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1 Introduction

The pioneering work of Markowitz [13] introduced the mean-variance framework for
portfolio selection and risk management. The mean-variance approach has become the
foundation of modern finance theory and inspired a substantial number of extensions
and applications in literature. From a theoretical point of view, there are two challenges.
The first is the extension of the classical single-period mean-variance analysis to a multi-
period or continuous-time mean-variance analysis. There is a considerable volume of
literature on dynamic asset allocation. The main focus, however, is on maximizing some
time-additive utility of terminal wealth and/or consumption (see, e.g., Merton [15, 16],
Samuelson [18] and Smith [20]). At the same time, enormous difficulties in solving
dynamic mean-variance problems were reported (see, e.g., Chen, Jen and Zionts [4]).
Consequently, Markowitz’s mean-variance formulation has not been fully exploited in
dynamic cases for quite a long time since the dynamic mean-variance problems were set
in a very general approach, by Schweizer [19] among others. Up to recently, the dynamic
mean-variance problems have been solved analytically by Li and Ng [12] and Zhou and
Li [21], respectively, in a discrete-time and a continuous-time frameworks.

The second challenge lies on appropriate measures of risk. The classical risk measure
is the variance, as used in the mean-variance approach. However, the variance as a
measure of risk has the drawback that it penalizes equally both upside and downside
movement in the portfolio value. Realizing this, Markowitz [14] proposed semivariance
as an alternative that measures risk as deviations below the mean only. Unfortunately
he did not resolve the difficulties of the mean-semivariance framework caused by the
non-differentiability in the setup. Consequently, other alternatives have been suggested,
such as downside risk (see, e.g., Fishburn [5] and Harlow [9]), coherence risk (see, e.g.,
Artzner et al. [1]), the limited expected loss (see, e.g., Basak and Shapiro [2]), and
so on. Among them, value-at-risk (VaR) (see, e.g., Jorior [11]) is the most prominent
risk measure and has become an industry benchmark, which has been accepted by the
regulators and banks in more than 100 countries around the world for controlling market
risk.

Recently, Emmer, Klüppelberg and Korn [6, 7] developed the classic mean-variance
method along the two clues mentioned above. In continuous-time financial markets
with a Black-Scholes setting, they proposed a VaR-based related risk concepts known as
capital-at-risk (CaR), which includes mainly three kinds of measures. Under constant re-
balanced portfolio (CRP) investment strategies, they formulated two mean-CaR portfolio
optimization models using the first two kinds of CaR as a replacement of the variance
in a continuous-time mean-variance portfolio selection model, and derived analytically
the optimal solutions for their models and the mean-variance model. Their solutions,
however, involve a parameter that is a solution of a nonlinear algebra equation. In this
sense, their solutions are not close-form. A possible reason for this is that they maximize
the expected terminal wealth under the constraint that the CaR or the variance of the
terminal wealth is not higher than a prescribed level.

In this paper, we reformulate the continuous-time mean-CaR portfolio selection mod-
els so as to minimize the risk measured by CaR under the constraint that the expected
terminal wealth is not lower than a pre-assigned level. We aim at explicit expressions for
optimal solutions and efficient frontiers in closed-form. We solve the mean-CaR model
associated with the third kind of CaR and compare the three mean-CaR models. In ad-
dition to closed-form solutions, our approach has the advantage of easily comparing the



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 35–49 37

optimal strategies to different mean-CaR models and the convenience of solving different
mean-CaR models as they have the same set of feasible portfolios and hence can use the
same decomposition of the feasible set. It is believed that the approach can be applied
to some other continuous-time portfolio selection problems.

