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Abstract: A new approach to Bayesian inference, named the prior-free in-

ference, is introduced for developing objective Bayesian analysis based on
information-theoretic approach. This new approach is essentially a Bayesian
method but it does not depend on a prior distribution for unknown parameters.
Thus, this approach not only has the advantages of the Bayesian approach but
also can avoid the difficulty, the traditional Bayesian approach encounters due
to a lack of prior information. Several examples are illustrated to show the
procedure and the performance of the prior-free inference. A new information
criterion, named prior-free information criterion (PFIC), is introduced as an
extension of the procedure of the prior-free inference. Then, minimum PFIC
method for model selection is developed based on the use of PFIC. Simulation
results show that the minimum PFIC method performs very well.
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1 Introduction

A necessary condition of the traditional Bayesian analysis is the use of a prior distribution.
As pointed out by Akaike [3], however, in practical applications of Bayesian analysis
the available prior information is not usually sufficient to completely specify the prior
distribution. For that reason, various procedures of objective Bayesian inference using
non-informative or ignorance priors have been developed.

The pioneers in the accomplishment of Bayesian analysis such as Bayes and Laplace
developed Bayesian procedure using uniform prior distribution for objectivity [4, 25].
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However, sometimes such procedure encounters difficulties because of a lack of invari-
ance under transformation of unknown parameters [15]. Fisher did not accept Bayesian
procedure mainly due to the use of uniform prior distribution, he attempted to make
statistical inference by proposing the concept of inverse probability and his fiducial ap-
proach [12, 13, 14]. Essentially, Fisher’s fiducial approach is somewhat in the category of
Bayesian, but it is not necessary to suppose a prior distribution. Unfortunately, Fisher’s
fiducial approach ultimately cannot be achieved as a systematized methodology for sta-
tistical inference.

Criticisms of the use of uniform prior distribution caused Jeffreys to develop his
ignorance prior distribution [16]. The definition of Jeffreys prior is based on the concept
of invariance of the distribution by a transformation of unknown parameters. Lindley
applied Shannon entropy to introduce an information-theoretic analysis of the structure
of Bayesian modeling [28]. Zellner and Bernardo developed objective Bayesian procedures
using the maximal data information prior distribution and the reference prior distribution
respectively [33, 34, 7]. These work prompted the work by Akaike on the problem of
specifying a prior distribution over a finite number of data distributions [3].

The main concern with objective Bayesian procedures is that they often utilize im-
proper prior distributions, and so do not automatically have desirable Bayesian proper-
ties, such as coherency [31]. Also, the use of improper priors may lead to some difficulties
of utilizing information-theoretic approach to identification of priors. Thus recent studies
of objective Bayesian procedures are mostly about to ensure that such problems do not
arise [6, 8].

In this paper, we attempt to contribute to objective Bayesian theory by developing a
new approach which is called prior-free inference. The remainder of the paper is organized
as follows. In Section 2 we explain the procedural and mathematical background and
motivation of the present study. In Section 3 we show the procedure of the prior-free
inference and related theoretic results. In Section 4 we illustrate the procedure and the
performance of the prior-free inference by several examples. In Section 5 we develop a
methodology for model selection based on the prior-free inference. Finally, concluding
remarks are given in Section 6.

2 Settings and motivation

2.1 Settings

In the present paper, we attempt to introduce a new approach to Bayesian infer-
ence for a vector, θ = (θ1, θ2, . . . , θk)t, of k continuous parameters. Let X(1 : n) =
{X1, X2, . . . , Xn} be a sample of size n with each Xi being univariate continuous ran-
dom variable, where n > k. Generally, suppose we have a statistical model of X(1 : n)
given θ that is defined by a joint probability density fX(1:n)(x(1 : n)|θ). Based on
fX(1:n)(x(1 : n)|θ) we can obtain a model density of Xi in the conditional density form,
fXi

(xi|x(1 : i−1), θ), given the observations x(1 : i−1) = {x1, x2, . . . , xi−1} ofX(1 : i−1)
for i = 1, 2, . . . , n. Thus, by defining fX1(x1|x(1 : 0), θ) = fX1(x1|θ), the model density
fX(1:n)(x(1 : n)|θ) can be expressed by

fX(1:n)(x(1 : n)|θ) = fX1(x1|θ)fX2(x2|x(1 : 1), θ) · · · fXn
(xn|x(1 : n− 1), θ). (1)

For the sake of further discussion, we introduce the definition of “support”. The
concept of support can be found in [26] and [32]. For a density function u(x) of X , its
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support is defined by the set S(u) = {x;u(x) > 0}. Further, for a conditional density
function v(x|y) of X given y, its support is defined by the set S(v|y) = {x : v(x|y) > 0}.

In Bayesian approach, the parameter vector θ can be regarded as a vector of given
values of k random variables, say Θ = (Θ1,Θ2, . . . ,Θk)t. It is required to set up an
initial probability distribution, called the prior distribution, for Θ. Let π(θ) be a prior
density, and denote by fΘ(θ|x(1 : k)) the corresponding posterior density or post data
density for Θ given x(1 : k). We have the following relation between the prior density
and the post data density:

fΘ(θ|x(1 : k))h(x(1 : k)) = π(θ)fX(1:k)(x(1 : k)|θ), (2)

where h(x(1 : k)) denotes the marginal density of X(1 : k).
Let S(π) and S(h) be the supports of π(θ) and h(x(1 : x)), respectively. Denote

by S(fΘ|x(1 : k)) the support of fΘ(θ|x(1 : k)) for x(1 : k) ∈ S(h), and denote by
S(fX(1:k)|θ) that of fX(1:k)(x(1 : k)|θ) for θ ∈ S(π). For a likelihood oriented inference,
it is unnecessary to consider a value of θ ∈ S(π) that leads to fX(1:k)(x(1 : k)|θ) = 0. So,
from equation (2) we can bring the equality S(π) = S(fΘ|x(1 : k)) for x(1 : k) ∈ S(h).
Similarly, we can also assume that S(h) = S(fX(1:k)|θ) for θ ∈ S(π). Suppose that both
of the prior density π(θ) and the post data density fΘ(θ|x(1 : k)) are proper. Then, we
can obtain the marginal density of X(1 : k) as

h(x(1 : k)) =

∫

S(π)

fX(1:k)(x(1 : k)|θ)π(θ)dθ, (3)

which is also a proper density. From equation (2), we obtain the post data density by

fΘ(θ|x(1 : k)) =
fX(1:k)(x(1 : k)|θ)π(θ)

h(x(1 : k))
, (4)

which is called Bayes’ theorem (see [9]).
Bayes’ theorem allows us to continuously update information about Θ as more ob-

servations are obtained. Now, let fX(k+1:n)(x(k+ 1 : n)|x(1 : k), θ) be the model density
for X(k + 1 : n) = {Xk+1, Xk+2, . . ., Xn} given x(1 : k) and θ. Then, we can obtain the
post data density for Θ given x(1 : n) as

fΘ(θ|x(1 : n)) =
fX(k+1:n)(x(k + 1 : n)|x(1 : k), θ)fΘ(θ|x(1 : k))

g(x(k + 1 : n)|x(1 : k))
, (5)

where g(x(k + 1 : n)|x(1 : k)) =
∫
S(π)

fX(k+1:n)(x(k + 1 : n)|x(1 : k), θ)fΘ(θ|x(1 : k))dθ.

