n∑

i=s

β
(j)
si hi = c̃(j)

s , j = 1, . . . , qs, s = 1, . . . , r.

Here 1 ≤ r < n, c̃
(j)
s ≥ 0, β

(j)
ss < 0, β

(j)
si ≥ 0 for i = s + 1, . . . , n, and for any j and s

there exists isj > s such that β
(j)
sisj

> 0, j = 1, . . . , qs, s = 1, . . . , n.

It can be easily shown that if h̃r+1, . . . , h̃n are arbitrary positive numbers and

h̃s = − max
j=1,...,qs

1

β
(j)
ss

n∑

i=s+1

β
(j)
si h̃i, s = 1, . . . , r,

then the vector (h̃1, . . . , h̃n)∗ is a positive solution for (3.5).

Remark 4.1 Since systems of inequalities (3.5), (3.6) are linear, the investigation of
conditions for the existence of positive solutions for them is a much more simple problem
than for nonlinear system (3.2).

Remark 4.2 The proof of Lemma 4.3 contains a constructive algorithm for finding a
positive solution for (3.5). Moreover, let us note that using this algorithm one may choose

h̃r+1, . . . , h̃n for the numbers µs = 1/h̃s − 1, s = 1, . . . , n, to be positive rationals with
odd numerators and denominators.

5 Criterion for Absolute Stability

We will find now the necessary and sufficient conditions for system (2.6) to be absolutely
stable.

Theorem 5.1 System (2.6) is absolutely stable if and only if for this system there
exists Lyapunov’s function in the form (3.3) satisfying the assumptions of the Lyapunov
asymptotic stability theorem.

Proof Sufficiency Suppose that there exists Lyapunov’s function in the form (3.3)
with negative definite derivative with respect to (2.6). Then for arbitrary admissible
functions fj(xj) the zero solution of the system considered is asymptotically stable.
Hence, (2.6) is absolutely stable.

Necessity If (2.6) is absolutely stable, then for this system the MO-condition is ful-
filled [9]. According to Lemma 4.3, there exist positive rationals µ1, . . . , µn with odd

numerators and denominators such that for the numbers h̃s = 1/(µs + 1), s = 1, . . . , n,
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inequalities (3.5) are valid. We shall take these values of µ1, . . . , µn as exponents in Lya-
punov’s function (3.3). Let us show that one may choose positive constants λ1, . . . , λn

for the function (3.4) to be negative definite.

Consider a positive solution (θ̃1, . . . , θ̃n)∗ of (3.2). Let us denote zs = ys/θ̃s, γs =

θ̃µs
s λs, s = 1, . . . , n. Then function W̃ takes the form

W̃ =
n∑

s=1

γsâsz
µs+1
s +

n∑

s=1

γsz
µs
s

ks∑

j=1

b̂sjz
α

(j)
s1

1 . . . z
α(j)

sn
n .

Here âs = asθ̃s, b̂sj = bsj θ̃
α

(j)
s1

1 . . . θ̃
α(j)

sn
n , and âs +

ks∑
j=1

b̂sj < 0, s = 1, . . . , n.

We will assume, without loss of generality (v. Remark 3.1), that for the numbers

h̃1, . . . , h̃n, corresponding to chosen values of µ1, . . . , µn, all the inequalities in (3.5)
turn to equalities.

Let D = {dsi}
n
s,i=1, where

dss = âs +

ks∑

j=1

b̂sjα
(j)
ss , dsi =

ki∑

j=1

b̂ijα
(j)
is for s 6= i.

Matrix D is the Metzler matrix [5, 11].

It can be easily shown that the inequality D∗h < 0 possesses the solution h̃ =

(h̃1, . . . , h̃n)∗. Hence [11], there exists a positive solution γ̃ = (γ̃1, . . . , γ̃n)∗ for the
inequality Dγ < 0.

By the use of the Jensen inequality [6], one gets that for such values of coefficients
γ̃1, . . . , γ̃n the relations

W̃ ≤

n∑

s=1

γ̃sâsz
µs+1
s +

n∑

s=1

γ̃s

ks∑

j=1

b̂sj

(
µs

µs + 1
zµs+1

s +

n∑

i=1

α
(j)
si

µi + 1
zµi+1

i

)

=
n∑

s=1

γ̃sµs

µs + 1
zµs+1

s

(
âs +

ks∑

j=1

b̂sj

)
+

n∑

s=1

zµs+1
s

µs + 1

n∑

i=1

dsiγ̃i ≤ −c
n∑

s=1

zµs+1
s

µs + 1

are valid. Here c is a positive constant. This completes the proof.

