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Abstract: This paper investigates robust dynamic policies for network revenue
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1 Introduction

This paper studies the revenue management problem on a given network in which all
involved variables allow uncertainty. The optimal policy of the problem is investigated
which determines what a quantity of resource should be offered at each different rate.
The problem is important since we can find its broad applications, especially in airline
network.

Revenue management is a technique concerned with a number of capacity constrained
service industries such as airline, hotel, media, transposition, car rental, tourism and so
on. Following the airline deregulation in 1970s, revenue management technique has
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obtained a great progress both in theory and methodology. This progress further pushes
the development of service industries.

No matter the difference in the definitions on revenue management, most researchers
agree that the primary goal of revenue management is to maximize the revenues in
the industry. They also agree that price is a major control tool to achieve this goal
among various mechanisms. In the literature of revenue management, Littlewood [16]
first proposed a marginal seat revenue principle and applied it to a single leg problem
with two fare classes. Belobaba [1] developed a stochastic seat inventory control model
to solve the multi-fare-class single leg problem. His model generalized the marginal seat
revenue concept to the expected marginal seat revenue principle. The multi-fare-class
problem was also studied by Brumelle and McGill [4] and Robinson [19].

There have been various studies of pricing policies in the continuous-time revenue
management framework. In a two-fare model that allows a single price change, Feng
and Gallego [12] proposed an optimal threshold control policy in 1995. Later, Feng
and Xiao [13] generalized their result by considering risk analysis. Using the dynamic
programming approach, Liang [15] showed that a threshold control policy is optimal for
a continuous-time dynamic yield management model. In 1999, Subramanian et al. [21]
incorporated the overbooking control on a single-leg flight into a Markov decision process.
In the same year, Chatwin [10] discussed a continuous-time airline-overbooking model
with time-dependent fares and refunds. To capture the time dependency of demand,
most of airline revenue management models need an assumption of nonhomogeneous
demand intensities.

A natural extension of single-leg problem is the network revenue management. A
major concept in the study of network revenue management, bid price control, was
proposed by Simpson [20] in 1989 and further studied by Williamson [25] and Talluri
and Van Ryzin [24].

Up to now, the models that we list above are all based on the certain environment.
However, in real applications, circumstances are variable and the data we obtain is uncer-
tain because of various complications. Developing a model to deal with the revenue man-
agement under uncertainty is an interesting problem. In 2000, Bertsimas and Popescu
[3] proposed a dynamic programming model with demand uncertainty only. But the gen-
eral procedure for the network revenue management under uncertainty is still an open
problem.

We know that optimization technique is the base of research in revenue management.
With the recent advances in conic and robust optimization theory [5, 6], we can see its
various applications in industries such as mechanical structure design [7], VLSI circuit
design [11], systems and control [8] and signal processing [17].

In the paper, we incorporate the robust optimization technique into network revenue
management and establish a robust dynamic model to deal with uncertainty produced by
demand uncertainty, data perturbation and variable errors. We transform the problem
into a robust semi-definite programming and provide a heuristic procedure to obtain the
optimal solution of the problem. Furthermore, we discuss the Hamilton-Jacobi-Bellman
equation under uncertainty, which establishes a sufficient condition for an optimal solu-
tion existing.

This paper is organized as follows. In the next section, we will introduce the back-
ground of our problem and establish a robust dynamic model for the problem. In Section
3, we propose a method to determine the optimal policy and provide a heuristic algorithm.
In section 4, we establish a sufficient optimal condition under uncertainty. In Section 5,
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we report some numerical results. Finally, in Section 6, we give our conclusion.

2 Dynamic Model under Uncertainty

2.1 Problem under Uncertainty

We are given an airline network which is composed of m legs providing n origin-
destination itineraries. Let aij be the number of units on leg i used by itinerary j,
which induces a m × n matrix A = (aij). The j-th column of A, denoted by Aj , is a
multiple of the incidence vector for itinerary j. Here, we do not restrict that A is a 0-1
matrix, which means that group demand is permitted. aij = 0 implies that leg i is not
a part of itinerary j.

The inventory state of the network is described by a vector x = (x1, x2, . . . , xm)T of
leg capacities. We have 0 ≤ x ≤ X , where X = (X1, X2, . . . , Xm)T is the capacity limit
vector of the system. If itinerary j is sold, the state of the network changes to x−Aj . To
simplify our analysis, we do not consider such problems involving cancellations, no-shows
or overbooking. In our problem, time is discrete. We assume a finite booking horizon
of length T , with time line being partitioned sufficiently fine such that almost surely at
most one request appears at each period.

Time is counted backward: time T is the beginning of the booking horizon and
time 0 is the end of booking horizon. We assume that ticketing operation will stop
when t = 0. At time 0 ≤ t ≤ T , all booking events are denoted as a random vector
d(t) = (d1(t), ..., dn(t)). dj(t) > 0 for 1 ≤ j ≤ n indicates that a requirement for
itinerary j occurs at time t while dj(t) = 0 means no requirement for itinerary j at time
t. The tickets for each itinerary j = 1, 2, ..., n can be sold at h fares pr

j , r = 1, ..., h.
pr

j = 0 implies that the fare pr
j is unavailable for itinerary j and pj = 0 the itinerary j

is unavailable. Suppose that demands for different fares are independent of one another.
Let Dr

j (t), 1 ≤ r ≤ h and 1 ≤ j ≤ n, be the demand flow for the r-th fare on the
j-th itinerary, which is a nonhomogeneous Poisson process about time 0 ≤ t ≤ T . The
intensity of Dr

j (t) is λr
j(t), a deterministic function of time t.

We know that in the dynamic world, any unexpected sudden affair would bring a
corresponding perturbation to circumstance. For example, weather condition such as fog
or storm often cause airlines to adjust their flight schedule. Some flights may be cancelled
and some additional flights may be added. Hence, any model, if it would like to simulate
the reality, must consider the uncertainty within its parameters.

Let us denote by ∆A the perturbation to itinerary network and ∆x the perturbation
to the state of inventory. Then, the itinerary-leg matrix under uncertainty should be
A + ∆A. The capacity vector under uncertainty should be x + ∆x. Here, ∆x also can
be observed as overbooking.

Airlines often offer a variety of fares in each fare class of itinerary and also pay
varying commissions on these fares. In other industries such as advertising, broadcasting
and hotel, the fare negotiation also cause the uncertainty in fares. Thus, we suppose
that revenue from selling a ticket on itinerary j ∈ {1, ..., n} at class r ∈ {1, ..., h} is
pr

j + ∆pr
j , where ∆pr

j is the perturbation to fare pr
j . In vector, pr = (pr

1, · · · , pr
n)T and

∆pr = (∆pr
1, · · · , ∆pr

n)T .
In general, demand is concerned with the price. The uncertainty in fares would cause

the requirement for itineraries at these fares is uncertain. Another reason for requirement
uncertainty is the data error produced in our approaches for requirement forecast. Hence,
we suppose that demand flow for class r ∈ {1, ..., h} on itinerary j ∈ {1, ..., n} at time t
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is a nonhomogeneous Poisson process with intensity λr
j(t) + ∆λr

j(t), where ∆λr
j (t) is the

perturbation to λr
j(t).

Suppose there is an upper bound ǫ > 0 such that for any r, ‖(∆x, ∆A, ∆pr)‖ ≤ ǫ

holds for all perturbations, where ‖·‖ is the norm under Euclidian. Given the time-to-go,
k, we call S(k, x, A, p, ǫ), or simply S(k, x, ǫ), the current state of system.

Our problem is that: Under the current state S(k, x, ǫ), should we accept or refuse
the current request?

2.2 Dynamic Model

To answer the question proposed in the end of the last subsection, we establish a dynamic
programming model in the subsection. Then, we solve the model to decide whether the
current request is accepted or not.

Let uk = {ur,j
k } denote the decision at time k, where

u
r,j
k =

{

1, if pr
j is accepted at time k;

0, otherwise.

In general, the decision uk, accepting or refusing, is the function of time k, the capacity
vector x and perturbation bound ǫ. Thus, uk = uk(x, ǫ). From our assumption, there is
at most one request at each sufficiently small period, i.e.,

∑

r,j u
r,j
k ≤ 1. The feasible set

for uk at current state is defined as:

Uk(x, ǫ) = {uk :
∑

r,j

u
r,j
k ≤ 1, u

r,j
k ∈ {0, 1}, (A + ∆A)uk ≤ (x + ∆x),

for all ‖(∆A, ∆x)‖ ≤ ǫ}, (1)

where (A + ∆A)uk :=
∑

r,j(A
j + ∆Aj)ur,j

k and ǫ > 0 is a given scalar.
Let Jk(x + ∆x) denote the maximum expected revenue at current system state

S(k, x, ǫ). Then Jk(x + ∆x) should satisfy the Bellman equation [2]:

Jk(x + ∆x) = max
uk∈Uk(x,ǫ)

E[(p + ∆p)uk + Jk−1((x + ∆x) − (A + ∆A)uk)], (2)

where (p + ∆p)uk :=
∑

r,j(p
r
j + ∆pr

j)u
r,j
k , with the boundary conditions:

J0(x + ∆x) = 0, ∀x, ∆x. (3)

We call Jk(x + ∆x) satisfying (2) and (3) the value function under a given state
S(k, x, ǫ). Define the minimum acceptable fare (MAF) [12] for itinerary j under state
S(k, x, ǫ) as follows:

Gj(x + ∆x, k) = Jk−1(x + ∆x) − Jk−1(x + ∆x − (Aj + ∆Aj)).

In view of [23], the request for class r on itinerary j at current state S(k, x, ǫ) is
accepted if and only if

(pr
j + ∆pr

j) − Gj(x + ∆x, k) ≥ 0 and (Aj + ∆Aj) ≤ (x + ∆x). (4)

The intuition of formulation (4) is clear: Under uncertainty, we only accept a fare ex-
ceeding the MAF while we have sufficient remaining capacity.
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3 Computation of MAF

In the section, we develop a robust linear programming model to obtain the approxima-
tion of value function under uncertainty.

Over the remaining period from k to 0, the expected accumulation demand for
itinerary j at fare class r can be calculated as Dr

j (k)+∆Dr
j (k) :=

∑k
t=1(λ

r
j (t)+∆λr

j (t)).
Similar as [25, 3], we consider following deterministic integer programming:

Jk(x + ∆x) = max
yr

min
‖∆pr‖

h
∑

r=1

(pr + ∆pr)T yr (5)

s.t. (A + ∆A)(

h
∑

r=1

yr) ≤ (x + ∆x),

0 ≤ yr ≤ (Dr(k) + ∆Dr(k)), ∀r,

yr integer vector, ∀r

for all ‖(∆x, ∆A, ∆pr, ∆Dr(k))‖ ≤ ǫ, ∀r,

where yr = (yr
1, ..., y

r
n)T . This is a robust linear integer optimization problem. In for-

mulation (5), variable yr
j denotes the amount of accepted demands for itinerary j at fare

class r over the remaining horizon. The first inequality in the constrain means that the
total amount of accepted demands can not exceed the current capacity. The second in-
equality means that the amount of accepted demands for various itineraries at fare class
r over the remaining horizon should be less then or equal to the expected accumulation
demand for various itineraries at fare class r. We want to maximize the revenue under
bounded perturbations.

Let zr = yr −∆zr, where ∆zr := ∆Dr(k). Then, problem (5) can be transformed as
a robust linear programming problem in following form:

Lk(x + ∆x) = max
ǫ0≤zr≤Dr(k)

min
‖∆zr‖≤ǫ0

h
∑

r=1

(pr + ∆pr)T (zr + ∆zr) (6)

s.t. (A + ∆A)[

h
∑

r=1

(zr + ∆zr)] ≤ (x + ∆x),

for all ‖(∆x, ∆A, ∆pr)‖ ≤ ǫ, ∀r,

where ǫ > 0 and ǫ0 > 0 are perturbation bounds given by the problem we consider.
In formulation (6), the integral requirement on variables is relaxed and the pertur-

bation on expected accumulation demand is transformed as that on variables. Thus,
problem (6) is a relaxation of problem (5). We assume that both ǫ > 0 and ǫ0 > 0 are
small. The reason we make such an assumption is based on following analysis. First,
‖∆pr‖ denotes the price perturbation. This perturbation is small in general. Second,
‖∆A‖ and ‖∆x‖ denote variations of flight and capacity caused by some emergent affairs.
Although these variations may be great in case of copping with the unexpected emer-
gency, the unexpected accident affair happens at a low probability. It is unimaginable
that we always treat routine affairs by the standard for emergency. From the view of
long run, the average infection to flight and capacity should be small. Third, we hope
to find an optimal solution with small perturbation to itself. Hence, (6) provides us a
possible approximation of the allocation of inventory.
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Problem (6) is a max-min problem with perturbations to all parameters and vari-
ables. To simplify the problem, we transform it to a semi-definite programming just
with perturbation to variable via S-lemma in [26, 18].

We call a solution ǫ0 ≤ zr ≤ Dr(k), r = 1, ...h is robust feasible for problem (6) if

(Ai + ∆Ai)[

h
∑

r=1

(zr + ∆zr)] ≤ (xi + ∆xi), i = 1, ..., m

hold for all ‖(∆pr, ∆A, ∆x, )‖ ≤ ǫ, ‖∆zr‖ ≤ ǫ0, r = 1, ..., h, where Ai is the i−th row of
A. In view of [6], ǫ0 ≤ zr ≤ Dr(k), r = 1, ..., h is robust feasible if and only if for each i,

−Ai

∑

r

zr + xi − ǫ

√

‖
∑

r

zr +
∑

r

∆zr‖2 + 1 ≥ 0 (7)

holds for all ‖∆zr‖ ≤ ǫ0. The formulation of (7) can be reformulated as:





I
√

ǫ

(
∑

r zr +
∑

r ∆zr

1

)

√
ǫ
(

(
∑

r zr +
∑

r ∆zr)T 1
)

−Ai(
∑

r zr +
∑

r ∆zr) + xi



 � 0 (8)

holds for each i and all ‖∆zr‖ ≤ ǫ0, where A � 0 implies that A is a positive semi-definite
matrix.

Now consider the objective function of problem (6). By introducing an additional

variable v ≥ 0 to be maximized, we obtain a new constraint:
∑h

r=1(p
r + ∆pr)T (zr +

∆zr) − v ≥ 0 for all ‖∆pr‖ ≤ ǫ, ‖∆zr‖ ≤ ǫ0, r = 1, ..., h. Since both (zr + ∆zr) ≥ 0 and
(pr + ∆pr) ≥ 0, this constraint is equivalent to (pr + ∆pr)T (zr + ∆zr) − vr ≥ 0 for all
‖∆pr‖ ≤ ǫ, ‖∆zr‖ ≤ ǫ0, r = 1, ..., h. Furthermore, each constraint is equivalent to

(

I
√

ǫ(zr + ∆zr)√
ǫ(zr + ