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Abstract: A rigid linear heat conductor with memory effects is considered.
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1 Introduction

In this paper we consider a rigid linear heat conductor with memory effects — within
the framework proposed by Gurtin and Pipkin [10] — when the memory kernel is finite
sum of exponentials, namely

K̇(s) =

n∑

i=1

bi e
−ai s,

where n is a positive integer, ai, bi ∈ R, ai > 0, i = 1, 2, . . . , n.
On the basis of Coleman’s results concerning materials with memory [3], a non-linear

model for a rigid heat conductor was developed by Gurtin and Pipkin in [10]. Moreover,
they considered the linearization of their theory appropriate to infinitesimal temperature
gradients, which for isotropic materials yields a constitutive equation for the heat flux
q expressed in terms of the history of the temperature gradient g; this linear theory
is important because the obtained constitutive equation for q is a generalization of the
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so-called Cattaneo–Maxwell equation [2], which follows from it as a special case. Subse-
quently, many authors considered this linearized equation to study problems connected
with heat propagation. Among all the results so obtained, we remember, in particular,
those derived in [6], where an approximate theory of thermodynamics is developed for
Gurtin and Pipkin’s model and maximal free energy and maximal free enthalpy func-
tions are explicitly constructed and used to prove stability and domain of dependence
results. We recall that in [6], following [11], the thermodynamic states and processes are
connected with the integrated history of the temperature gradient and the temperature
gradient, respectively.

In this work, the linear theory introduced in [10] is taken into account in Section 2.
In Section 3, following the lines of [4] and [5], where analogous problems are studied for

viscoelastic solids of exponential type, we prove that the minimal representation of the
state space is a finite dimensional vector space and each minimal state element represents
an equivalence class of integrated histories; the full controllability of the minimal state
space is also verified.

In the following Section 4, an explicit representation of a class of quadratic free energies
is taken into consideration with respect to some minimal, finite-dimensional state space.
Finally, the last part of the paper is devoted to study, by means of uniform energy
estimate, the asymptotic behavior of solutions of the evolutive (semilinear) equation,
obtained by substituting the constitutive equations for the internal energy e and for the
heat flux q into the energy equation for rigid heat conductors.

2 Preliminary Notions and Setting of the Problem

Within the linear theory of thermodynamics developed in [10], the internal energy e is
assumed of the form

e(x, t) = α0 θ(x, t), (2.1)

where α0 is here assumed to be constant, x ∈ R3 denotes the position within the
conductor1, t ∈ R+ denotes the time variable2 and θ = (Θ − Θ0) is the temperature
difference with respect to a fixed reference absolute temperature Θ0 > 0, uniform in R3.
The heat flux q ∈ R3 is assumed to satisfy the constitutive equation

q(x, t) = −
∞∫

0

K(τ)∇θ(x, t− τ) dτ, (2.2)

where K(τ) is the heat flux relaxation function, given by

K(t) = K0 +

t∫

0

K̇(s) ds; (2.3)

1More precisely, it should be require that x ∈ B ⊂ R3, where B denotes the bounded closed set in

R3 which represents the configuration domain of the conductor, here not specified since of no interest

in the present study.
2Throughout the whole paper, R+ = [0,∞) and R++ = (0,∞).
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K0 represents the initial (positive) value of the flux relaxation function, thus termed
initial heat flux relaxation coefficient . It is further required that

K̇ ∈ L1(R+) ∩ L2(R+) and K ∈ L1(R+), (2.4)

which implies
K∞ = lim

t→∞
K(t) = 0.

The latter can be physically interpreted recalling that there is no heat flux when, at
infinity, the thermal equilibrium is reached.

In the sequel, we will focus our attention on a material element of the conductor; thus
we will omit to show explicit dependence on the position x in the conductor and all the
quantities introduced will be represented by functions of the time variable alone.

When the integral kernel satisfies both the requirements (2.3) and (2.4), (2.2) is equiv-
alent to the following

q(t) =

∞∫

0

K̇(t) g
t(τ) dτ, (2.5)

where g = ∇θ denotes the temperature-gradient and

g
t(τ) =

t∫

t−τ

g(s) ds

represents the integrated history of the temperature-gradient.
To specify those thermodynamical phenomena to study, the following vectorial space

can be introduced

Γ =

{
g

t : R+ → R3 :

∣∣∣∣

∞∫

0

K̇(s+ τ)gt(s) ds

∣∣∣∣ <∞, ∀τ ≥ 0

}
. (2.6)

Following the theory proposed by Noll, Coleman and Owen in the seventies, we intro-
duce some basic definitions.