2 The financial market and CaR

Consider a standard Black-Scholes type financial market in which n + 1 assets (or secu-
rities) are traded continuously in the horizon [0, T ] and indexed by i = 0, 1, . . . , n. One
of the assets, say i = 0, is the riskless bond whose price process P0(t) evolves according
to the following (deterministic) ordinary differential equation

dP0(t) = P0(t)rdt for t ∈ [0, T ],

where r is the rate of interest and is assumed to be constant. The other n assets are risky
stocks whose price processes P1(t), . . . , Pn(t) follow the following stochastic differential
equations

dPi(t) = Pi(t)



bidt +

n
∑

j=1

σijdBj(t)



 for t ∈ [0, T ], i = 1, . . . , n,

where b = (b1, . . . , bn)′ is the vector of stock-appreciation rate, σ = (σij)n×n is the matrix
of stock-volatilities and B(t) = (B1(t), . . . , Bn(t))′ is a standard n-dimensional Brownian
motion. Here b and σ are assumed to be constant in time. As usual, we further assume
that σ is invertible and that bi ≥ r for each i.

Let πi(t) be the fraction of the wealth Wπ(t) invested in asset i at time t. Let
π(t) = (π1(t), . . . , πn(t))′ ∈ R

n. Then π0(t) = 1 − π(t)′1, where 1 = (1, . . . , 1)′ is the
vector whose components are all units. The portfolio process π(t) is called a portfolio
strategy.

Throughout the paper, we assume that transaction costs and consumption are not
considered and that portfolio strategy π(t) is self-financing. Thus

dW π(t) =Wπ(t) {((1 − π(t)′1)r + π(t)′b)dt + π(t)′σdB(t)}

with Wπ(0) = w > 0 being the initial wealth of an investor.
In what follows, we restrict ourselves to constant-rebalanced portfolio (CRP) strate-

gies. A CRP strategy is an investment strategy which keeps a fixed fraction of the wealth
in each of the underlying stocks from time to time. Therefore, a CRP strategy employs
the same investment vector π(t) = π = (π1, . . . , πn)′ at each t in the planning horizon
[0, T ]. Such an investment strategy does not imply that there is no trading, since at each
time instant t the investment proportions are rebalanced back to the vector π. See an
example in Helmbold et al. [10] for the power of CRP investment strategies.

Standard Itô integral and the fact that E[esBj(t)] = ets2/2, where E is the expectation
operator, yield the following explicit formulae for the wealth process Wπ(t) for all t ∈
[0, T ] (see, e.g., [6]).

Wπ(t) = w exp((π′(b − r1) + r − ‖π′σ‖2/2)t + π′σB(t)), (2.1)

E[Wπ(t)] = w exp((π′(b − r1) + r)t), (2.2)

V ar[Wπ(t)] = w2 exp(2(π′(b − r1) + r)t)(exp(‖π′σ‖2t) − 1), (2.3)
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where ‖ · ‖ denotes the Euclidean norm in R
n and V ar is the variance operator.

Associated with a real number α ∈ (0, 1), initial wealth w, time horizon T and
portfolio π, we denote by ρ0(α, π, w, T ) the α-quantile of the terminal wealth Wπ(T ),
that is, it is implicitly defined by

P (Wπ(T ) ≤ ρ0(α, π, w, T )) = α, (2.4)

where P (·) is the probability. Using the notation ρ0, the expected shortfall or more
precisely the conditional tail expectation of Wπ(T ) is defined as

ρ1(α, π, w, T ) = E[Wπ(T )|Wπ(T ) ≤ ρ0(α, π, w, T )]. (2.5)

Furthermore, the conditional tail semi-standard derivation of Wπ(T ) is defined as

ρ2(α, π, w, T ) =
√

E[(Wπ(T ))2|Wπ(T ) ≤ ρ0(α, π, w, T )]. (2.6)

Using the risk measures ρk(α, π, w, T ), k = 0, 1, 2, Emmer, Klüppelberg and Korn [7]
defined the Capital-at-Risk with respect to ρk(α, π, w, T ) as its difference to the terminal
wealth of the pure bond strategy.