The expression (5) is precisely of the same form as equation (4) except that fΘ(θ|x(1 :
k)) plays the role of the prior density for the succeeding observations x(k + 1 : n).
Obviously, this process can be repeated times. Thus, Bayes’ theorem describes the
process of updating the distribution of Θ as learning from data. As pointed out by Zellner
[35], information processing based on Bayes’ theorem does not cause loss of information.
In this paper, we call fΘ(θ|x(1 : k)) and fΘ(θ|x(1 : n)) the initial and the final post data
density, respectively.

Bayesian approach gives a basis for inference not only on unknown parameters but
also on any unobserved random variable that follows a probability distribution depending
on the parameters. In the concrete, for unobserved random variables, say Y , that follow
the model density fY (y|x(1 : n), θ), the predictive density fY (y|x(1 : n)) of Y is given by

fY (y|x(1 : n)) =

∫

S(π)

fY (y|x(1 : n), θ)fΘ(θ|x(1 : n))dθ. (6)
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From the above observations, we can see that the cruxes of the traditional Bayesian
analysis are the model density for observed data and the prior density for the parameters.
The model density and the prior density are as two inputs for Bayesian information pro-
cessing [35], but it may be true that the model density should precedes the prior density,
because without model density there can be no parameters hence it is not necessary to
consider a prior density. In scientific research, setting up hypotheses is the main subject
for researchers, the model (or a set of contending models) for observed data may be con-
structed along with the hypotheses. However, it may be more difficult to have knowledge
about the parameters in the constructed model before analyzing the observed data.

2.2 Motivation

It can be seen from the discussion in Subsection 2.1 that a feature of the traditional
Bayesian approach is the prior-dependency. It leads to a difficulty in applications of
Bayesian inference when the prior information is unavailable. This difficulty may be
fatal for most situations of scientific research and it is also the main cause of criticism to
Bayesian statistics. As pointed out by [11], “The Bayesian methodology, while enjoying
good properties (e.g., admissibility and consistency), is peculiar, in that it requires the
user to postulate a prior distribution that is basically as complex as the quantities being
inferred, if not more so”. There are a number of studies on evaluating priors by using
model and observed data, e.g., Zellner [33, 34, 36], Bernardo [7], Akaike [2], Jaynes [15],
Chuaqui [10], Berger and Bernardo [6], Berger [5], Li and Vitanyi [27]. Such approaches
have provided solutions to mitigate the difficulty of the traditional Bayesian analysis.

In order to overcome the difficulty of the traditional Bayesian analysis caused by a lack
of prior information, a new approach to objective Bayesian analysis will be introduced
in the present paper. The main feature of this approach is that it is free of dependence
on a prior distribution. Thus, we call Bayesian inference based on this approach prior-

free inference. Contrastively, we call Bayesian inference beginning with construction of
priors the traditional Bayesian approach. An outline of the prior-free inference is shown
in [17] by the name of self-concluding inference, and it was further developed in [18].
Main results on information-theoretic approach to the prior-free inference were given in
[19], and an application of the prior-free approach to estimation and identification of
regression models was given in [20]. The key idea of the prior-free inference is as follows.
The presupposition of the prior-free inference is that we have a model density for the
observed data. As the first stage of the procedure, we derive an initial post data density
fΘ(θ|x(1 : k)) of Θ given x(1 : k), from the given model density for X(1 : k) directly.
Then, in the second stage we apply fΘ(θ|x(1 : k)) as the prior density for the observations
of the remaining sample X(k+ 1 : n) to obtain the final post data density fΘ(θ|x(1 : n))
by using Bayes’ theorem.

The similarity between the prior-free inference approach and the reference priors
approach is that both of these two approaches are developed based on an information-
theoretic viewpoint. As will be mentioned in Section 3, however, for an improper prior
density the Lindley’s criterion functional, which lays the foundations of the reference
priors approach, cannot be well-defined. Unfortunately, in objective Bayesian analysis the
prior is obtained frequently in an improper form. This difficulty is avoided by introducing
a new criterion functional which is utilized as the foundations of the prior-free inference
approach.

Now, the model selection is always an important problem in statistical analysis. When
several contending models are constructed, it is required to evaluate each model and select
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one as the best among them. In the present paper, a methodology for model selection is
also developed as a natural extension of the prior-free inference.

3 Prior-free inference

3.1 Definition of inferential functions

First of all, we define a set of probability integral transformations as

ϕi(x(1 : i), θ) =

∫ xi

−∞

fXi
(t|x(1 : i− 1), θ)dt (7)

for i = 1, 2, . . . , k. Obviously, the quantity ϕi(x(1 : i), θ) defined by equation (7) is a
function of x(1 : k) and θ.

In the case that x(1 : k) are given, the quantity ϕi(x(1 : i), θ) defined by equation (7)
becomes a function of θ only, so we express it as follows:

zi = zi(θ) = ϕi(x(1 : i), θ)|x(1:i) (i = 1, 2, . . . , k). (8)

Further, when θ is replaced with Θ, a new vector of random variables, say

Z = (Z1, Z2, . . . , Zk)t = (z1(Θ), z2(Θ), . . . , zk(Θ))t, (9)

is defined. The functions defined by equation (9) together with equations (7) and (8)
are important for the procedure of the prior-free inference, we call them the inferential

functions.
Let fZ(z|x(1 : k) be a post data density for Z given x(1 : k), and let S(fZ |x(1 : k))

denote its support. The inferential functions can be regarded as a set of transformations
from S(π) to S(fZ |x(1 : k)) with

J = (
∂zi

∂θj
) (10)

being the Jacobian matrix. When both x(1 : i) and θ are given zi is the cumulative
probability, hence we can see that S(fZ |x(1 : k)) ⊆ [0, 1]× [0, 1] × · · · × [0, 1].

For given x(1 : k) we call inferential functions informative if they satisfy the following
conditions:

(C1) The partial differential, ∂zi

∂θj
, is a continuous function of θ at all points of S(π) for

i, j = 1, 2, . . . , k.

