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Abstract: The thrust direction deviations effects in orbital transfers maneu-
vers cause linear and angular misalignments that displace the vehicle with re-
spect to its nominal directions. Corrections maneuvers are realized, but these
deviations are increasing during the vehicle life time due to the propulsion sys-
tem consuming. The main of the corrections maneuvers are not reached during
this period. The vehicle is lost due to the dissipatives forces and the thrusters
systems deviations. The understanding of these deviations effects through the
final orbit is very important to the mission control under pitch and yaw devia-
tions. In this paper, we show the algebraic relations between these deviations
and the keplerian elements of the vehicle final orbit. This analysis allowed to
found the theoretical and exact nonlinear cause effect relation between the me-
dia values of the keplerian elements (final semi-major axis) and the superposed
burn-direction deviations. The dissipatives forces effects were not considered
with respect to these thrust deviations during the transfers maneuvers.
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1 Introduction

The optimum orbital transfer problem of the space vehicle was studied initially by God-
dard [1] in 1919, with his pioneer paper about the maximization of the final altitude of
the rocket under the gravitation field and atmosphere drag. Hohmann [2] in 1925 found
the minimum fuel solution for the bi-impulsive transfer problem between two space ve-
hicle circular and coplanar orbits. This solution was considered the final solution for
this problem until 1959. In this year Hoelker and Silber [3] published the minimum fuel
condition for the Hohmann transfer limited to 11.94. This value is the ratio between the
final orbit and initial orbit radius to the bi-impulsive maneuver. In the non-impulsives
maneuvers is it very important to know one of the thrust burn point to avoid the mis-
alignment’s thrust. Lawden [4] in 1955 found optimum directions to thrust application
and showed that the thrust direction would be tangente to the trajectory. There are
others maneuvers of tri- and multi-impulsives under minimum fuel consumption condi-
tion and under others in-orbital restrictions, studied by many authors through several
methods. Many authors used the propulsion system as control system to reach many
purposes. See e.g., Kluever and Tanck [5] (1997), Javorsek II and Longuski [6] (1999),
Vassar and Sherwood [7] (1985), Ulybyshev [8] (1998), etc. The orbital and rotational
motions coupling effects through the transfer maneuvers were studied, e.g., Duboshin [9]
(1958), Barkin [10] (1985), Beletski [11] (1990), Wang et alli [12] (1991), Wang et alii
[13] (1992) and Maciejewski [14] (1995), etc.

Study of the superposition thrust deviations effects for the space vehicle trajecto-
ries is important, due to their technological importance and space missions feasibility
to vehicle under thrusters burns. The poorly modeled maneuvers and/or non optimized
to turn aside from nominal orbits and the correction or vehicle capture maneuvers can
be unworkable, due to the operational expense and the fuel availability on board. The
satellite orbits under non-ideal propulsion system are affected due to the non-superposed
directions thrust. This results was verified by Jesus [15] in (1999) to orbital transfers
planar maneuvers. The numerical analysis of the maneuvers under superposed and cor-
related thrust deviations were published in 2004 by Jesus and Santos [16] and the mission
feasibility analysis under thrust direction deviations by Jesus et al. [17]. In this paper we
realized the algebraic demonstration of the cause/effect relation between the semi-major
axis deviations and the thrust superposed pitch and yaw deviations to orbital transfers
maneuvers. Our results were found without restrictions on the kind of maneuvers with
respect to the their altitude, power thrusters, etc.

2 Mathematical Formulation and Coordinate System

The mathematical problem is to find the motion equations of the space vehicle and show
the cause/effect algebraic relation between superposed ”pitch” α and ”yaw” β, thrust
direction deviations and the semi-major axis deviations of the orbital transfer trajectory.
Besides this, the maneuvers were considered optimum as minimum fuel consumption
condition. The Figure 2.1, shows the reference system where we wrote the Newton laws.
The optimum problem associated with the space vehicle orbital dynamic is:

1) Globally minimize the performance index: J = m(t0) − m(tf );

2) With respect to α : [t0, tf ] → R (”pitch” angle) and β : [t0, tf ] → R (”yaw” angle)
with α , β ∈ C−1 in [t0, tf ] ;
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Figure 2.1: Reference systems used in this work.