The thermodynamic state of the conductor is chosen to be

σ(t) = (θ(t), g
t), ∀ t ≥ 0,

where θ(t) > 0 and g
t belongs to Γ. Such a definition implies that, the thermodynamic

state function is known as soon as the temperature and the integrated history of the
temperature-gradient are given. The (metric) space, Σ, of all admissible states (state
space) is the set comprising all those states σ which correspond to a finite heat flux; Σ
may be written as

Σ = R++ × Γ

where Γ is given by (2.6).
We define thermal process of duration T > 0 as a map

P : [0, T ) → R×R3,
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piecewise continuous on the time interval [0, T ) and such that

P (τ) = (θ̇P (τ), gP (τ)), ∀τ ∈ [0, T ).

Let Π be the set of all admissible thermal processes P , that is the set of piecewise
continuous functions P : [0, T ) → R×R3, T > 0, which satisfies the following properties:

(1) if P ∈ Π, then its restriction P[t1,t2) to the interval [t1, t2) ⊆ [0, T ) belongs to Π;

(2) if P1, P2 ∈ Π, then the composition P1 ∗ P2, defined as

(P1 ∗ P2)(t) =

{
P1(t) if t ∈ [0, T1),

P2(t− T1) if t ∈ [T1, T1 + T2),

belongs to Π.

To any given rigid heat conductor are associated two maps:

(i) ρ : Σ × Π → Σ called evolution (or state-transition) function, which transforms
the state σ1 under the process P into σ2 = ρ(σ1, P ). The map ρ obeys the semi-
group property. If (σ0, P ) ∈ Σ×Π, where σ0 = σ(0) = (θ⋆(0), g0

⋆) (θ⋆(0) denotes
the temperature and g

0
⋆ the integrated history of the temperature-gradient at

time t = 0) and P = (θ̇P , gP ), then, through the map ρ, it is possible to define
the state function

σ(t) =
(
θ(t), gt

)
= ρ

(
σ0, P[0,t)

)
, t ∈ [0, T )

in the following manner

θ(t) = θ⋆(0) +

t∫

0

θ̇P (ζ) dζ,

g
t(s) =





t∫

t−s

gP (ζ) dζ, 0 ≤ s < t,

t∫

0

gP (ζ) dζ + g
0
⋆(s− t), s ≥ t.

The particular nature of the state space Σ and the properties of the state-
transition function ρ provide all the thermal properties of the system and enable
it to model physical phenomena. We say that a state σf ∈ Σ is attainable from
a state σi ∈ Σ if there exists a process P ∈ Π such that

ρ(σi, P ) = σf .

The state space Σ is
* attainable from a state σ0 if, for every final state σ̄ ∈ Σ, there exists a

process P ∈ Π such that

ρ(σ0, P ) = σ̄;
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* controllable in a state σ0 if σ0 is attainable from any state of Σ;
* completely controllable, if, for any pair σ1, σ2 ∈ Σ, there exists at least a

process P ∈ Π such that

ρ(σ1, P ) = σ2.

(ii) Q called response function which maps the pair (σ(t), P (t)) into the pair
(e(t), q(t)) at time t, namely

(e(t), q(t)) = Q(σ(t), P (t)), t ∈ [0, T ).

The notion of equivalence between material states is introduced to associate together
all those different thermal histories which correspond to the same heat flux.

Definition 2.1 Two states σ1, σ2 ∈ Σ are said to be equivalent (σ1 ∼ σ2) if

Q(σ1, P ) = Q(σ2, P ), ∀P ∈ Π.

For rigid heat conductors described by constitutive equations (2.1), (2.2), the thermo-
dynamic states

σ1(t) = (θ1(t), g
t
1), σ2(t) = (θ2(t), g

t
2)

are equivalent in the sense of Definition 2.1 if and only if θ1(t) = θ2(t), ∀ t ≥ 0 and

∞∫

0

K̇(s+ τ)g1(s) ds =

∞∫

0

K̇(s+ τ)g2(s) ds, ∀ τ ≥ 0. (2.7)

An equivalent way to rephrase relationship (2.7) can be found in [1].

Remark 2.1 Definition 2.1 introduces an equivalence relation between states; the quo-
tient space

ΣR = Σ/∼

is the minimal representation of the state space.