(C2) The Jacobian matrix defined by equation (10) is a nonsingular matrix at all points
of S(π).

When inferential functions are informative, they play the role of one-to-one transfor-
mations between S(π) and S(fZ |x(1 : k)). Thus, they have a property shown by the
following lemma (see Appendix A for proof):

Lemma 3.1 If the inferential functions are informative, then the quantity defined by

λ =

∫

S(π)

| det(J)|dθ (11)

satisfies the inequality 0 < λ ≤ 1, where det(J) denotes the determinant of the Jacobian

matrix defined by equation (10), and | det(J)| denotes its absolute value.
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We can classify the informative inferential functions into two types. For the quantity λ
defined by equation (11), the informative inferential functions are called fully informative

if λ = 1, and they are called partially informative if 0 < λ < 1. It can be verified that if the
inferential functions are fully informative, then S(fZ |x(1 : k)) = [0, 1]× [0, 1]×· · ·× [0, 1];
and if they are partially informative, then S(fZ |x(1 : k)) ⊂ [0, 1]× [0, 1] × · · · × [0, 1]. If
the inferential functions are informative under x(1 : k), then the initial post data density
fΘ(θ|x(1 : k)) for Θ can be defined in terms of the post data density fZ(z|x(1 : k)) for
Z by

fΘ(θ|x(1 : k)) = fZ(z|x(1 : k)) | det(J)|. (12)

Thus, we can determine fΘ(θ|x(1 : k)) through fZ(z|x(1 : k)).

3.2 Determination of initial post data density

In this subsection, we show how to determine the post data density fZ(z|x(1 : k)) for
Z, or equivalently the initial post data density fΘ(θ|x(1 : k)) for Θ, by utilizing an
information-theoretic approach.

For random variable Y , which is possibly multivariate, let u(y) and v(y) be two density
functions, the Kullback-Leibler information of u(y) with respect to v(y) is defined by

IK(u; v) =

∫
ln{u(y)

v(y)
}u(y)dy. (13)

It is well-known that IK(u; v) ≥ 0, and IK(u; v) = 0 if and only if v(y) = u(y) almost
everywhere. IK(u; v) is as a functional of u(y) and v(y) that measures the “distance”
between u(y) and v(y) by regarding v(y) as the reference distribution. If the reference
distribution v(y) is improper and u(y) is proper, then the probability measures defined
on u(y) and v(y) cannot be absolutely continuous with respect to one another, hence
IK(u; v) cannot be finite (see [24]). Thus, IK(u; v) must be infinite as long as v(y) is
improper.

Lindley applied the Kullback-Leibler information to Bayesian inference in order to in-
troduce his criterion functional [28]. By the notation, an expression of Lindley’s criterion
functional is given by

FL(π|fX(1:k)) =

∫

S(hX(1:k))

IC
K(fΘ;π|x(1 : k))hX(1:k)(x(1 : k))dx(1 : k), (14)

which measures the missing information about Θ for a given model density. In equation
(14),

IC
K(fΘ;π|x(1 : k)) =

∫

S(π)

ln{fΘ(θ|x(1 : k))

π(θ)
}fΘ(θ|x(1 : k))dθ (15)

is the Kullback-Leibler information between fΘ(θ|x(1 : k)) and π(θ) given x(1 : k) ∈
S(h). Bernardo [7] developed his reference priors approach that derives a prior density
as a solution to maximizing FL(π|fX(1:k)). In [7], such solution is regarded as a prior
that describes vague initial knowledge about θ.

Obviously, by definition we have

FL(π|fX(1:k)) = IK(s; t), (16)
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where

s(x(1 : k), θ) = fΘ(θ|x(1 : k))h(x(1 : k)), (17)

t(x(1 : k), θ) = π(θ)h(x(1 : k)). (18)

As shown in equations (17) and (18), s(x(1 : k), θ) denotes the joint density for X(1 : k)
and Θ under the assumption that X(1 : k) and Θ are correlated, and t(x(1 : k), θ) is that
for X(1 : k) and Θ under the assumption that X(1 : k) and Θ are independent of each
other. So, Lindley’s criterion functional measures the distance between s(x(1 : k), θ) and
t(x(1 : k), θ) by regarding t(x(1 : k), θ) as the reference distribution. In the traditional
Bayesian approach, if the model density is given, then both of the initial post data density
and the marginal density for X(1 : k) are as functionals of the prior density, hence both
of s(x(1 : k), θ) and t(x(1 : k), θ) are functionals of the prior density π(θ). Therefore, the
Lindley’s criterion functional FL(π|fX(1:k)) is as a functional of the prior density.

A result given in [19] shows that it may be difficult to specify a prior as a solution to
maximizing the Lindley’s criterion functional. This fact prompts us to introduce another
criterion functional for specifying an initial post data density. The newly-introduced
criterion functional is defined by

F (fΘ, π|fX(1:k)) =

∫

S(hX(1:k))

IC
K(π; fΘ|x(1 : k))hX(1:k)(x(1 : k))dx(1 : k), (19)

where

IC
K(π; fΘ|x(1 : k)) =

∫

S(π)

ln{ π(θ)

fΘ(θ|x(1 : k))
}π(θ)dθ (20)

defines the Kullback-Leibler information between π(θ) and fΘ(θ|x(1 : k)) given x(1 :
k) ∈ S(h). It is obvious that

F (fΘ, π|fX(1:k)) = IK(t; s) (21)

under the definitions in equations (17) and (18). The criterion functional F (fΘ, π|fX(1:k))
measures the distance between s(x(1 : k), θ) and t(x(1 : k), θ) by regarding s(x(1 :
k), θ) as the reference distribution. In the prior-free inference, we consider the criterion
functional F (fΘ, π|fX(1:k)) as a functional not only for the prior density but also for the
initial post data density because we attempt to determine the initial post data density
directly by maximizing F (fΘ, π|fX(1:k)) for a given model density and any fixed prior
density.

Perhaps, the intention to specify a prior by maximizing the Lindley’s criterion func-
tional is to make inference by using the traditional Bayesian approach with the most
vague prior. Contrastively, the intention to obtain an initial post data density by max-
imizing the newly-introduced criterion functional is that we attempt to make post data
inference by using the information contained in x(1 : k) to the maximum for a given
model density and any fixed prior density that is regarded as a non-informative prior.
Obviously, the greater the value of F (fΘ, π|fX(1:k)) the larger the information about Θ
contained in x(1 : k). Therefore, in order to obtain an initial post data density that
has maximal information contained in x(1 : k), we derive the initial post data density
directly by maximizing F (fΘ, π|fX(1:k)). As a theoretical finding, we have the following
theorem (see Appendix B for proof):
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Theorem 3.1 Under equation (4), if the inferential functions are informative, then

the criterion functional F (fΘ, π|fX(1:k)) may have the following two maximizers:

f
(1)
Θ (θ|x(1 : k)) =

1

ψ
, (22)

f
(2)
Θ (θ|x(1 : k)) =

1

λ
| det(J)|, (23)

for a given model density of X(1 : k) and any fixed prior density that is proper, where

ψ =
∫
S(π) dθ is a constant, and λ is calculated by using equation (11).