3) Consideration of the dynamics in inertial coordinates Xi, Yi, Zi (see Figure 2.1) for
∀t ∈ [t0, tf ]

m
d2X

dt2
= −µm

X

R3
+ Fx, (1)

m
d2Y

dt2
= −µm

Y

R3
+ Fy, (2)

m
d2Z

dt2
= −µm

Z

R3
+ Fz , (3)

Fx = F [cosβ sin α (cosΩ cos θ − sin Ω cos I sin θ) + sin β sin Ω sin I −
cosβ cosα (cosΩ sin θ + sin Ω cos I cos θ)] , (4)

Fy = F [cosβ sin α (sin Ω cos θ + cosΩ cos I sin θ) − sinβ cosΩ sin I −
cosβ cosα (sin Ω sin θ − cosΩ cos I cos θ)] , (5)

Fz = F (cosβ sin α sin I sin θ + cosβ cosα sin I cos θ + sinβ cos I) . (6)

The VN , VT and VR are the normal, transversal and radial velocity components, re-
spectively. Their accelerations are aN , aT and aR. These equations in orbital coordinates
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(radial R, transverse T , and binormal N) of Figure 2.1 are:

maR(t) = F cos(β(t) + ∆β(t)) sin(α(t) + ∆α(t)) − µm

R2(t)
, (7)

maT (t) = F cos(β(t) + ∆β(t)) cos(α(t) + ∆α(t)), (8)

maN (t) = F sin(β(t) + ∆β(t)), (9)

aR(t) = V̇R − V 2
T

R
− V 2

N

R
, (10)

aT (t) = V̇T +
VRVT

R
− VN İ cos θ − VN Ω̇ sin I sin θ, (11)

aN (t) = ˙VN +
VRVN

R
+ VT İ cos θ + VT Ω̇ sin I sin θ, (12)

VR = Ṙ, (13)

VT = R(Ω̇ cos I + θ̇), (14)

VN = R(−Ω̇ sin I cos θ + İ sin θ), (15)

θ = ω + f, (16)

where ∆α and ∆β are the errors in the ”pitch” and in the ”yaw” angles, respectively. In
this way, for each implementation of the orbital transfer arc, values of α and β are chosen,
whose errors are inside the range, that produce the direction for the overall minimum
fuel consumption. If we consider mass time-variable, for example, linear variation, so,

m(t) = m(to) + ṁ(t − to) (17)

with ṁ < 0 and

F ∼=| ṁ | c. (18)

The motion Equations (1),(2),(3) etc. must be modified to include the force associated
to mass variation.

4) Given the initial and final orbits, and the parameters of the problem m(to), c, . . .
these equations were obtained by: 1) writing in coordinates of the dexterous rectangular
reference system with inertial directions OXiYiZi the Newton’s laws for the motion of
a satellite S with mass m, with respect to this reference system, centered in the Earth’s
center of mass O with Xi axis toward the Vernal point, XiYi plane coincident with
Earth’s Equator,and Zi axis toward the Polar Star approximately; 2) rewriting them
in coordinates of the dexterous rectangular reference system with radial, transverse,
binormal directions SRTN , centered in the satellite center of mass S; helped by 3) a
parallel system with OXoYoZo directions, centered in the Earth’s center of mass O, Xo

axis toward the satellite S, XoYo plane coincident with the plane established by the
position ~R and velocity ~V vectors of the satellite, and Zo axis perpendicular to this
plane; and helped by 4) the instantaneous Keplerian coordinates (Ω, I, ω, f, a, e). These
equations were later rewritten and simulated by using 5) 9 state variables, defined and
used by Biggs [19, 20] and Prado [21].
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3 Orbital Continuous Transfer under Thrust Deviations – General Equa-
tions