Definition 2.1 (Capital-at-Risk) The Capital-at-Risk (CaR) of a CRP invest-
ment strategy π with respect to ρk (k = 0, 1, 2) with initial wealth w and time horizon
T is the difference between the terminal wealth of the pure bond strategy and the risk
measure ρk, i.e.,

CaRk(π) := w exp(rT ) − ρk(α, π, w, T ). (2.7)

Let zα be the α-quantile of the standard normal distribution and Φ the distribution
function of a standard normal random variable.

Since π′σB(T )/(‖π′σ‖
√

T ) is a standard normal random variable, by using (2.1) and
(2.4)–(2.7), we can express explicitly the risk measures ρk, k = 0, 1, 2 as (see [7])

ρ0(α, π, w, T ) = w exp
(

(

π′(b − r1) + r − ‖π′σ‖2/2
)

T + zα‖π′σ‖
√

T
)

, (2.8)

ρ1(α, π, w, T ) = w exp ((π′(b − r1) + r)T )
Φ(zα − ‖π′σ‖

√
T )

α
, (2.9)

ρ2(α, π, w, T ) = w exp
(

(π′(b − r1) + r + ‖π′σ‖2/2)T
)

√

Φ(zα − 2‖π′σ‖
√

T )

α
. (2.10)

Consequently, closed-form expressions of CaRk(π) for k = 0, 1, 2 can be given.
To avoid discussions of some subcases, throughout this paper we make the following

assumption.

Assumption 2.1 The parameter α satisfies α < 0.5 and hence zα < 0.

Denote by ϕ the density function of a standard normal random variable.

Lemma 2.1 Let x > 0. Then
(

1

x
− 1

x3

)

ϕ(x) < Φ(−x) <
ϕ(x)

x
.

Proof See Gänssler and Stute [8]. �
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3 Mean-CaR portfolio selection

Emmer, Klüppelberg and Korn [6] solved the portfolio optimization problem that maxi-
mizes the expected terminal wealth under a given level of CaR0, i.e.,

max
π∈Rn

E[Wπ(T )] subject to CaR0(π) ≤ C. (3.1)

Emmer, Klüppelberg and Korn [7] solved the portfolio optimization problem that maxi-
mizes the expected terminal wealth under a given level of CaR1, i.e.,

max
π∈Rn

E[Wπ(T )] subject to CaR1(π) ≤ C. (3.2)

The two models are analogues of the Markowitz’s mean-variance model that maximizes
the expected terminal wealth under a given level of the variance of the terminal wealth. In
this paper, we solve the portfolio optimization problem associated with CaR2. However,
our model is to minimize CaR2 of the terminal wealth under a given level of the expected
terminal wealth. This is an analogue of the Markowitz’s mean-variance model that
minimizes the variance of the terminal wealth under a given level of the expected terminal
wealth. As an application of our method, we also solve the portfolio optimization models
that minimizes respectively CaR0 and CaR1 under a given level of the expected terminal
wealth. We refer the three portfolio optimization models as mean-CaR models.

3.1 Mean-CaR2 portfolio selection

Consider the following mean-CaR model associated with CaR2:

min
π∈Rn

CaR2(π) subject to E[Wπ(T )] ≥ C, (3.3)

where C > 0 is a predetermined level of the expected terminal wealth E[Wπ(T )]. Since
the pure bond policy (i.e., the one that invests all of the wealth in the bond for the entire
investment period) yields a deterministic terminal wealth of w exp(rT ), throughout this
paper we assume that the expected wealth level C satisfies the following lower bound
condition:

C ≥ w exp(rT ). (3.4)

Obviously, this is a reasonable assumption, for the solution of problem (3.3) under C <
w exp(rT ) is foolish for rational investors.

In the following we derive analytically the best CRP investment strategy; i.e., the op-
timal solution to problem (3.3). As a by-product, we also obtain a closed-form expression
for the efficient frontier of the mean-CaR model.