3 Minimal Representation and Controllability: The Exponential Case

For linear heat conductors with relaxation function of exponential type (n ≥ 1), the
explicit form of the relaxation function K(s) is given by

K(s) =
n∑

i=1

ki e
−ai s,

K0 =

n∑

i=1

ki, K∞ = lim
s→∞

K(s) = 0,

where ai and ki, i = 1, . . . , n, are assumed to be strictly positive; moreover, it is reason-
able to assume ai 6= aj , ∀ i 6= j, and ai < aj , i < j. Then

K̇(s) =
n∑

i=1

bie
−ais, bi = −aiki < 0, (3.1)
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and, substituting (3.1) into (2.5), the heat flux q(t) becomes

q(t) =

n∑

i=1

bi

∞∫

0

e−aisg
t(s) ds. (3.2)

Recalling (2.7), two different integrated histories of the temperature-gradient, g
t
1, g

t
2, are

equivalent if
n∑

i=1

bie
−aiτ

∞∫

0

e−ais(gt
1(s) − g

t
2(s)) ds = 0, τ ≥ 0,

which in turn implies

∞∫

0

e−ais(gt
1(s) − g

t
2(s)) ds = 0, i = 1, . . . , n.

This means that two thermodynamic states

σ1(t) = (θ1(t), g
t
1), σ2(t) = (θ2(t), g

t
2)

are equivalent if and only if θ1(t) = θ2(t), ∀ t ≥ 0 and

g1,ai
= g2,ai

, i = 1, . . . , n, (3.3)

where

gai
(t) =

∞∫

0

e−aisg
t(s) ds, i = 1, . . . , n, (3.4)

are called internal variables. If this is the case, the minimal representation of the state
space, ΣR = Σ/∼, is a finite dimensional vector space and we can choose

σR = [ θ, ga1
, ga2

, . . . , gan
] ∈ R3n+1.

Moreover, if P = (θ̇P , gP ) ∈ Π, the evolution function ρ is described through the
following system of ordinary differential equations

θ̇(t) = θ̇P (t),

ġai
(t) =

1

ai

gP (t) − aigai
(t), i = 1, . . . , n, t ≥ 0,

(3.5)

with the initial condition

σ0 = σ(0) = (θ⋆(0), ga1⋆(0), ga2⋆(0), . . . , gan⋆(0)), (3.6)

where

gai⋆(0) =

∞∫

0

e−aisg
0
⋆(s) ds, i = 1, . . . , n.

Now, our aim is to verify the complete controllability of system (3.5) – (3.6). System
(3.5) – (3.6) is linear of dimension (n+ 1); the control is the function P .

Let M(n,m) be the space of all real matrices n×m; we recall the following Theorem
(see for instance [12]).
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Theorem 3.1 A linear system

ẋ = Ax +Bu,

x(0) = x0

with A ∈ M(n, n), B ∈ M(n,m), u ∈ Rm, x,x0 ∈ Rn, m < n, is completely
controllable if and only if

rank [A|B] = n

(“Kalman rank condition”) where [A|B] denotes the matrix

[B, AB, A2B, . . . , An−1B ] ∈ M(n, nm)

which consists of consecutively written columns of matrices B, AB, A2B, . . . , An−1B.

By Theorem 3.1, the controllability of system (3.5) – (3.6) depends on the rank of the
square (n+ 1) matrix

[A|B] =




1 0 0 0 0 . . . 0

0
1

a1
−1 a1 −a1

2 . . . (−1)n−1 a1
n−2

0
1

a2
−1 a2 −a2

2 . . . (−1)n−1 a2
n−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
1

an

−1 an −an
2 . . . (−1)n−1 an

n−2




.

Since

det ([A|B]) =

n∏

l=1

al

∏

1≤j<i≤n

(aj − ai),

where al 6= 0 for any l = 1, . . . , n and ai 6= aj for any i 6= j, the matrix [A|B] is non
singular; therefore the state space ΣR is completely controllable.

Finally, introduced the following differential operators

V =

n∑

h=0

vh

dh

dth
, T =

n−1∑

h=0

lh
dh

dth
, (3.7)

we prove the equivalence between (3.2) and the implicit constitutive equation (see [9])

Vq = T g. (3.8)

Theorem 3.2 Let V and T , as in (3.7), be differential operators of order n and
(n − 1) respectively, with constant coefficients. For the sake of simplicity, we assume
v0 = 1; moreover, for physical reasons, we assume vn 6= 0. Implicit constitutive equation
(3.8) and integral constitutive equation (3.2) are equivalent, namely every solution of
(3.8) is also solution of (3.2), and vice versa.