The cause/effect relation between the thrust vector directions deviations and the semi-
major axis of the final orbit can be found if we consider the mechanical energy of the
space vehicle under thrusters burns. This dynamics is under action of two forces: natural
force (gravity) and nonnatural force (due to the thrusters). Our algebraic approach for
the semi-major axis deviations is done through the rate of change of the space vehicle
mechanical energy with respect to the time, which is equal to the power applied by
forces components in the transverse, radial and normal directions. We considered the
Earth mass and the space vehicle mass as punctual. Also we considered the thrust to be
nonideal in direction, transfering the deviations effects to the vehicle dynamics. Their
energy rate of change are:

dEM (t)

dt
= F cosα(t) cosβ(t)vT (t) + F sin α(t) cosβ(t)vR(t) + F sin β(t)vN (t). (19)

In the Equation (19) the powers are included applied by forces components in the
transverse, radial and normal directions, without the thrust deviations. During the time
interval ∆t, we integrated and found the change of the mechanical energy,

∆EM (t1, t2) = EM (t2) − EM (t1) =∫ t2

t1

F [cosα(t) cosβ(t)vT (t) + sin α(t) cosβ(t)vR(t) + sin β(t)vN (t)]dt =

−µm

2a(t2)
+

µm

2a(t1)
(20)

with a(ti) the semi-major axis of the space vehicle orbit in the instant i. This mechanical
energy change, Equation (20), can be computed for one transfer under ”pitch”, ∆α(t)
and ”yaw”, ∆β(t) deviations. So,

∆E′

M (t1, t2) = E′

M (t2) − E′

M (t1) =∫ t2

t1

F [cos(α(t) + ∆α(t)) cos(β(t) + ∆β(t))v′T (t)]dt +

∫ t2

t1

F sin(β(t) +

∆β(t))v′N (t)dt +

∫ t2

t1

F [cos(β(t) + ∆β(t)) sin(α(t) + ∆α(t))v′R(t)]dt =

−µm

2a′(t2)
+

µm

2a′(t1)
. (21)

The terms in (′) denotes functions under thrust deviations influence. We define ∆2EM

as change of the mechanical energy change, that is, the difference between its values with
and without thrust deviations. So, taking the difference between Equations (20) and (21)
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and using a small mathematical manipulation,

∆2EM (t1, t2) ≡ ∆E′

M (t1, t2) − ∆EM (t1, t2) =
−µm

2a′(t2)
+

µm

2a′(t1)
+

µm

2a(t2)
+

−µm

2a(t1)
=

∫ t2

t1

F [cos(β(t) + ∆β(t)) sin(α(t) + ∆α(t))v′R(t) − sin α(t) cosβ(t)vR(t)]dt +

∫ t2

t1

F [sin(β(t) + ∆β(t))v′N (t) − sin β(t)vN (t)]dt +

∫ t2

t1

F [cos(α(t) + ∆α(t)) cos(β(t) + ∆β(t))v′T (t) − cosα(t) cos β(t)]vT (t)dt. (22)

4 ∆α(t) and ∆β(t) Not Correlated with the Transverse, Radial and Normal
Velocities (Uniform Deviations)

Equation (22) is general, but we need to realize the integrations to realistic space missions
conditions. In this way, we consider that the direction deviations are not correlated (in
the time) with the transversal, radial and normal velocities components. That is, during
the burn time, the thrust vector deviations have not functional dependence with space
vehicle velocity. Besides this, we consider that the semi-major axis in the initial instant
to the initial and final orbits are equal. This condition is physically reasonable, because
during the initial instant there is no time to the deviations affect the semi-major axis.