Let θ := ‖σ−1(b − r1)‖ and denote a+ = max{a, 0} for a real number a.

Theorem 3.1 Assume that b 6= r1. Assume furthermore that C satisfies

C ≥ w exp(rT + (θ
√

T + zα)+θ
√

T ). (3.5)

Then the unique optimal policy of the mean-CaR model (3.3) is

π∗ = (ε∗/θ) (σσ′)−1(b − r1), (3.6)

where
ε∗ = (ln(C/w) − rT ) /(θT ). (3.7)
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The corresponding expected terminal wealth is E[Wπ∗

(T )] = C and Capital-at-Risk is

CaR2(π
∗) = w exp(rT ) − C

√

exp
(

ε∗2T
)

Φ(zα − 2ε∗
√

T )/α. (3.8)

Proof With the help of expressions (2.2) and (2.10) and the definition of CaR2,
problem (3.3) cab be equivalently written as







max w exp
(

(π′(b − r1) + r + ‖π′σ‖2/2)T
)

√

Φ(zα − 2‖π′σ‖
√

T )/α

s.t. w exp ((π′(b − r1) + r)T ) ≥ C.
(3.9)

The feasible set of the problem is

Π = {π : (b − r1)′πT ≥ ln(C/w) − rT } .

Given ε > 0, the intersection of Π and the ellipsoid ‖π′σ‖ = ε is

Π(ε) = {π : ‖π′σ‖ = ε, (b − r1)′πT ≥ ln(C/w) − rT } .

The hyperplane (b − r1)′πT = ln C
w − rT is tangent to the ellipsoid ‖π′σ‖ = ε if and

only if εθT = ln(C/w) − rT , that is ε = ε∗ := (ln(C/w) − rT ) /(θT ) > 0. Consequently
Π(ε) = ∅ if ε < ε∗ and hence Π =

⋃

ε≥ε∗

Π(ε). Thus problem (3.9) is equivalent to the

following bilevel optimization problem

max
ε≥ε∗

max
π∈Π(ε)

w exp
(

(π′(b − r1) + r + ε2/2)T
)

√

Φ(zα − 2ε
√

T )/α. (3.10)

For each fixed ε ≥ ε∗, we solve the inner-level optimization problem

max
π∈Π(ε)

w exp
(

(π′(b − r1) + r + ε2/2)T
)

√

Φ(zα − 2ε
√

T )/α

or equivalently

max
π∈Π(ε)

(b − r1)′π. (3.11)

The unique optimal solution is the tangent point

π∗
ε = (ε/θ)(σσ′)−1(b − r1)

of the hyperplane that parallels (b − r1)′πT = ln C
w − rT to the ellipsoid ‖π′σ‖ = ε,

with maximum (b− r1)′π∗
ε = εθ. Therefore, we obtain the solution of problem (3.10) by

solving the problem

max
ε≥ε∗

w exp
(

(εθ + r + ε2/2)T
)

√

Φ(zα − 2ε
√

T )/α. (3.12)

Consider the functions h on [0, +∞) defined by

h(ε) = 2εθT + ε2T + ln
(

Φ(zα − 2ε
√

T )
)

.
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Noting 1 − Φ(x) = Φ(−x) and ϕ(−x) = ϕ(x), setting x = 2ε
√

T − zα in the second
inequality in Lemma 2.1 yields ϕ(zα − 2ε

√
T ) > Φ(zα − 2ε

√
T )(2ε

√
T − zα). Thus

h′(ε) = 2θT + 2εT +
(−2

√
T )ϕ(zα − 2ε

√
T )

Φ(zα − 2ε
√

T )
< 2

√
T
[

θ
√

T + ε
√

T − (2ε
√

T − zα)
]

= 2
√

T (θ
√

T + zα − ε
√

T ).