Proof We put

I(τ, gt) =
n∑

i=1

bie
−aiτgai

(t), τ ≥ 0,
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where, for all i = 1, . . . , n, gai
is given by (3.4). From (3.2), we have

q(t) = I(0, gt) =

n∑

i=1

bigai
(t) (3.9)

and, deriving n times with respect to t, we obtain

dm

dtm
q(t) =

dm

dtm
I(0, gt) =

n∑

i=1

bi
dm

dtm
gai

(t), m = 1, . . . , n, (3.10)

with

dm

dtm
gai

(t) = (−1)mai
m

gai
(t) +

m−1∑

j=0

(−1)m−j+1ai
m−j−2 d

j

dtj
g(t), i = 1, . . . , n, (3.11)

due to (3.5)2. Because of relation (3.11), system (3.10) can be finally rewritten as

dm

dtm
q(t) = (−1)m+1

n∑

i=1

kia
m+1
i gai

(t) +

n∑

i=1

ki

m−1∑

j=0

(−1)m−j+2ai
m−j−1 d

j

dtj
g(t),

m = 1, . . . , n.

(3.12)

The matrix M , given by the coefficients of gai
(t), i = 1, . . . , n, is equal to

M =




k1 (−a1)
2 k2 (−a2)

2 . . . kn (−an)2

k1 (−a1)
3 k2 (−a2)

3 . . . kn (−an)3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k1 (−a1)
n+1 k2 (−a2)

n+1 . . . kn (−an)n+1




= [diag (k1, k2, . . . , kn) Λ]⊤,

where

Λ =




(−a1)
2 (−a1)

3 . . . (−a1)
n+1

(−a2)
2 (−a2)

3 . . . (−a2)
n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−an)2 (−an)3 . . . (−an)n+1



.

Since

det (Λ) =

n∏

j=1

aj
2

∏

1≤l<i≤n

(al − ai),

we have

det (M) =

n∏

j=1

kjaj
2

∏

1≤l<i≤n

(al − ai);

then, being kj , aj > 0 for all j = 1, . . . , n and al < ai for all l < i, the matrix M has
non-zero determinant. Hence, eliminating the n terms gai

(t) from equations (3.12) and
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substituting into (3.9), we obtain equation (3.8). On the other hand, the substitution of
(3.9) into (3.8) leads (3.12).

4 Asymptotic Behavior for Rigid Linear Heat Conductors with Memory via

Free Energies

This section is devoted to scrutinize the asymptotic behavior in time of rigid linear heat
conductors with memory, when the memory kernel is finite sum of exponentials, by means
of energy type inequality coming from free energy functionals.

Definition 4.1 A function ψ : Σ → R is called a free energy if the following condi-
tions are satisfied:

(i) for any t ≥ 0, the function ψ is differentiable and satisfies the inequality

ψ̇(t) ≤ −g(t) · q(t);

(ii) the function ψ is minimal only at zero integrated histories of the temperature
gradient, namely for every (θ(t), ḡt) ∈ Σ

ψ(θ(t), ḡt) ≥ ψ(θ(t),0†(t)),

where 0†(s) = 0, for any s ≥ 0, is the zero integrated history of the temperature
gradient.

Since the systems involved are linear, it is natural to assume that the free energy is a
quadratic function of the minimal representation of the state, which is of finite dimension.

We consider the following family of free energies that can be written as functions of
σ̃R = [ga1

, ga2
, . . . , gan

], namely

ψ(t) =
1

2

n∑

i,j=1

Cijaiajgai
(t) · gaj

(t). (4.1)

Now, we are looking for suitable algebraic conditions on the symmetric matrix C =
[Cij ] ∈ M(n, n), such that ψ(t) is a free energy, according to Definition 4.1. The following
Theorem holds.

Theorem 4.1 Let C = [Cij ], Γ = [Γij ] ∈ M(n, n). If

n∑

i=1

Cij =
n∑

j=1

Cij = kj , j = 1, . . . , n; (4.2)

Γij = Cijaiaj

ai + aj

2
, i, j = 1, . . . , n; (4.3)

C is symmetric and positive semi-definite, Γ is positive semi-definite,

then (4.1) is a free energy in the sense of Definition 4.1.