To find the cause/effect relation, we apply the expectation operator, E , (or the first
moment, or mean) over the Equation (22). In this way, we select the mean of the func-
tions inside the integrations. We consider the probabilistic approach, where the mean
over the physical functions is very good to represent the dynamic phenomena under de-
viations, define through probabilistic errors function (Gaussian, Uniform, etc.). This
approach is applicable in the space technology, because the direction deviations are due
to the several unpredictable reasons such as: vehicle mass center displacement, due to
the fuel consumption or movable parts as solar panels, antennas, booms, pendulums,
etc., and their angular deviations. These deviations and others in the thrust magnitude
cause resultant nonideal force, which do not pass through the vehicle mass center. So,
the linear and/or angular misalignments displace the vehicle with respect to its nomi-
nal directions. The technological implementations has shown that these deviations can
be modeled through the uniform and gaussian probability function. We assume that
stochastic processes are ergotic. So, the expectation operator (mean in the ensemble)
commutes with the integral operator (in time). Besides this, the function F and the
trigonometric functions are deterministic in time.

The non-correlation of the deviations with the velocities allows us to decompose the
expectation operator as one product of the individual expectatins for the product of the
functions. Therefore, taking the expectation, E , and doing some algebraic manipulation,
we have

E [∆2EM (t1, t2)] = [Q11 + Q22][E [cos∆β(t) cos∆α(t)] − 1] + [Q12 +

Q21][E [cos ∆β(t) sin ∆α(t)] − 1] + [Q31 + Q42][E [sin ∆β(t) cos∆α(t)] − 1] +

[Q32 + Q41][E [sin ∆β(t) sin ∆α(t)] − 1] + Q93[E [cos∆β(t)] − 1] +

Q10[E [sin ∆β(t)] − 1] + [Q51 + Q52 + Q61 + Q71 + Q72 + Q82], (23)
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where Qij are quadratures in sines and cosines. Besides this, we consider that the
velocities effects inside the interval [−∆αmax, ∆αmax] in the same time are,practically,
balanced, because the deviations occur between values maxima and minima inside them.
That is, the velocities with and without deviations have, in mean, very close values. So,

E [v′R,T,N (t)] = vR,T,N (t1). (24)

We consider the important approach of the ∆α(t) and ∆β(t) are random-bias devi-
ations with uniform distribution inside the interval [−∆αmax, αmax], that is, ∆α(t) =
∆α(t1) = ∆α and ∆β(t) = ∆β(t1) = ∆β (systematic deviations) through the orbital
transfers. Besides this, we consider that the pitch and yaw deviations are not corre-
lated with each other (it occurs in the practice) and that their values in anterior instant
(due to thrusters action) are not correlated with their values in posterior instant (due to
thrusters action again). This last effect was analized in 2004 by Jesus and Santos [16] in
numerical approach. They modeled the consuming of the thrusters through it. Hier, we
do not consider this effect. Therefore, applying the expectation operator over the first
term (not correlated) of the Equation (23), for example,

E{cos∆α(t1)} =
1

2∆αmax

∫ ∆αmax

∆αmax

cos∆αd(∆α) =

1

2∆αmax

sin[∆α]∆αmax

∆αmax

=
sin ∆αmax

∆αmax

(25)

and

E [sin ∆β(t1)] = E [sin ∆α(t1)] = 0. (26)

If we compute the expectation over all the terms of the Equation (23), we obtain

∆2EM (t1, t2) = C1[[
sin ∆αmax

∆αmax

][
sin ∆βmax

∆βmax

] − 1] + C2[[
sin ∆βmax

∆βmax

− 1] +

QT1 − Q10 + QT2 (27)

or, writting in Taylor expansion to the sin ∆α, sin ∆β, we obtain

E{∆2EM (t1, t2)} = C1

∞∑
n=0

(−1)n 1

(2n + 1)!
∆α2n

max.