If θ
√

T +zα ≤ 0, then obviously h′(ε) < 0 for ε ≥ 0. If θ
√

T +zα > 0, then condition (3.5)
implies that ε∗ ≥ (θ

√
T + zα)/

√
T and hence h′(ε) < 0 for ε ≥ ε∗. Thus, function h

is strictly decreasing when ε ≥ ε∗. Consequently, problem (3.12)’s objective function,
equal to exp ((h(ε) + 2rT − lnα)/2), is strictly decreasing when ε ≥ ε∗. Therefore, the
optimal solution of problem (3.12) is the unique ε∗. This completes the proof. �

As an immediate consequence, the analytic result in Theorem 3.1 provides an explicit
relation between the optimal Capital-at-Risk and the expected terminal wealth. Letting
ξ := E[Wπ∗

(T )], we have

CaR2(ξ) = werT − ξ

√

√

√

√

√

√

1

α
exp







(

ln ξ
w − rT

)2

θ2T






Φ



zα −
2
(

ln ξ
w − rT

)

θ
√

T



 (3.13)

for ξ ≥ w exp(rT + (θ
√

T + zα)+θ
√

T ). The above relationship is known as the efficient
frontier of the mean-CaR model associated with CaR2 in mean-CaR space.

3.2 Mean-CaR1 portfolio selection

Consider the following mean-CaR model associated with CaR1:

min
π∈Rn

CaR1(π) subject to E[Wπ(T )] ≥ C, (3.14)

where C, as in model (3.3), is again the predetermined level of the expected terminal
wealth E[Wπ(T )] and satisfies condition (3.4).

Using a quite similar derivation as that in the proof of Theorem 3.1, we can also
obtain a closed-form solution for problem (3.14), which is summarized by the following
theorem stated without proof.

Theorem 3.2 Assume that b 6= r1. Assume furthermore that C satisfies (3.5). Then
the unique optimal policy of the mean-CaR model (3.14) is

π∗ = (ε∗/θ) (σσ′)−1(b − r1), (3.15)

where

ε∗ = (ln(C/w) − rT ) /(θT ). (3.16)

The corresponding expected terminal wealth is E[Wπ∗

(T )] = C and Capital-at-Risk is

CaR1(π
∗) = w exp(rT ) − CΦ(zα − ε∗

√
T )/α. (3.17)



42 ZHONG-FEI LI, KAI W. NG AND XIAO-TIE DENG

Consequently, the efficient frontier of the mean-CaR model associated with CaR1 in
mean-CaR space is given by

CaR1(ξ) = werT − ξ

α
Φ

(

zα − ln ξ
w − rT

θ
√

T

)

(3.18)

for ξ := E[Wπ∗

(T )] ≥ w exp(rT + (θ
√

T + zα)+θ
√

T ).
It should be pointed out that although Emmer, Klüppelberg and Korn [7] also ob-

tained a solution to (3.2) that has the same representation as (3.15), the parameter
ε∗ however was not obtained explicitly as in (3.16). In fact, in their formulation ε∗ is
estimated as a value between two expressions representing two real numbers.

3.3 Mean-CaR0 portfolio selection

Consider the following mean-CaR model associated with CaR0:

min
π∈Rn

CaR0(π) subject to E[Wπ(T )] ≥ C, (3.19)

where C, as in problem (3.3), is again the predetermined level of the expected terminal
wealth E[Wπ(T )] and satisfies condition (3.4).

The solution to the above optimization problem (3.19) is summarized in the following
theorem. We omit the proof since it is very similar to the proof of Theorem 3.1.