Corollary 5.1 System (2.6) is absolutely stable if and only if it satisfies the MO-
condition.

Remark 5.1 Corollary 5.1 is similar to the criterion for the asymptotic stability ob-
tained in [9] for autonomous Wazewskij’s systems. However, in comparison with this cri-
terion, in the present paper it has been proved that only the MO-condition is a sufficient
one for the asymptotic stability of the zero solution of (2.6), i.e. the other assumptions
from [9] (concerning the uniqueness of solutions, isolation of the equilibrium position at
the origin and nondecreasement of the functions fj(xj)) are redundant.

Corollary 5.2 Let system (2.6) satisfy the MO-condition. If there exist parameters
µ1, . . . , µn such that for corresponding values of h1, . . . , hn all the inequalities in (3.5)

turn to equalities, and
∫ xs

0
fµs

s (τ) dτ → +∞ as |xs| → ∞, s = 1, . . . , n, then the zero

solution of (2.6) is globally asymptotically stable.
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It should be noted that Remark 3.1 makes possible, in some cases, to simplify the MO-
condition verifying. Let positive rationals h1, . . . , hn satisfy system (3.5). Then one may
assume that in (2.6) bsj = 0 if for these values of s and j the corresponding inequality in
(3.5) is strict. By the use of Remark 3.1, we get that the fulfillment of the MO-condition
for such reduced system is equivalent to that one for the initial system (2.6).

Example 5.1 Let system (2.6) be of the form

ẋ1 = a1f1(x1) + b11f
2/3
2 (x2)f

1/3
3 (x3),

ẋ2 = a2f2(x2) + b21f1(x1) + b22f
3
3 (x3),

ẋ3 = a3f3(x3) + b31f1(x1) + b32f
3
2 (x2).

(5.1)

Consider inequalities (3.5) corresponding to (5.1). We get

−h1 +
2

3
h2 +

1

3
h3 ≥ 0,

−h2 + h1 ≥ 0,

−h2 + 3h3 ≥ 0,

−h3 + h1 ≥ 0,

−h3 + 3h2 ≥ 0.

(5.2)

By the use of the procedure of successive elimination of variables, it can be easily shown
that if positive constants h1, h2, h3 satisfy (5.2), then h1 = h2 = h3. For such values
of variables the third and the fifth inequalities in (5.2) are strict, and the others turn to
equalities. Hence, for (5.1) the MO-condition is fulfilled if and only if this condition is
fulfilled for the reduced system

ẋ1 = a1f1(x1) + b11f
2/3
2 (x2)f

1/3
3 (x3),

ẋ2 = a2f2(x2) + b21f1(x1),

ẋ3 = a3f3(x3) + b31f1(x1).

(5.3)

Verifying the MO-condition for (5.3), we obtain that for (5.1) to be absolutely stable it
is necessary and sufficient that the inequality a3

1a
2
2a3 > b3

11b
2
21b31 holds.

Remark 5.2 In a similar way, the criterion for absolute stability can be obtained for
the case when the inequalities bsj > 0 in (3.1) are replaced by the connecting coefficients

bsj and a basis ω1, . . . , ωn: bsjωsω
α

(j)
s1

1 . . . ω
α(j)

sn
n > 0 for j = 1, . . . , ks, s = 1, . . . , n [10].

Here every constant ω1, . . . , ωn takes either the value +1 or −1.

Example 5.2 Consider the system

ẋ1 = a1 f1(x1) + b1 fα1
n (xn),

ẋi = ai fi(xi) + bi fαi

i−1(xi−1), i = 2, . . . , n − 1,

ẋn = an fn(xn) + bn fν1
1 (x1) . . . f

νn−1

n−1 (xn−1),

(5.4)

where aj and bj are constant coefficients, aj < 0, bj 6= 0, functions fj(xj) possess
the same properties as in (2.6), αi and νi are rationals with odd denominators, αi > 0,
νi ≥ 0, ν1 + · · · + νn−1 > 0, j = 1, . . . , n, i = 1, . . . , n − 1.
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By the use of Remark 3.2, we obtain that under the condition

α1ν1 + α1α2ν2 + · · · + α1 . . . αn−1 νn−1 > 1

system (5.4) is absolutely stable for any admissible values of coefficients aj and bj .
Next, consider the case, where

α1ν1 + α1α2ν2 + · · · + α1 . . . αn−1 νn−1 = 1. (5.5)

It can be easily shown that for the existence of the basis ω1, . . . , ωn such that

b1ω1ω
α1
n > 0, biωiω

αi

i−1 > 0, i = 2, . . . , n − 1, bnωnων1
1 . . . ω

νn−1

n−1 > 0

it is necessary and sufficient that the inequality

bξ1

1 bξ2

2 . . . b
ξn−1

n−1 bn > 0 (5.6)

is fulfilled. Here ξi = νi + αi+1ξi+1, i = 1, . . . , n − 2, ξn−1 = νn−1.
Making the substitution zj = ωjxj , j = 1, . . . , n, in (5.4) and applying Corollary 5.1

for the system obtained, we get that under conditions (5.5) and (5.6) system (5.4) is
absolutely stable if and only if the inequality

(
−

b1

a1

)ξ1
(
−

b2

a2

)ξ2

. . .