Proof By virtue of (3.5)2, condition (i) is equivalent to require that

ψ̇(t) = g(t) ·
( n∑

i,j=1

Cijaj gaj
(t)

)
−

n∑

i,j=1

Cijai
2aj gai

(t) ·gaj
(t) ≤ g(t) ·

( n∑

j=1

ajkj gaj
(t)

)
;
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this inequality is satisfied if and only if

n∑

i,j=1

Cijaj gaj
(t) =

n∑

j=1

ajkjgaj
(t)

n∑

i,j=1

Cijai
2ajgai

(t) · gaj
(t) ≥ 0.

(4.4)

From (4.4)1, we find

kj =

n∑

i=1

Cij =

n∑

j=1

Cij , j = 1, . . . , n.

Moreover, observing that

Γij = Cijaiaj

ai + aj

2

is the symmetric part of the matrix Γ∗
ij = Cijai

2aj , it follows that inequality (4.4)2 is
satisfied if and only if the symmetric matrix Γ is positive semi-definite.

With regard to condition (ii), it is easily seen that this holds if and only if the matrix
C is positive semi-definite.

Remark 4.1 It is worth noting that in the sequel the matrices C and Γ will be assumed
positive definite.

Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary ∂Ω. The energy equation
for a linear rigid heat conductor is

ρ0 et = −∇ · q + ρ0 r in Ω ×R+, (4.5)

where ·t = d ·/dt, ρ0 is the constant mass density, the internal energy e and the heat flux
q are given by (2.1) and (2.2) respectively.

We take for simplicity ρ0α0 = 1 and we denote the source ρ0r by f ; substituting
equations (2.1) and (2.2) into (4.5) and assuming the memory kernel as finite sum of
exponentials

K(s) =

n∑

i=1

kie
−ai s,

the corresponding initial boundary value problem becomes

θt(x, t) −
n∑

i=1

ki

∞∫

0

e−ai s ∆θ(x , t− s) ds+ f(θ(x, t)) = 0 in Ω ×R+,

θ(x, 0) = θ0(x) in Ω,

θ(x, t) = 0 in ∂Ω ×R+.

(4.6)

We introduce the vector
η(t) = (η1(t), . . . , ηn(t)) ,

where

ηi(t) =

∞∫

0

e−aisθ(t− s) ds, i = 1, . . . , n. (4.7)
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As a consequence, by differentiation with respect to t, we get

ηit(t) = θ(t) − ai ηi(t), i = 1, . . . , n.

In view of (4.7), the energy equation in (4.6) transforms into the following system

θt =

n∑

i=1

ki ∆ηi − f(θ) in Ω ×R+,

ηit = θ − aiηi, i = 1, . . . , n, in Ω ×R+.

(4.8)

Initial-boundary conditions are then given by

θ(x, 0) = θ0(x), x ∈ Ω,

ηi(x, 0) = ηi0(x), i = 1, . . . , n, x ∈ Ω,

θ(x, t) = 0 (x, t) ∈ ∂Ω ×R+,

ηi(x, t) = 0, i = 1, . . . , n, (x, t) ∈ ∂Ω ×R+.

(4.9)

With usual notation, we introduce the spaces L2(Ω) and H1
0 (Ω), acting on Ω. Here-

after, 〈· , ·〉 denotes the L2-inner product and ‖ · ‖ denotes the L2-norm. If C = [Cij ] ∈
M(n, n) is positive definite, we put

H = L2(Ω) ×W ,

where

W =

{
η = (η1, η2, . . . , ηn) ∈

[
H1

0 (Ω)
]n

:

n∑

i,j=1

〈∇ηi, Cij∇ηj〉 < +∞
}
.

The corresponding inner product is given by

〈z1, z2〉H = 〈v1, v2〉 +

n∑

i,j=1

〈∇wi, Cij∇wj〉,

where zi = (vi, wi) ∈ H, i = 1, 2.