Note that the both of these two maximizers of the criterion functional F (fΘ, π|fX(1:k))
are free of dependence on the prior density.

Now, we have to choose one from the above alternative solutions to maximizing the
criterion functional F (fΘ, π|fX(1:k)). We employ here the concept of information. For
given x(1 : k) the information of the initial post data density fΘ(θ|x(1 : k)) is defined by

I(fΘ|x(1 : k)) =

∫

S(π)

ln{fΘ(θ|x(1 : k))}fΘ(θ|x(1 : k))dθ. (24)

I(fΘ|x(1 : k)) defined by equation (24) can be regarded as the negative conditional
entropy of Θ with respect to fΘ(θ|x(1 : k)). The greater value of I(fΘ|x(1 : k)) means
that we have larger value of information to predict the value of Θ based on x(1 : k). It
is desirable to find an initial post data density that maximizes the criterion functional
F (fΘ, π|fX(1:k)), and leads to a larger value of I(fΘ|x(1 : k)). The following theorem
gives us a strategy of determining the initial post data density (see Appendix C for
proof):

Theorem 3.2 Under the condition that the initial post data density is proper, we

have

I(f
(2)
Θ |x(1 : k)) ≥ I(f

(1)
Θ |x(1 : k)), (25)

where I(f
(1)
Θ |x(1 : k)) and I(f

(2)
Θ |x(1 : k)) denote the values of information I(fΘ|x(1 : k))

corresponding to equations (22) and (23), respectively.

Theorem 3.2 together with Theorem 3.1 implies that it is a better strategy to deter-
mine the initial post data density by using equation (23).

3.3 General procedure

Suppose we have observations x(1 : n) for a sample X(1 : n) of size n, and the model
density for X(1 : n) is given by equation (1). Assume that we can ensure that the
inferential functions are informative under x(1 : k) by an appropriate permutation of
the observations x(1 : n). Based on the results obtained in the previous subsection, we
obtain a general procedure for the prior-free inference as follows:

Firstly, we calculate the initial post data density fΘ(θ|x(1 : k)) by using equation (23)
together with equation (11). Then, we utilize fΘ(θ|x(1 : k)) as the prior density for the
remaining observations x(k+1 : n), and obtain the final post data density fΘ(θ|x(1 : n))
by using equation (5). Finally, if it is necessary we compute the predictive density for
an unobserved random quantity Y that has the model density fY (y|x(1 : n), θ) by using
equation (6).
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The reason to carry out the prior-free inference by using the two stage constructions
of the post data density is as follows: In the stage of determining the initial post density,
there may be information loss due to a lack of prior information. The information loss
can be minimized by using the proposed procedure. In the stage of calculating the final
post density, the information contained in the additional observations x(k + 1 : n) can
be fully employed, because the use of Bayes’ theorem. Thus, it is desirable to save the
observations for the second stage as many as possible. It should be emphasized that the
number k of observations used in the first stage is the minimum requirement for ensuring
the inferential functions to be informative.

3.4 Comparison between criterion functionals

It can be seen that the newly-introduced criterion functional, defined by equation (19)
together with equation (20), lays the foundations of the frior-free inference. To show the
necessity for introducing it instead of the Lindley’s criterion functional, we compare the
properties of these two criterion functionals as follows:

Firstly, as is shown in Theorem 3.1 and Theorem 3.2, the newly-introduced criterion
functional is concave with respect to the initial post data density fΘ(θ|x(1 : k)) for
a given model density and any fixed prior density that is proper. It was shown in
[19], however, Lindley’s criterion functional identically equals zero under some regular
conditions. So, it seems to be difficult to specify a prior density by maximizing Lindley’s
criterion functional.

Secondly, the Bernardo’s reference prior approach may lead to improper priors when
at least one end point of the support of the prior density is not finite. In such case,
a difficulty will arise because the Lindley’s criterion functional cannot be well-defined.
But this difficulty does not arise in the proposed approach because the maximizer of the
newly-introduced criterion functional is free of independence on a prior, so the newly-
introduced criterion functional can be defined well on any fixed prior density as long as
it is proper.

Finally, as mentioned in Subsection 3.2 both of s(x(1 : k), θ) and t(x(1 : k), θ),
defined by equations (17) and (18) respectively, are functionals of the prior density π(θ),
so from equation (16) we can see that the Lindley’s criterion functional is a more intricate
functional of the prior. Thus, its maximization may be complicated. On the other hand,
for a given model density and any fixed prior, t(x(1 : k), θ) does not depend on the initial
post data density. Thus, from equation (21) it is can be seen that the newly-introduced
criterion functional is defined as a functional of the initial post data density with a simple
structure, so that it can be easy to be manipulated.

3.5 Special procedure for separable models

Let U(1 : n) = {U1, U2, . . . , Un} be a sample for a random variable U . Suppose U(1 : n)
follows model density fU(1:n)(u(1 : n)|θ) with θ being a k-dimensional vector of param-
eters. We consider partition of the sample, U(1 : n) = {U(1 : m), U(m + 1 : n)},
and partition of the parameter vector, θ = {θ(1), θ(2)}, with the dimension of θ(1) being
ℓ (< k) for ℓ ≤ m < n and k − ℓ < n − m. If the model density for U(1 : n) can be
expressed by the form

fU(1:n)(u(1 : n)|θ) = fU(1:m)(u(1 : m)|θ(1), θ(2))fU(m+1:n)(u(m+ 1 : n)|θ(2)), (26)



10 KOKI KYO

then we say that the model density fU(1:n)(u(1 : n)|θ) is separable. The feature of

the model in equation (26) is that the model density fU(m+1:n)(u(m + 1 : n)|θ(2)) for

U(m+ 1 : n), depends only on θ(2).
We can obtain the post data density fΘ(2)(θ(2)|u(m+ 1 : n)) for Θ(2), given u(m+ 1 :

n), and obtain the post data density fΘ(1)(θ(1)|u(1 : m), θ(2)) for Θ(1), given u(1 : m) and
θ(2) by using the procedure of the prior-free inference separately. Then, the post data
density for Θ can be obtained successively by

fΘ(θ|u(1 : n)) = fΘ(1)(θ(1)|u(1 : m), θ(2))fΘ(2)(θ(2)|u(m+ 1 : n)).