(
−

bn−1

an−1

)ξn−1
(
−

bn

an

)
< 1

is valid.

6 Stability Analysis for Large Scale Systems in Critical Cases

Let us now show that the results obtained in the present paper may be used to refine
some of the known conditions of stability for large scale systems.

Consider the system

ẋs = Fs(xs) +

ks∑

j=1

Qsj(t, x), s = 1, . . . , n, (6.1)

where xs ∈ Rms , x = (x∗

1, . . . , x
∗

n)∗; the elements of the vectors Fs(xs) are continuously
differentiable homogeneous functions of the orders σs > 1; the vector functions Qsj(t, x)
are continuous for t ≥ 0, ‖x‖ < H (H is a positive constant, ‖ · ‖ is the Euclidean norm
of a vector) and satisfy the inequalities

‖Qsj(t, x)‖ ≤ csj ‖x1‖
β

(j)
s1 . . . ‖xn‖

β(j)
sn , csj > 0, β

(j)
si ≥ 0.

We will assume that (6.1) has the zero solution.
This system describes the dynamics of a complex system composed of n interconnected

subsystems [1, 5]. Here xs are state vectors, the functions Fs(xs) define the interior con-
nections of subsystems while the functions Qsj(t, x) characterize the interaction between
the subsystems.
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Suppose that the zero solutions of isolated systems

ẋs = Fs(xs), s = 1, . . . , n, (6.2)

are asymptotically stable. We will look for the conditions under which the zero solution
of (6.1) is also asymptotically stable.

In the papers [2, 7], approaches to studying stability for (6.1) are suggested. For this
purpose, methods of the Lyapunov vector [7] or scalar [2] functions are used.

It is known [13] that for isolated systems (6.2) there exist Lyapunov’s functions Vs(xs),
which are continuously differentiable positive homogeneous functions of orders γs−σs+1,
s = 1, . . . , n. Here γs are arbitrary numbers such that γs > σs. These functions satisfy
the inequalities

a1s‖xs‖
γs−σs+1 ≤ Vs(xs) ≤ a2s‖xs‖

γs−σs+1,
∥∥∥∥

∂Vs

∂xs

∥∥∥∥ ≤ a3s‖xs‖
γs−σs ,

(
∂Vs

∂xs

)
∗

Fs ≤ −a4s‖xs‖
γs

for all xs ∈ Rms , where a1s, a2s, a3s, a4s are positive constants. By differentiating
Vs(xs) with respect to (6.1), one can deduce that the estimations

dVs

dt

∣∣∣
(6.1)

≤ −a4s‖xs‖
γs + a3s‖xs‖

γs−σs

ks∑

j=1

csj ‖x1‖
β

(j)
s1 . . . ‖xn‖

β(j)
sn

are valid for t ≥ 0, ‖x‖ < H , s = 1, . . . , n.
According to approach suggested in [7], the Lyapunov vector function is chosen in the

form V = (V1, . . . , Vn)∗. Using this function, we construct the comparison system

u̇s = −ãsu
γs

γs−σs+1
s + u

γs−σs
γs−σs+1
s

ks∑

j=1

b̃sju
β
(j)
s1

γ1−σ1+1

1 . . . u
β
(j)
sn

γn−σn+1
n , s = 1, . . . , n, (6.3)

for (6.1). Here

ãs = a4sa
−

γs
γs−σs+1

2s , b̃sj = a3scsja
−

γs−σs
γs−σs+1

1s a
−

β
(j)
s1

γ1−σ1+1

11 . . . a
−

β
(j)
sn

γn−σn+1

1n .