∞∑
n=0

(−1)n 1

(2n + 1)!
∆β2n

max +

C2

∞∑
n=0

(−1)n 1

(2n + 1)!
∆β2n

max + QT , (28)

where QT , C1 and C2 are quadratures. The expectation over the left side of the Equation
(23) provide

E{∆2EM (t1, t2)} = E{ µm

2a(t2)
− µm

2a′(t2)
} =

µm

2

1

a(t2)
E{∆a(t2)

a′(t2)
}. (29)
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If we expand Equation (29) about the rate ∆a(t2)
a(t2)

, we get

E{∆2EM (t1, t2)} =
µm

2
[

1

a2(t2)
E{∆a(t2)} −

1

a3(t2)
E{∆2a(t2)} +

1

a4(t2)2!
E{∆3a(t2)} −

1

a5(t2)3!
E{∆4a(t2)} + . . .] =

µm

2

∞∑
n=1

(−1)n+1 1

an+1(t2)(n − 1)!
E{∆na(t2)}, (30)

where, ∆a(t2)=a′(t2) − a(t1). So,

∞∑
n=1

(−1)n+1 1

an+1(t2)(n − 1)!
E{∆na(t2)} =

[C4 + C3

∞∑
n=0

(−1)n 1

(2n + 1)!
∆α2n

max].

∞∑
n=0

(−1)n 1

(2n + 1)!
∆β2n

max + C5. (31)

Equation (31) is the cause/effect relation between thrust vector pitch and yaw di-
rection deviations and semi-major axis deviation of the final orbit. It shows that the
direction deviations affect directly the transfer maneuvers. It is nonlinear relation in
even power of the maxima deviations terms

C3 =
2C1

µm
; C5 =

2C2

µm
; C5 =

2QT

µm
. (32)

Equations (30) and (31) can be expandied, that is,

E{∆2EM (t1, t2)} = C7 −
C3

3!
(∆α2

max + ∆β2
max) +

1

5!
(C3∆α4

max + C6∆β4
max) +

1

7!
(C3∆α6

max + C6∆β6
max) +

1

(3!)2
(∆αmax∆βmax)2 +

1

(5!)2
(∆α2

max∆β2
max)2 +

1

(7!)2
(∆α3

max∆β3
max)2 − C3

(3!5!)
(∆α2

max∆β4
max + ∆α4

max∆β2
max) +

C3

(3!7!)
(∆α2

max∆β6
max + ∆α6

max∆β2
max) +

C3

(5!7!)
(∆α4

max∆β6
max + ∆α6

max∆β4
max) + . . . (33)

The space missions conditions request direction deviations inside the practical interest
range, that is, maximum two degree. So, for small deviations we can neglect high power
terms. In this condition we can choose n = 0 for the expansion

E{∆a(t2)} = K1 − K2∆α2
max − K2∆β2

max. (34)

This is the first order nonlinear cause/effect relation between thrust direction devia-
tions and semi-major axis. It is one revolution paraboloid. Our paper [18] in 2004 showed
numerical simulation results of these superposed direction deviations case and found a
revolution paraboloid deformed inside general deviations pitch and yaw range and revo-
lution paraboloid not deformed inside the space missions practical interest range. This
algebraic results confirm it (Figures 4.1, 4.2, 4.3, 4.4).The deviations in modulus thrust
(DES1),in pitch direction (DES2) and in yaw direction (DES3). These deviations are
modeled as operational (white-noise) and systematic (random-bias).
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Figure 4.1: Noncoplanar Transfer under Operational Deviations.

Figure 4.2: Noncoplanar Transfer under Systematic Deviations.
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Figure 4.3: Coplanar Transfer under Operational Deviations.