Further, when the sample U(1 : n) for U is obtained from another sample, say X(1 : n),
for random variable X through a one-to-one transformation

U(1 : n) = ψ(X(1 : n)), (27)

the model density of U(1 : n) can be derived from that of X(1 : n) by

fU(1:n)(u(1 : n)|θ) = fX(1:n)(x(1 : n)|θ)|( ∂ui

∂xj
)|−1, (28)

where ( ∂ui

∂xj
) denotes the Jacobian matrix of the transformation (27). If the model density

fU(1:n)(u(1 : n)|θ) in equation (28) can be expressed by the separable form expressed by
equation (26), then we say the model density for X(1 : n) separable.

Sometimes, we can simplify the process of obtaining inferential results through a
separated form for a separable model. For illustration we show the following example:

Example 3.1 Consider X(1 : n) as a sample that each Xi is independently dis-
tributed with the same normal density

fXi
(xi|θ) =

1√
2πσ2

exp{− (xi − µ)2

2σ2
}, −∞ < xi <∞ (i = 1, 2, . . . , n),

where θ = (µ, σ)t denotes the parameter vector with µ and σ being the mean and the
standard deviation. We obtain the values u(1 : n) for U(1 : n) by using the transformation

(u1, u2, . . . , un)t = H(x1, x2, . . . , xn)t, (29)

where H denotes the Helmert matrix defined by

H =




1√
n

1√
n

· · · · · · · · · 1√
n

1√
1×2

− 1√
1×2

0 · · · · · · 0
1√
2×3

1√
2×3

− 2√
2×3

0 · · · 0
...

...
...

...
. . .

...
...

...
...

... 0
1√

(n−1)n

1√
(n−1)n

· · · · · · 1√
(n−1)n

− n−1√
(n−1)n




.

It can be verified that from the model density of X(1 : n), the first part U(1 : 1) = U1 of
the sample U(1 : n) follows the model density

fU(1:1)(u1|µ, σ) =
1√

2πσ2
exp{− (u1 −

√
nµ)2

2σ2
}, −∞ < u1 <∞, (30)
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and for i = 2, 3, . . . , n, each Ui follows the model density

fUi
(ui|σ) =

1√
2πσ2

exp{− u2
i

2σ2
}, −∞ < ui <∞

independently. That is, U(2 : n) depends only on σ, its model density is given by

fU(2:n)(u(2 : n)|σ) =
1

(
√

2πσ2)n−1
exp{−

∑n
i=2 u

2
i

2σ2
}. (31)

So, we can see that U(1 : 1) and U(2 : n) are independent of each other, hence the model
density for U(1 : n) can be expressed by the separated form

fU(1:n)(u(1 : n)|θ) = fU(1:1)(U(1 : 1)|µ, σ)fU(2:n)(u(2 : n)|σ).

Since the transformation defined by equation (29) is an orthogonal transformation, we
have

fU(1:n)(u(1 : n)|θ) = fX(1:n)(x(1 : n)|θ).
Therefore, the model density for X(1 : n) is separable.

4 Illustrations

Several examples are given in the present section in order to illustrate the procedure and
performance of the prior-free inference.

4.1 Examples for single parameter case

In this subsection, we show three examples for the case that the model density is defined
on a single parameter. In this case, we put k = 1, thus θ = θ1, z = z1 and so forth.

Example 4.1 Let X(1 : n) be a sample that each Xi is independently distributed
with the same normal density

fXi
(xi|θ) =

1√
2π

exp{− (xi − θ)2

2
}, −∞ < xi <∞ (i = 1, 2, . . . , n),

where θ ∈ (−∞,∞) is the mean as an unknown parameter. Given x1, the inferential
function is defined by

z = ϕ(x1, θ)|x1 =

∫ x1

−∞

1√
2π

exp{− (t− θ)2

2
}dt. (32)

For a given value of θ ∈ (−∞,∞), v = t− θ → −∞ as t→ −∞. Thus, we have

z =

∫ x1−θ

−∞

1√
2π

exp{−v
2

2
}dv.

Hence,

∂z

∂θ
= − 1√

2π
exp{− (θ − x1)

2

2
},

λ =

∫ ∞

−∞

|∂z
∂θ

|dθ =

∫ ∞

−∞

1√
2π

exp{− (θ − x1)
2

2
}dθ = 1.
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It shows that the inferential function defined by equation (32) is fully informative. There-
fore, from equations (23) and (11) we obtain the initial post data density for Θ as

fΘ(θ|x1) =
1√
2π

exp{− (θ − x1)
2

2
}, −∞ < θ <∞.

Moreover, from equation (5) the final post data density for Θ is given by

fΘ(θ|x(1 : n)) =

√
n

2π
exp{−n (θ − x̄)2

2
},

where x̄ = 1
n

∑n
i=1 xi is the sample mean.

Incidentally, for an unobserved random variable Y which follows the normal density

fY (y|θ) =
1√
2π

exp{− (y − θ)2

2
}, −∞ < y <∞,

we obtain the predictive density as

fY (y|x(1 : n)) =

∫ ∞

−∞

fY (y|θ)fΘ(θ|x(1 : n))dθ

=

√
n

2π(n+ 1)
exp{−n(y − x̄)2

2(n+ 1)
}, −∞ < y <∞.

It shows that Y ∼ N(x̄,
√

n+1
n ) for given x(1 : n).

Example 4.2 Let X(1 : n) be a sample, and suppose each Xi is independently
distributed with the same normal density

fXi
(xi|θ) =

1√
2πθ2

exp{− x2
i

2θ2
}, −∞ < xi <∞ (i = 1, 2, . . . , n),

where θ denotes the standard deviation as an unknown parameter. Assume that x1 6= 0,
we define the inferential function as

z = ϕ(x1, θ)|x1 =

∫ x1

−∞

1√
2πθ2

exp{− t2

2θ2
}dt. (33)

For a given value of θ ∈ (0,∞), t
θ → −∞ as t→ −∞. So, we have

∂z

∂θ
= − |x1|√

2πθ2
exp{− x2

1

2θ2
}.

Hence,

λ =

∫ ∞

0

|∂z
∂θ

|dθ =

∫ ∞

0

|x1|√
2πθ2

exp{− x2
1

2θ2
}dθ =

1

2
.