System (6.3) is the Wazewskij one [5]. By analogy with the proof of Theorem 5.1, it can
be easily shown that for the zero solution of (6.3) to be asymptotically stable it is sufficient
that the corresponding MO-condition is fulfillment. Hence, if in any neighborhood of
the state (θ1, . . . , θn)∗ = (0, . . . , 0)∗ there exists a positive solution for the system of
inequalities

−ãsθs +

ks∑

j=1

b̃sjθ
β

(j)
s1 /σ1

1 . . . θ
β(j)

sn /σn
n < 0, s = 1, . . . , n, (6.4)

then the zero solution of (6.1) is asymptotically stable.
Let us now show that the condition obtained for the asymptotic stability of the zero

solution may be weakened by using the results of the previous section. Consider the
Lyapunov scalar function

Ṽ =
n∑

s=1

λsVs,
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where λs are positive coefficients, Vs are positive homogeneous functions of orders γs −
σs + 1 corresponding to isolated subsystems (6.2). For all t ≥ 0 and ‖x‖ < H we get

dṼ

dt

∣∣∣
(6.1)

≤ −

n∑

s=1

λsa4s‖xs‖
γs +

n∑

s=1

λsa3s‖xs‖
γs−σs

ks∑

j=1

csj ‖x1‖
β

(j)
s1 . . . ‖xn‖

β(j)
sn .

Hence, to prove the asymptotic stability of the zero solution for (6.1) it is sufficient to
show that one may choose positive coefficients λ1, . . . , λn for the function

W̃ = −
n∑

s=1

λsa4sy
µs+1
s +

n∑

s=1

λsa3sy
µs
s

ks∑

j=1

csj y
β

(j)
s1 /σ1

1 . . . y
β(j)

sn /σn
n

to be negative definite. Here µs = γs/σs − 1.
Suppose that parameters γ1, . . . , γn satisfy the inequalities

−
σs

γs
+

n∑

i=1

β
(j)
si

γi
≥ 0, j = 1, . . . , ks, s = 1, . . . , n. (6.5)

In this case, by analogy with the proof of Theorem 5.1, we get that the following theorem
is valid.

Theorem 6.1 If in any neighborhood of the state (θ1, . . . , θn)∗ = (0, . . . , 0)∗ there
exists a positive solution for the system of inequalities

−a4sθs + a3s

ks∑

j=1

csj θ
β

(j)
s1 /σ1

1 . . . θ
β(j)

sn /σn
n < 0, s = 1, . . . , n, (6.6)

then the zero solution of (6.1) is asymptotically stable.

Remark 6.1 Coefficients ãs, b̃sj , a3s, a4s in (6.4) and (6.6) depend, in general, on the
chosen values of γ1, . . . , γn.

Remark 6.2 For given values of γ1, . . . , γn, Theorem 6.1 provides one with more precise
conditions of asymptotic stability in comparison with those obtained via the Lyapunov
vector function. However, in (6.6), compared with (6.4), it is assumed that γ1, . . . , γn

satisfy additional restrictions (6.5).

Example 6.1 Let the system

ẋ1 = −ρ2x1 − x2
1x2,

ẋ2 = 100x3
1 − 100ρ2x2 + ax9

3,

ẋ3 = −x9
3 + bρ3

(6.7)

be given. Here ρ =
√

x2
1 + x2

2, a and b are constants. System (6.7) describes the
interaction of two isolated subsystems

ẋ1 = −ρ2x1 − x2
1x2,

ẋ2 = 100x3
1 − 100ρ2x2,

ẋ3 = −x9
3.
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Consider the functions

V1 = 50 x2
1 +

1

2
x2

2, V2 = xγ
3 ,

where γ > 1 is a rational with even numerator and odd denominator. Differentiating
these functions with respect to (6.7), one gets

V̇1 = −100ρ4 + ax2x
9
3,

V̇2 = −γxγ+8
3 + γbρ3xγ−1

3 .

Hence, the differential inequalities

V̇1 ≤ −
1

25
V 2

1 + |a|(2V1)
1/2V

9/γ
2 ,

V̇2 ≤ −γV
1+8/γ
2 + γ|b|(2V1)

3/2V
1−1/γ
2

(6.8)

are valid. Verifying the MO-condition for the comparison system corresponding to (6.8),
it can be shown that if the inequality

|ab| < 1/100 (6.9)

holds, then the zero solution of (6.7) is asymptotically stable.
This condition for the asymptotic stability of the zero solution may be weakened by

the use of Theorem 6.1. Taking into account the additional restriction (6.5), we get
γ = 4. Hence, system of inequalities (6.6) for (6.7) is of the form

−100θ1 + |a|θ2 < 0,

−4θ2 + 4|b|θ1 < 0.
(6.10)

According to Theorem 6.1, the zero solution of (6.7) is asymptotically stable if in any
neighborhood of the state (θ1, θ2)

∗ = (0, 0)∗ there exists a positive solution for system
(6.10). Eliminating variables θ1, θ2 from (6.10), we obtain new sufficient condition for
asymptotic stability: |ab| < 100, which is more precise than (6.9).
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