Definition 4.2 Let T > 0 and f ∈ L1
(
[0, T ]; L2(Ω)

)
. We say that a function

z(t) = (θ(t),η(t)) ∈ C ([0, T ]; H) is a solution of system (4.8)–(4.9) in the time interval
[0, T ], with initial data z0 = z(0) = (θ0,η0) ∈ H, if the following identities are satisfied

〈θt, θ̃〉 +
n∑

i=1

ki〈∇ηi,∇θ̃〉 + 〈f(θ), θ̃〉 = 0,

n∑

i,j=1

〈ηit, Cij∆η̃j〉 −
n∑

i,j=1

〈θ, Cij∆η̃j〉 +

n∑

i,j=1

〈aiηi, Cij∆η̃j〉 = 0

for all θ̃ ∈ H1
0 (Ω), η̃ ∈ ([H2(Ω)]n ∩W) and a.e. t ∈ [0, T ].
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We denote by S(t)z0 the solution of (4.8) – (4.9) with initial data z0. Because the
system is autonomous, S(t) is a strongly continuous semigroup of the continuous operator
on H, related to the system (4.8) – (4.9). The total energy associated to (4.8) – (4.9) at
time t is

E(t) =
1

2

[
‖θ(t)‖2 +

n∑

i,j=1

〈∇ηi(t), Cij∇ηj(t)〉
]

=
1

2

[∫

Ω

|θ(t)|2 dx +

∫

Ω

∣∣∣C 1

2∇η(t)
∣∣∣
2

2
dx

]
.

(4.10)

Then, we obtain the following result.

Theorem 4.2 Let us suppose that z = (θ,η) is a solution of system (4.8) – (4.9) in
the sense of Definition 4.2. Let f ∈ C1(R) satisfying the following hypotheses

(h1) lim inf
|y|→∞

f(y)
y

≥ 0;

(h2) there exists a positive constant β such that |f ′(y)| ≤ β, ∀ y ∈ R.

If the matrices C = [Cij ], Γ = [Γij ] ∈ M(n, n), defined by (4.2), (4.3) respectively,
are positive definite, then there exist positive constants A, Λ, ε such that the relation

E(t) ≤ A e−εtE(0) + Λ (4.11)

holds for every t ≥ 0. In particular, if f ≡ 0 then Λ = 0.

To prove Theorem 4.2 we make use of some preparatory lemmas.

Lemma 4.1 If f ∈ C1(R) satisfies hypotheses (h1) and (h2), then

(1) for γ > 0 there exists a positive constant Cγ such that, ∀ y ∈ H1
0 (R)∫

Ω

y f(y) dx ≥ −γ
∫

Ω

|y|2 dx − Cγ ; (4.12)

(2) ∀ y ∈ R
|f(y)| ≤ β|y| + |f(0)|. (4.13)

Proof Inequality (4.12) follows directly from hypothesis (h1) (cf. [7]); (4.13) is an
easy consequence of hypothesis (h2).

Lemma 4.2 Let f ∈ C1(R) satisfying hypothesis (h1); let assume C, Γ ∈ M(n, n)
as in Theorem 4.2. If z = (θ,η) is a solution of system (4.8) – (4.9) in the sense of
Definition 4.2, then the energy norm (4.10) verifies

d

dt
E(t) ≤ γ

∫

Ω

|θ(t)|2 dx + Cγ − α1

∫

Ω

∣∣∣C 1

2∇η(t)
∣∣∣
2

2
dx, (4.14)

where γ, Cγ , α1 are positive constants.

Proof If z = (θ,η) is a solution of system (4.8) – (4.9), then, recalling (4.2), we have

d

dt
E(t) = −〈f, θ(t)〉 −

n∑

i,j=1

〈∇ηi(t), aiCij∇ηj(t)〉.

Now, by means of inequality (4.12), we find

−〈f, θ(t)〉 ≤
∫

Ω

|θ(t)|2 dx + Cγ , γ, Cγ > 0 (4.15)
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and, thanks to our hypotheses on the matrices C = [Cij ] and Γ = [Γij ], there exist

positive constants α1, α1 such that

−
n∑

i,j=1

〈∇ηi(t), aiCij∇ηj(t)〉 = −
n∑

i,j=1

〈∇ηi(t)

ai

, Γij

∇ηj(t)

aj

〉

≤ −α1 ‖∇η(t)‖2 ≤ −α1 α1

n∑

i,j=1

〈∇ηi(t), Cij∇ηj(t)〉.
(4.16)

From (4.15) and (4.16), putting α1 = α1 α1, estimate (4.14) follows.