It shows that the inferential function defined by equation (33) is partially informative.
From equations (23) and (11) we obtain the initial post data density of Θ as

fΘ(θ|x1) =

√
2

π

|x1|
θ2

exp{− x2
1

2θ2
}, 0 < θ <∞.
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Further, from equation (5) the final post data density for Θ is obtained as

fΘ(θ|x(1 : n)) =
(
∑n

i=1 x
2
i )

n/2

2(n−2)/2Γ(n/2)

1

θn+1
exp{−

∑n
i=1 x

2
i

2θ2
}.

For an unobserved random variable Y which follows the normal density

fY (y|θ) =
1√

2πθ2
exp{− y2

2θ2
}, −∞ < y <∞,

we obtain the predictive density as

fY (y|x(1 : n)) =

∫ ∞

−∞

fY (y|θ)fΘ(θ|x(1 : n))dθ

=
4√
π

Γ((n+ 1)/2)

Γ(n/2)

( ∑n
i=1 x

2
i∑n

i=1 x
2
i + y2

)n/2

, −∞ < y <∞.

Example 4.3 Assume that X(1 : n) is a sample which each Xi is independently
distributed with the same uniform density

fXi
(xi|θ) =

1

θ
, 0 ≤ xi < θ (i = 1, 2, . . . , n),

where θ ∈ (0,∞) denotes the upper limit which is regarded as an unknown parameter.
Given x1, the inferential function is defined by

z = ϕ(x1, θ)|x1 =

∫ x1

0

fX(t|θ)dt =

∫ x1

0

1

θ
dt =

x1

θ
, θ ∈ (x1,∞). (34)

Then, we have
∂z

∂θ
= −x1

θ2
,

hence,

λ =

∫ ∞

x1

|∂z
∂θ

|dθ =

∫ ∞

x1

x1

θ2
dθ = 1.

Thus, the inferential function defined by equation (34) is fully informative. Further, from
equations (23) and (11) we obtain the initial post data density as

fΘ(θ|x1) =
x1

θ2
, θ ∈ (x1,∞).

Moreover, from equation (5) the final post data density of Θ is given by

fΘ(θ|x(1, n)) =
nxn

max

θn+1
, θ ∈ [xmax,∞),

where xmax = max{x1, x2, . . . , xn}.
For an unobserved random variable Y which follows the uniform density

fY (y|θ) =
1

θ
, 0 ≤ y < θ,
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we obtain the predictive density as follows:

fY (y|x(1 : n)) =

∫ ∞

xmax

fY (y|θ)fΘ(θ|x(1 : n))dθ =

∫ ∞

xmax

nxn
max

θn+2
dθ

=
n

(n+ 1)xmax
, 0 ≤ y <

n+ 1

n
xmax.

It can be seen that the above results in Examples 4.1 and 4.2 agree with the results
obtained by using Jeffreys priors. Example 4.3 is very simple and the result can be
easily obtained by using the proposed approach. However, it may be difficult when some
traditional Bayesian approaches are applied because the model density is not defined by
an explicit function of the parameter.

4.2 Example for multivariate parameter case

In the following example, we continue Example 3.1 and show how to utilize the procedure
of prior-free inference to obtain the post data density for the parameter vector θ = (µ, σ)t.

Example 4.4 From the model density of U(1 : 1) expressed by equation (30), we
obtain the post data density for µ, given u1 and σ, as

fµ(µ|u1, σ) =

√
n

2πσ2
exp{− (

√
nµ− u1)

2

2σ2
}, −∞ < µ <∞.

The results in Example 4.1 imply that given u1 and σ, µ ∼ N( u1√
n
, σ2

n ). Moreover, from

the model density of U(2 : n) expressed by equation (31), we obtain the post data density
for σ, given u(2 : n), as

fσ(σ|u(2 : n)) =
(
∑n

i=2 u
2
i )

(n−1)/2

2(n−3)/2Γ((n− 1)/2)

1

σn
exp{−

∑n
i=2 u

2
i

2σ2
},

by applying the results in Example 4.3. Thus, the post data density of θ = (µ, σ)t is
given by

fΘ(θ|u(1 : n)) = fµ(µ|u(1 : 1), σ)fσ(σ|u(2 : n))

=
n1/2(

∑n
i=2 u

2
i )

(n−1)/2

2(n−2)/2π1/2Γ((n− 1)/2)

1

σn+1
exp{−

∑n
i=2 u

2
i + (

√
nµ− u1)

2

2σ2
}.

Since U(1 : n) is obtained from X(1 : n) by equation (29) which is an one-to-one trans-
formation, the post data density given x(1 : n) is the same as that given u(1 : n), i.e.,
fΘ(θ|x(1 : n)) = fΘ(θ|u(1 : n)). Finally, for an unobserved random variable Y which
follows the normal density

fY (y|θ) =
1√

2πσ2
exp{− (y − µ)2

2σ2
}, −∞ < y <∞,

we obtain the predictive density of Y based on x(1 : n) as

fY (y|x(1 : n)) = c

(
(n+ 1)

∑n
i=2 u

2
i

(n+ 1)
∑n

i=2 u
2
i + (

√
ny − u1)2

)n/2

,

where c = ( n
(n+1)π

∑
n
i=2 u2

i

)1/2 Γ(n/2)
Γ((n−1)/2) .
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It can be verified that the results in Example 4.4 agree with the results obtained by
using Jeffreys priors. It should be noted that our procedure is well systematized and the
procedure using Jeffreys priors is somewhat ad hoc.

5 Methodology for model selection

When a number of contending models are constructed, we have to select one as the best
among them. Recently, many information criteria are introduced for statistical model
selection (for example, see [23]). A well-known and widely applied information criterion
is Akaike information criterion, AIC (see [1, 21, 29]). The definition of AIC is really
simple but it can be applied only to the case that each contending model density is
defined by a specific function. For a case that the likelihood can not be defined, Konishi
and Kitagawa developed generalized information criterion, GIC [22]. In this section,
we introduce a new information criterion by extending the procedure of the prior-free
inference.

5.1 Prior-free information criterion

Consider here X(1 : n) as a random simple that each Xi follows the same model density

fX(xi|θ) with θ being a k-dimensional parameter vector. Let X̃ be a set of m values in

X(1 : n) for k ≤ m < n. The model density for X̃ can be defined based on the model
density fX , then the post data density fΘ(θ|x̃), that is regarded as a functional of fX

for given x̃, can be obtained by using the procedure of the prior-free inference. For an
unobserved random quantity, Y , which follows the model density fX(y|θ), the predictive
density is given by

p(y|x̃) =

∫
fX(y|θ)fΘ(θ|x̃)dθ.

We attempt to evaluate the model density fX through evaluating the predictive density
p(y|x̃) because p(y|x̃) can also be regarded as a functional of fX .