Theorem 3.3 Assume that b 6= r1. Then the unique optimal policy of mean-CaR
model (3.19) is

π∗ = (ε∗/θ) (σσ′)−1(b − r1), (3.20)

where
ε∗ = max

{

(ln(C/w) − rT ) /(θT ), θ + zα/
√

T
}

. (3.21)

The corresponding expected terminal wealth is

E[Wπ∗

(T )] = w exp (ε∗θT + rT ) = max
{

C, w exp
(

rT + θT
(

θ + zα/
√

T
))}

(3.22)

and the Capital-at-Risk is

CaR0(π
∗) = w exp(rT )

[

1 − exp
(

ε∗θT − ε∗2T/2 + zαε∗
√

T
)]

. (3.23)

Based on this result, the efficient frontier of the mean-CaR model associated with
CaR0 in mean-CaR space is given by

CaR0(ξ) = w exp(rT ) − ξ exp

(

ln(ξ/w) − rT

θT

(

zα

√
T − ln(ξ/w) − rT

2θ

))

(3.24)

for ξ := E[Wπ∗

(T )] ≥ w exp

(

rT +
(

θ + zα/
√

T
)+

θT

)

.

We noted that the part of the efficient frontier corresponding to those C satisfying

w exp(rT ) ≤ C ≤ w exp

(

rT +
(

θ + zα/
√

T
)+

θT

)

degenerates to a single point where ξ = w exp

(

rT +
(

θ + zα/
√

T
)+

θT

)

in mean-CaR

space. Hence the whole efficient frontier starts from this point.
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4 A comparison of the mean-CaR models

Based on the results in the previous section, in this section we compare the optimal
behaviors of our mean-CaR0, mean-CaR1, and mean-CaR2 models.

(1) For any given expected terminal wealth level C ≥ C0 := w exp

(

rT+

θ
√

T
(

θ
√

T + zα

)+
)

, the three mean-CaR models have the same optimal strategy which

does not depend on the confidence level α and the same expected terminal wealth which
is equal to the lowest permissible wealth C. When the given expected terminal wealth
level C is lower than C0, the optimal policy of the mean-CaR0 model does not dependent
on the expected terminal wealth level C but depends on the the confidence level α.

(2) For each mean-CaR model, the optimal fraction of wealth invested in risky assets
π∗ is increasing with the expected terminal wealth level C, indicating that a higher
expected terminal wealth level requires more investment in risky assets. (In the low level
region C ≤ C0, the optimal stock weights of the mean-CaR0 model are invariant with
the expected terminal wealth level.)

(3) For the mean-CaR2 and the mean-CaR1 models, the optimal fraction of wealth
invested in risky assets π∗ is decreasing with the investment horizon T , exhibiting the
reverse time-diversification effect: an investor allocates less to stocks when confronted
with a longer investment horizon. For the mean-CaR0 model, however, the optimal
fraction of wealth invested in stocks first decreases with T in the region T ≤ T0 :=
(

−zαθ+
√

(zαθ)2+4(r+θ2) ln(C/w)

2(r+θ2)

)2

, exhibiting the reverse time-diversification effect in the

region of short investment horizons T ≤ T0, and then increases with T in the region
T ≥ T0, exhibiting the time-diversification effect in the region of long investment horizons
T ≥ T0.

(4) For each mean-CaR model, CaR of the optimal strategy is decreasing with confi-
dence level α; that is, smaller risk measured by CaR is exposed at the expense of higher
confidence level.

(5) For each mean-CaR model, roughly the CaR of the optimal strategy is first increas-
ing and then decreasing with time horizon T , implying that more (less) risk measured by
CaR is exposed as the horizon extends in the small (large) region of short (long) horizons.
This will be illustrated in the example of the next section.

(6) As to be expected, in mean-CaR spaces, the three mean-CaR efficient frontiers
are all strictly increasing and concave, where the concavity of the mean-CaR0 efficient
frontier is true at least in the region

ξ ≥ w exp
(

rT +
(

θ
√

T + zα

)

θ
√

T +
(

√

1/4 + 1/(θ2T ) − 1/2
)

θ2T
)

.