Lemma 4.3 Suppose that z = (θ,η) is a solution of system (4.8) – (4.9) in the sense
of Definition 4.2 and assume hypotheses of Theorem 4.2 on f , C and Γ. Introduce the
following functional

K(t) = −
〈
|θ(t)|,

n∑

i=1

ki ηi(t)

〉
, ∀ t ≥ 0;

then we have

d

dt
K(t) ≤ 1

2
(ν −M1)

∫

Ω

|θ(t)|2dx + C0

+

[
α2 +

M1α3

2

(
1 +

β2

ν

)
+
M2α4

2M1

]∫

Ω

∣∣∣C 1

2∇η(t)
∣∣∣
2

2
dx ,

(4.17)

for some positive constants α2, α3, α4, ν, M1, M2, C0.

Proof The derivative of K(t) with respect to t entails

d

dt
K(t) = −sgn(θ)

〈
θt,

n∑

i=1

kiηi

〉

︸ ︷︷ ︸
= I1

−
〈
|θ|,

n∑

i=1

kiηit

〉

︸ ︷︷ ︸
= I2

. (4.18)

Substituting (4.8)1 in the first term at the right-hand side of (4.18) and using Young
inequality, we obtain

I1 = −sgn(θ)

〈 n∑

j=1

kj∆ηj − f,

n∑

i=1

kiηi

〉
≤

∥∥∥∥
n∑

i=1

ki ∇ηi

∥∥∥∥
2

+

〈
f,

n∑

i=1

ki ηi

〉

≤ n

∫

Ω

( n∑

i,h=1

∇ηiδihki
2∇ηh

)
dx +

〈
f,

n∑

i=1

kiηi

〉

≤ n
∣∣∣K⋆

1

4

(
K⋆

− 1

4CK⋆
− 1

4

)− 1

2

∣∣∣
2

2

∫

Ω

∣∣∣C 1

2∇η

∣∣∣
2

2
dx +

〈
f,

n∑

i=1

kiηi

〉

︸ ︷︷ ︸
= I3

,
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where K⋆ = [δihki
2] = diag(k2

i ). From (4.13), applying Young and Poincaré inequalities,
we find

I3 ≤
〈
β|θ| + |f(0)|,

n∑

i=1

kiηi

〉

≤
∫

Ω

[
|θ|

(
β

n∑

i=1

∣∣∣(ki)
1

2 (k
1

2

i ηi)
∣∣∣
)]
dx +

∫

Ω

(
|f(0)|

n∑

i=1

∣∣∣(ki)
1

2 (k
1

2

i ηi)
∣∣∣
)
dx

≤ ν

2
‖θ‖2 +

1

2

(
1 +

β2

ν

)( n∑

i=1

ki

)( n∑

i=1

ki

λi
0

‖∇ηi‖2

)
+

1

2
|f(0)|2 vol(Ω)

≤ ν

2
‖θ‖2 +

1

2

(
1 +

β2

ν

)( n∑

i=1

ki

)( n∑

i,h=1

〈∇ηi, δih
ki

λi
0

∇ηh〉
)

+
1

2
|f(0)|2vol(Ω)

≤ ν

2
‖θ‖2 +

1

2

(
1 +

β2

ν

)( n∑

i=1

ki

)∣∣∣Kλ

1

4

(
Kλ

− 1

4CKλ
− 1

4

)− 1

2

∣∣∣
2

2

∫

Ω

∣∣∣C 1

2∇η

∣∣∣
2

2
dx

+
1

2
|f(0)|2 vol(Ω),

where ν and λi
0, i = 1, . . . , n, are positive constants and Kλ =

[
δih

ki

λi
0

]
= diag

(
ki

λi
0

)
.

By means of (4.8)2, the second term in (4.18) can be written as

I2 = −
〈
|θ|,

n∑

i=1

ki (θ − ai ηi)

〉
= −

( n∑

i=1

ki

)
‖θ‖2 +

〈
|θ|,

n∑

i=1

kiaiηi

〉

︸ ︷︷ ︸
= I4

.

By virtue of Young and Poincaré inequalities, we have

I4 ≤
∫

Ω

|θ|
n∑

i=1

∣∣∣(kiai)
1

2 (ki ai)
1

2 ηi

∣∣∣ dx

≤ δ

2
‖θ‖2 +

1

2δ

( n∑

i=1

kiai

)( n∑

i=1

kiai

λi
0

‖∇ηi‖2

)

≤ δ

2
‖θ‖2 +

1

2δ

( n∑

i=1

ki ai

)( n∑

i,h=1

〈
∇ηi, δih

kiai

λi
0

∇ηh

〉)

≤ δ

2
‖θ‖2 +

1

2δ

( n∑

i=1

kiai

)∣∣∣K
1

4

a

(
K

− 1

4

a CK
− 1

4

a

)− 1

2

∣∣∣
2

2

∫

Ω

∣∣∣C 1

2∇η

∣∣∣
2

2
dx,

where δ is a positive constant and Ka =

[
δih

kiai

λi
0

]
= diag

(
ki ai

λi
0

)
. Choosing δ =

n∑
i=1

ki,

we find

I2 ≤ −1

2

( n∑

i=1

ki

)
‖θ‖2

+
1

2

( n∑

i=1

ki

)−1( n∑

i=1

kiai

)∣∣∣K
1

4

a

(
K

− 1

4

a CK
− 1

4

a

)− 1

2

∣∣∣
2

2

∫

Ω

∣∣∣C 1

2∇η

∣∣∣
2

2
dx.
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Finally, collecting the previous inequalities and putting

α2 = n
∣∣∣K

1

4

⋆

(
K

− 1

4

⋆ CK
− 1

4

⋆

)− 1

2

∣∣∣
2

2
, α3 =

∣∣∣K
1

4

λ

(
K

− 1

4

λ CK
− 1

4

λ

)− 1

2

∣∣∣
2

2
,

α4 =
∣∣K

1

4

a

(
K

− 1

4

a CK
− 1

4

a

)− 1

2

∣∣∣
2

2
, M1 =

n∑

i=1

ki,

M2 =
n∑

i=1

kiai, C0 =
1

2
|f(0)|2 vol(Ω),

we obtain (4.17).

At this point, we can prove Theorem 4.2.

Proof For N > 0 we introduce the following functional

L(t) = NE(t) + K(t), ∀ t ≥ 0;

it is easily seen that, if we choose

N > max {1, M1α3} ,

there exist positive constants

γ1 = min {N − 1, N −M1α3} , γ2 = max {N + 1, N +M1α3}

such that
γ1E(t) ≤ L(t) ≤ γ2E(t), ∀ t ≥ 0. (4.19)

Moreover, collecting inequalities (4.14) and (4.17), we have

d

dt
L(t) ≤ −

(
M1

2
− ν

2
−Nγ

)
‖θ‖2 + Λ̃(N, γ,Ω)

−
[
Nα1 − α2 −

M1α3

2

(
1 +

β2

ν

)
− M2α4

2M1

]∫

Ω

∣∣∣C 1

2 ∇η

∣∣∣
2

2
dx,

where Λ̃(N, γ,Ω) = NCγ + C0. Taking now

ν =
M1

2
,

choosing N large enough such that

N ≥ N∗ =
1

α1

(
α2 +

M1α3

2
+ α3β

2 +
M2α4

2M1
+
M1

8

)

and letting

γ =
M1

8N
,
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we have
d

dt
L(t) ≤ −M1

8
‖θ‖2 − M1

8

∫

Ω

∣∣∣C 1

2 ∇η

∣∣∣
2

2
dx + Λ̃

(
N,

M1

8N
,Ω

)
. (4.20)

By means of (4.19), inequality (4.20) yields

d

dt
L(t) ≤ −M1

4
E(t) + Λ̃ ≤ −εL(t) + Λ̃ ,

where

ε =
M1

4γ2
.

By virtue of the Gronwall Lemma, we obtain

L(t) ≤ L(0) e−εt +
Λ̃

ε

(
1 − e−εt

)
, ∀ t ≥ 0. (4.21)

Finally, from (4.19) and (4.21), it follows that

E(t) ≤ 1

γ1
L(t) ≤ γ2

γ1
E(0) e−εt +

Λ̃

εγ1

holds for every t ≥ 0, so that taking

A =
γ2

γ1
, Λ =

Λ̃

εγ1

our conclusion follows.

Now, we state the main result of this section.

Theorem 4.3 Assume C = [Cij ] ∈ M(n, n) and f ∈ C1(R) as in Theorem 4.2.
The uniform energy estimate (4.11) implies the existence of a bounded absorbing set

B∗ ⊂ H for the semigroup S(t). That is, if B∗ is any ball of H of radius less than
√

2Λ,
for any bounded set B ⊂ H there exists t(B) ≥ 0 such that

S(t)B ⊂ B∗, ∀ t ≥ t(B).

Proof The existence of an absorbing set for S(t) follows directly by (4.11) (see for
example [8]).
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MA, 1992.