Let gX(y) and gX̃(x̃) denote the true densities of Y and X̃ , respectively. For given
x̃, the Kullback-Leibler information between gX(y) and p(y|x̃) is as

IC
K(gX ; p|x̃) =

∫
ln{ gX(y)

p(y|x̃)}gX(y)dy.

Then, the expectation of IC
K(gX ; p|x̃) with respect to gX̃(x̃) is given by

E{IC
K(gX ; p|x̃)} =

∫
IC
K(gX ; p|x̃)gX̃(x̃)dx̃ = c+ EIP,

where c =
∫

ln{gX(y)}gX(y)dy is a quantity that does not depend on p(y|x̃), and EIP
is the expected information for prediction defined by

EIP = −
∫

ln{p(y|x̃)}gX(y)gX̃(x̃)dydx̃. (35)

It is advisable to obtain a predictive density leading to a smaller value of E{IC
K(gX ; p|x̃)},

or equivalently a smaller value of EIP .
In order to estimate the value of EIP in equation (35), we draw a random sample

(called the re-sample) of size m from X(1 : n) without replacement in once re-sampling
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and repeat such re-sampling N times. Let X̃(i) = {X(i)
1 , X

(i)
2 , . . . , X

(i)
m } be the i-th

re-sample, and let {X(i)
m+1, X

(i)
m+2, . . . , X

(i)
n } be the elements of X(1 : n) except X̃(i).

From the law of large numbers, an estimate for twice EIP , which is called prior-free
information criterion (PFIC), is obtained as

PFIC = − 2

N(n−m)

N∑

i=1

n∑

j=m+1

ln{p(x(i)
j |x̃(i))}, (36)

where x̃(i) and x
(i)
j denote the observations for X̃(i) and X

(i)
j , respectively. Obviously,

PFIC defined by equation (36) is as a functional of the model density fX . Thus, we
can use PFIC as a criterion for evaluating the model density for X(1 : n). It can be seen
that a model is better than the others if it leads to a smaller value of PFIC. Such rule of
model selection is called minimum PFIC method.

Note that we only give here a formula of PFIC for a random sample. The formula of
PFIC may depend on a sample scheme, but the basic consideration may be eternal.

5.2 Selection of regression models

Consider a linear regression model as

x
(i)
j =

L∑

ℓ=1

w
(i)
jℓ βℓ + e

(i)
j (j = 1, 2, . . . ,m), (37)

for the observations x̃(i) = {x(i)
1 , x

(i)
2 , . . . , x

(i)
m } of the i-th re-sample X̃(i) with m ≥

L + 1. Here, w
(i)
jℓ is a given regressor, βℓ is an unknown regression coefficient, e

(i)
j is an

error term. As the usual case, we assume that the error terms are uncorrelated normal
random variables distributed with zero mean and unknown variance σ2. Redefining by

x̃(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
m )t a vector of the observations for ith re-sample, the regression

model (37) can be expressed as

x̃(i) = W (i)β + ε(i), (38)

where W (i) is an m × L matrix with rank L, β = (β1, β2, · · · , βL)t is a vector of the

regression coefficients, ε(i) = (e
(i)
1 , e

(i)
2 , . . . , e

(i)
m )t is an random vector distributed with

N(0, σ2Im).
In order to simplify the procedure, we find an orthogonal matrix H(i) =

((H
(i)
1 )t|(H(i)

2 )t)t to reduce the regression model (38) into a separated form:

H
(i)
1 x̃(i) = R(i)β +H

(i)
1 ε(i),

H
(i)
2 x̃(i) = H

(i)
2 ε(i),

where R(i) is an L×L right-trigonometric matrix. Thus, from the properties of orthogonal

matrix, we have H(i)ε(i) ∼ N(0, σ2Im), and we can see also that H
(i)
1 ε(i) ∼ N(0, σ2IL)

and H
(i)
2 ε(i) ∼ N(0, σ2Im−L) are independent of each other.

By using the procedure of the prior-free inference, we obtain the post data density
for β given x̃(i) and σ as follows:

fβ(β|σ, x̃(i)) = (
1√

2πσ2
)L| det(R(i))| exp{−ai(β)

2σ2
},
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and the post data density for σ given x̃(i) is

fσ(σ|x̃(i)) =
(bi)

(m−L)/2

2(m−L−2)/2Γ((m− L)/2)σm−L+1
exp{− bi

2σ2
}.

Moreover, for j = m+1,m+2, . . . , n, the predictive distribution density of X
(i)
j is given

by

p(x
(i)
j |x̃(i)) = (

dij

πbi
)1/2 Γ((m− L+ 1)/2)

Γ((m− L)/2)

×(1 +
dij(x

(i)
j − cij)

2

bi
)−(m−L+1)/2 (39)

In the above equations, ai(β), bi, cij , and dij are defined, respectively, as the follows:

ai(β) = (R(i)β −H
(i)
1 x̃(i))t(R(i)β −H

(i)
1 x̃(i)),

bi = (H
(i)
2 x̃(i))tH

(i)
2 x̃(i),

cij = (w
(i)
j )t(R(i))−1H

(i)
1 x̃(i),

dij = (1 + (w
(i)
j )t((R(i))t(R(i)))−1w

(i)
j )−1,

where w
(i)
j = (w

(i)
j1 , . . . , w

(i)
jL)t is the vector of the regressors corresponding to x̃(i). Thus,

PFIC for the model can be obtained by using equations (36) and (39).

5.3 Simulation study

In order to examine the performance of the minimum PFIC method, we carried out a
simulation study. The data used here are generated by using the polynomial of degree
three:

xt = −10 + 0.2t− 0.09t2 + 0.002t3 + rt, (t = 1, 2, . . . , n), (40)

which can be regarded as the true distribution, where rt is generated by using the stan-
dard normal random numbers. We fit the polynomial regression model

xt =

L∑

ℓ=0

tℓβℓ + et, (t = 1, 2, . . . , n)

to the data generated by equation (40), where L denotes the degree of the model, and et

is a random error term. The probability distribution for the error terms in this model is
the same as that in the model (37).

Here, we compare our minimum PFIC method with other methods such as the min-
imum AIC method (see [21] and [29]) and the minimum BIC method (see [30]). The
values of PFIC, AIC and BIC are calculated respectively for L = 0, 1, . . . , 5. Then, we
can estimate the model degrees of by using the minimum PFIC, AIC and BIC methods.
Such experiment was repeated 1000 times with the size of re-sample being m = 6 and
the times of re-sampling for each experiment being N = 1000.