Figure 4.4: Coplanar Transfer under Systematic Deviations.
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5 ∆α(t) and ∆β(t) Not Correlated with the Transverse, Radial and Normal
Velocities (Gaussian Deviations)

The procedures for the ∆α(t) and ∆β(t) with Gaussian distribution inside the inter-
val [−∆αmax, ∆αmax] and [∆αmax, ∆αmax] are the same for the uniform distribution.
Therefore, applying the expectation operator over the first term (not correlated) of the
Equation (23) for the Gaussian distribution, for example, we have

E{cos∆α(t1)} =

∫
∞

−∞

cos∆α
exp−

(∆α)
2σα

√
2πσα

d(∆α) = exp
−σα

2

2 =
∞∑

n=0

(−1)n σ2n
α

2nn!
. (35)

The expectation of the sinos terms are zero. So, we can obtain the nonlinear cause e
effect relation between thrust direction gaussian deviations and the semi-major axis,

∞∑
n=1

(−1)n+1 1

an+1(t2)(n − 1)!
E{∆na(t2)} =

[C4 + C3

∞∑
n=0

(−1)n σ2n
α

(2n)n!
].

∞∑
n=0

(−1)n
σ2n

β

(2n)n!
+ C5, (36)

where σα and σβ are standard pitch and yaw deviations, respectively. Equation (36) is
similar to Equation (31), that is, the nonlinear cause/effect relation do have dependence
with the probability deviations function.

So, for small deviations we can neglect high power terms. In this condition we can
choose n = 0 for the expansion

E{∆a(t2)} = K3 − K4
σ2

α

2
− K5

σ2
β

2
. (37)

6 ∆α(t) Correlated with Transverse, Radial and Normal Velocities

In this case, we cannot decompose the expectation operator as a product of the in-
dividual expectations for the trigonometric functions of the ∆α(t) and ∆β(t) and the
velocities components, because now they are correlated. The procedures are the same
done until this point, except that we must evaluate the expectation of the products
of the different variables, without decomposing them. Besides this, we consider the
∆α(t) and ∆β(t) random-bias deviations, that is, ∆α(t)=constant=∆α(t1)=∆α and
∆β(t)=constant=∆β(t1)=∆β. After many mathematical manipulations we found the
following equation, for both cases, uniform and Gaussian distribution,

It,r,n =

∫ t1

t2

E{(cos∆α)(cos ∆β)v′t,r,n(t)ḟ ′

t,r,n(t)}dt. (38)

We know that the integral of the odd functions for symmetrical distributions is null.
But Equation (38) has even product of the functions. The odd functions inside the
product are not known, but we can modeled its product as one even function, for ex-
ample, cos∆α. Besides this, we consider that the I, Ω, θ, İ and Ω̇ effects inside the
[−∆αmax, ∆αmax] and [−∆βmax, ∆βmax] intervals in the same time are, practically, bal-
anced, because the deviations occur between values maxima and minima inside them.
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That is, these instantaneous Keplerian coordinates values with and without deviations
are, in mean, very close values. So,

E{İ ′(t) cos θ′(t)} = İ(t1) cos θ(t1), (39)

E{Ω̇′(t) sin I ′(t) sin θ′(t)} = Ω̇(t1) sin I(t1) sin θ(t1). (40)

Other important approach in this way is to consider for Equations (9) and (11) that
the expectation of the product is equal to the product of the expectations of the functions,
so that

E{ (cos∆α)(cos ∆β)

(r′)2(t)
} = E{(cos(∆α)(cos ∆β)

1

(r′)2(t)
} ∼=

E{cos∆α}E{cos∆β}E{ 1

(r′)2(t)
} =

E{cos∆α}E{cos∆β}
r2(t)

. (41)

The final forms are:

∞∑
n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = λ1 + λ2∆αmax + λ3∆βmax +

λ4∆αmax∆βmax − λ5∆α2
max − λ6∆α2

max∆βmax − λ7∆β2
max∆αmax +

λ8∆α2
max∆β2

max + λ9∆α4
max + λ10∆α5

max −
λ11∆αmax∆β4

max − λ12∆α2
max∆β4

max + λ13∆α4
max∆β2

max +

λ14∆α4
max∆β4

max + . . . (42)

for the uniform deviations and

∞∑
n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = f1 + f2σα + f3σβ + f4σασβ − f5σ

2
α

−f6σ
2
ασβ − f7σ

2
βσα + f8σ

2
ασ2

β + f9σ
4
α + f10σ

5
α − f11σασ4

β − f12σ
2
ασ4

β

+f13σ
4
ασ2

β + f14σ
4
ασ4

β + . . . (43)

for the Gaussian deviations.
The coefficients λi, λij , fi and fij are mathematical operations (sums, products and

sums of the products) between quadratures in sines and cosines of the pitch and yaw
angles.