(7) The mean-CaR1 efficient frontier is higher than the mean-CaR2 efficient frontier,
which, in turn, is higher than the mean-CaR0 efficient frontier; that is, for each ξ =

E[Wπ∗

(T )] ≥ w exp

(

rT +
(

θ
√

T + zα

)+

θ
√

T

)

, CaR1(ξ) ≥ CaR2(ξ) ≥ CaR0(ξ). In

other words, for the same expected terminal wealth level, the optimal strategy of the
mean-CaR1 model has larger CaR than the one of the mean-CaR2 model, which in
turn has larger CaR than the one of the mean-CaR0 model. In fact, it holds that
CaR1(π) ≥ CaR2(π) ≥ CaR0(π) for general strategies π; see Corollary 2.4 of Emmer,
Klüppelberg and Korn [7].
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(8) Each of the three mean-CaR efficient frontiers depends only on the stocks via the
norm ‖σ−1(b − r1)‖ and has no explicit dependence on the number of different stocks.
Therefore, Theorems 3.1, 3.2 and 3.3 can be interpreted as a kind of mutual fund theorems
since there is no difference between investment in our multi-stock market and a market
consisting of the bond and just one stock with appropriate market coefficients b and σ,
as observed by Emmer, Klüppelberg and Korn [6] for their mean-CaR model.

5 An example

In this section, a numerical example is presented to demonstrate the results stated in the
previous section.

Example 5.1 Consider a market that consists of the bond and just one stock (i.e.,
n = 1). Assume that the rate of interest of the bond is r = 0.05, the stock-appreciation
rate is b = 0.1, and the stock-volatility is σ = 0.2, implying θ = 0.25. And assume that
the initial wealth of an investor is w = 1000.

Figures 5.1 and 5.2 show the dependence of the optimal fraction of wealth invested in
the stock on the time horizon T , the expected terminal wealth level C and the confidence
levels α. Figure 5.1 exhibits the reverse time-diversification effect, the increasingness with
the expected terminal wealth level, and the invariance with the confidence level of the
optimal stock fraction to the mean-CaR2 and the mean-CaR1 models. In Figure 5.2, the
optimal stock fraction of the mean-CaR0 model displays the reverse time-diversification
effect in a large time horizon region (e.g., 0 < T ≤ 16.48 for α = 0.20), the time-
diversification effect in a small time horizon region (e.g., 16.48 ≤ T ≤ 20 for α = 0.20),
the increasingness with the expected terminal wealth level, and the increasingness with
the confidence level.
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Figure 5.1: The optimal stock fraction of the mean-CaR2 and the mean-CaR1 models with
any confidence level α < 0.13 as a function of the time horizon T (0 < T ≤ 20) for different
expected terminal wealth levels C.

The CaR of the optimal strategy as a function of the time horizon T is illustrated
graphically in Figure 5.3 for mean-CaR2, Figure 5.4 for mean-CaR1, and Figure 5.5 for
mean-CaR0 models, which indicates that more (less) CaR risk is exposed as the horizon
extends in a small (large) region of short (long) horizons for each of the mean-CaR models.
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(a) with a confidence level α = 0.20 for different
expected terminal wealth levels C
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Figure 5.2: The optimal stock fraction of the mean-CaR0 model as a function of the time
horizon T (0 < T ≤ 20).

Figures 5.5(a) and 5.5(b) also display some difference of CaR0 of the optimal strategy to
the mean-CaR0 model with the same expected terminal wealth levels between different
confidence levels. Figure 5.6 plots the CaR of the three mean-CaR models in the same
plane to compare them, showing that the optimal CaR1 is larger than the optimal CaR2

which is larger than the optimal CaR0 for the same time horizon.
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Figure 5.3: CaR2 of the optimal strategy to
the mean-CaR2 model with a confidence level
α = 0.05 as a function of the time horizon T

(0 < T ≤ 20) for different expected terminal
wealth levels C.
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Figure 5.4: CaR1 of the optimal strategy to
the mean-CaR1 model with a confidence level
α = 0.05 as a function of the time horizon T

(0 < T ≤ 20) for different expected terminal
wealth levels C.

The mean-CaR2, the mean-CaR1 and the mean-CaR0 efficient frontiers are depicted
respectively in Figure 5.7, Figure 5.8 and Figure 5.9 with the mean on the horizontal axis
and the CaR on the vertical axis for confidence levels α = 0.01 (dashed line), α = 0.05
(solid line) and α = 0.1 (dotted line). Clearly, all the efficient frontiers are increasing
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(a) with a confidence level α = 0.05

0 5 10 15 20
−200

0

200

400

600

800

1000

1200

C
aR

0

T

C=2718.28
C=3172.50
C=3702.61

(b) with a confidence level α = 0.20

Figure 5.5: CaR0 of the optimal strategy to the mean-CaR0 model as a function of the time
horizon T (0 < T ≤ 20) for different expected terminal wealth levels C.
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(a) with a confidence level α = 0.05 and a expected
terminal wealth level C = 2718.28
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Figure 5.6: CaR of the optimal strategies to the mean-CaRk (k = 0, 1, 2) models as a function
of the time horizon T (0 < T ≤ 20).
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and concave; and the higher is the confidence level α, the lower is the efficient frontier
for each of the three mean-CaR models, implying that CaR of the optimal strategy for
each mean-CaR model decreases as the confidence level increases. Furthermore, in order
to demonstrates the difference of the three efficient frontiers, the efficient frontiers of
mean-CaR2 (dashed line), mean-CaR1 (solid line) and mean-CaR0 (dotted line) models
are plotted in the same plane, see Figure 5.10. Obviously, the efficient frontiers of the
mean-CaR1, the mean-CaR2 and the mean-CaR0 models fall in turn, again implying
that the risk measured by CaR1 is the largest and the one by CaR0 is the smallest,
among the three.
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Figure 5.7: Mean-CaR2 efficient frontiers
for different confidence levels.
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Figure 5.8: Mean-CaR1 efficient frontiers
for different confidence levels.
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Figure 5.9: Mean-CaR0 efficient frontiers
for different confidence levels.
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Figure 5.10: The mean-CaRk efficient fron-
tiers with k = 0, 1, 2 for α = 0.10.

6 Conclusions

This paper investigates three continuous-time mean-CaR portfolio selection models under
the setting of Black-Scholes financial markets and CRP investment strategies. After
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converting the portfolio optimization problems we obtain closed-form explicit expressions
of optimal strategies and efficient frontiers by virtue of a decomposition of the feasible
solution set. This approach facilitates computation and the comparison of results and
can be easily used in practice. It unifies the framework of dealing with different mean-
CaR portfolio selection models. In an analogous way, it can be shown that the approach
can be applied to a mean-variance model, a mean-VaR model, and some expected utility
models with a shortfall constraint to obtain closed-form solutions. We also believe that
the approach can be applied to some other continuous-time portfolio selection problems.

Note that the derived optimal strategies of the three mean-CaR models are nonneg-
ative under the assumption that each stock-appreciation rate is not smaller than the
riskless interest rate. In this case, our results are valid for continuous-time mean-CaR
portfolio selection problems where short-selling of risky assets is not allowed. (However,
short-selling the riskless asset is still allowed.)

CRP strategies have a variety of optimality properties associated with them for or-
dinary portfolio problems (see, e.g., Merton [15, 16]) showed that this form of strategies
are optimal to portfolio selection problems of maximizing expected utility with constant
relative risk-aversion.) and are widely used in asset allocation practice (see, e.g., Perold
and Sharpe [17] and Black and Perold [3]). However, since such strategies may not be
feedback strategies under general models, the optimal CRP strategy for our models or
for the models in Emmer, Klüppelberg and Korn [6, 7] may not be globally optimal in
the set of all dynamic strategies. Removing the restriction to strategies with constant
proportions would be both mathematically harder and more interesting.
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