Table 5.1 and Table 5.2 show the frequencies of the model degrees determined by
using each method for n = 30 and n = 60, respectively. As shown in the tables, the
model degrees determined by using the minimum PFIC method agree with the true
model degree perfectly but the others are not. The result shows that the performance of
minimum PFIC method is obviously better than that of the others, and it can be seen
that the minimum PFIC method works well even for a small sample.
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Table 5.1: Frequencies of estimated model degree (n = 30).

model
order 0 1 2 3 4 5

PFIC 0 0 0 1000 0 0
AIC 0 0 0 725 166 109
BIC 0 0 0 880 86 34

Table 5.2: Frequencies of estimated model degree (n = 60).

model
order 0 1 2 3 4 5

PFIC 0 0 0 1000 0 0
AIC 0 0 0 752 142 106
BIC 0 0 0 934 46 20

6 Concluding remarks

A new procedure of statistical inference, named by the prior-free inference, was intro-
duced for developing objective Bayesian analysis based on an information-theoretic ap-
proach. The feature of this new approach is that it is essentially a Bayesian method but
it may be free of dependence on a prior distribution for unknown parameters. Thus,
this approach does not only have the advantages of the Bayesian approach but also can
avoid the difficulty of the traditional Bayesian approach encounters due to a lack of prior
information. A methodology, named by the minimum PFIC method, for model selection
was also developed by utilizing a newly-introduced information criterion, PFIC, based
on the extension of the procedure for prior-free inference. The result of simulation study
shown that the performance of minimum PFIC method is very good.

An important problem is the relation between our prior-free inference and Fisher’s
fiducial approach. It can be verified that for models with a single parameter that has
a sufficient statistic, these two approaches can lead to the same result, otherwise our
prior-free inference is better than Fisher’s fiducial approach. Further, it is well-known
that Fisher’s fiducial approach maybe difficult for multivariate parameter cases.

Nowadays many objective Bayesian approaches use Jeffreys priors. Sometimes, the
procedure of the prior-free inference and that using Jeffreys priors may lead to a same
result. However, it can be seen that the procedure of prior-free inference is well sys-
tematized and the procedure using Jeffreys is somewhat ad hoc. Moreover, a number of
objections can be made to the Bayesian procedure using Jeffreys priors, the most im-
portant of which is that it depends on the values of the observed data. Such objection
is reasonable, perhaps, because the prior distribution should only represent the informa-
tion prior to the observed data, it can not be influenced by the data. Sometimes, the
Bayesian procedure using Jeffreys priors will violate the likelihood principle, and it is
difficult to apply the procedure to multivariate parameter cases. Also, there are diffi-
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culties in Bernardo’s reference priors approach using the Lindley’s criterion functional.
Such difficulties can be overcome by the use of the procedure of prior-free inference.
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Appendix A: proof of Lemma 3.1

Under the conditions C1 and C2, we have λ =
∫
S(fZ |x(1:k))

dz from equations (10) and (11).

Thus, the proof is completed from the fact that S(fZ |x(1 : k)) ⊆ [0, 1] × [0, 1] × · · · × [0, 1].

Appendix B: proof of Theorem 3.1

From equation (20), we have

IC
K(π; fΘ|x(1 : k)) =

∫

S(π)

ln{
π(θ)

fΘ(θ|x(1 : k))
}

π(θ)

fΘ(θ|x(1 : k))
fΘ(θ|x(1 : k))dθ.

By applying equation (4), the above equation can be rewritten as

IC
K(π; fΘ|x(1 : k)) =

∫

S(π)

ln{φ(x(1 : k), θ)}φ(x(1 : k), θ)fΘ(θ|x(1 : k))dθ, (41)

where

φ(x(1 : k), θ) =
h(x(1 : k))

fX(1:k)(x(1 : k)|θ)
.
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For a given model density fX(1:k)(x(1 : k)|θ), if π(θ) is fixed in a proper density, then the marginal
density h(x(1 : k)) is fixed by equation (3). Hence, the function φ(x(1 : k), θ) in equation (41)
cannot be changed through fΘ(θ|x(1 : k)). Thus, we have to maximize IC

K(π; fΘ|x(1 : k)) with
respect to fΘ(θ|x(1 : k)). It is well-known that a solution to maximizing IC

K(π; fΘ|x(1 : k)) can
be obtained when we put

f
(1)
Θ (θ|x(1 : k)) = c1 (42)

with c1 = 1/ψ being a constant. Thus, the solution given by equation (22) is obtained.
On the other hand, by applying equation (12) to equation (41), we have

IC
K(π; fΘ|x(1 : k)) =

∫

S(π)

ln{φ(x(1 : k), θ)}φ(x(1 : k), θ)fZ(z|x(1 : k))|det(J)|dθ

=

∫

S(fZ |x(1:k))

ln{φ(x(1 : k), θ)}φ(x(1 : k), θ)fZ(z|x(1 : k))dz.

It is obvious that IC
K(π; fΘ|x(1 : k)) can also be maximized when we put fZ(z|x(1 : k)) = c2 or

equivalently
f

(2)
Θ (θ|x(1 : k)) = c2 |det(J)| (43)

from equation (12) with c2 = 1/λ being a constant. Then, the solution given by equation (23)
is obtained from equation (43). Moreover, from equation (19), we can see that F (fΘ, π|fX(1:k))
is maximized as long as IC

K(π; fΘ|x(1 : k)) is maximized. Thus, Theorem 3.1 is proved.

Appendix C: proof of Theorem 3.2

If the value of ψ =
∫
S(π)

dθ is finite, then the value of I(fΘ|x(1 : k)) is given by

I(f
(1)
Θ |x(1 : k)) = ln{c1}, (44)

for the solution given by equation (42). On the other hand, the value of I(fΘ|x(1 : k)) is as

I(f
(2)
Θ |x(1 : k)) = c2

∫

S(π)

ln{c2|det(J)|}| det(J)|dθ

= c2

∫

S(fZ |x(1:k))

ln{c2| det(J)|}dz (45)

for the solution given by equation (23). It is obvious that

I(f
(2)
Θ |x(1 : k)) − I(f

(1)
Θ |x(1 : k)) = c2

∫

S(π)

ln{
c2|det(J)|

c1
}| det(J)|dθ > 0.

from equations (44) and (45).

Further, if the value of ψ =
∫
S(π)

dθ is infinite, then I(f
(1)
Θ |x(1 : k)) = −∞ as c1 → 0 under

the assumption that fΘ(θ|x(1 : k)) is proper. On the other hand, from the conditions C1 and

C2, equations (11) and (45), we can see that I(f
(2)
Θ |x(1 : k)) must be finite. Thus, we have

I(f
(2)
Θ |x(1 : k)) − I(f

(1)
Θ |x(1 : k)) = ∞. So, Theorem 3.2 is proved.