If we compute the first order terms, Equations (42) and (43), and consider deviations
inside the practical range for the space missions, we obtain, for the both cases,

E{∆α(t2)} = C1 + C2∆αmax + C3∆βmax + C4∆αmax∆βmax − C5∆α2
max (44)

for the uniform deviations and

E{∆α(t2)} = C6 + C7σα + C8σβ + C9σασβ − C10σ
2
α (45)

for the Gaussian deviations.
These results show once again the nonlinear relationship between cause and effect

since n=1 of the expansions.
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We modeled in the Equation (38) the product of the not known odd functions as an
even function equal to the cos∆α. If we choose it as the cos∆β the results are different.
So, with the same previous algebraic proceedings, we have

∞∑
n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = λ′

1 + λ′

2∆αmax + λ′

3∆βmax +

λ′

4∆αmax∆βmax − λ′

5∆α2
max − λ′

6∆β2
max − λ′

7∆α2
max∆βmax − λ′

8∆β3
max +

λ′

9∆α4
max + λ′

10∆β4
max + λ′

11∆α2
max∆β2

max − λ′

12∆α2
max∆β3

max −
λ′

13∆α2
max∆β4

max − λ′

14∆β6
max + λ′

15∆α2
max∆β6

max + . . . (46)

for the uniform deviations, and

∞∑
n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = f ′

1 + f ′

2σα + f ′

3σβ + f ′

4σασβ − f ′

5σ
2
α

−f ′

6σ
2
β − f ′

7σ
2
ασβ − f ′

8σ
3
β + f ′

9σ
4
α + f ′

10σ
4
β + f ′

11σ
2
ασ2

β − f ′

12σ
2
ασ3

β

−f ′

13σ
2
ασ4

β − f14σ
6
β + f ′

15σ
2
ασ6

β + . . . (47)

for the Gaussian deviations.
These results for the space missions interest deviations range are

E{∆α(t2)} = C11 + C12∆αmax + C13∆βmax + C14∆αmax∆βmax −
C15∆α2

max − C16∆β2
max, (48)

E{∆α(t2)} = C17 + C18σα + C19σβ + C20σασβ − C21σ
2
α − C11σ

2
β . (49)

These results show, again, the nonlinear relation between the thrust deviations and
the mean semi-major axis uncertainess. The difference between this case, correlated
with cossine of the yaw, is that, in the practical interest range, it occurs the − cos∆β2

max

contribution. It is the out-plane angle deviation and the nonlinear relation in the space
missions interest must avoid it, because the in-plain maneuvers are fuel-optimal.

7 Conclusions

Our results show the nonlinear relations between thrust superposed pitch and yaw direc-
tion deviations and the final mean semi-major axis. We analysed the correlated and not
correlated deviations with the satellite velocity. In all the cases, the relation shows a pro-
gressive deformation of the trajectory due these deviations. This dependence is presented
as a revolution paraboloid in the space mission practical interest in the range deviations
and the deformed revolution paraboloid in general case. In the space mission interest
the relation is dominated by (∆αmax)2 term for the α-correlation and (∆βmax)2 and
(∆αmax)2 terms for the β-correlation. We suggest the first correlation for the transfers
maneuvers under fuel consumption optimal. Besides this, these algebraic results confirm
the exhaustive numerical simulation realized before in all the deviations ranges. These
results do not depend of the trajectory.
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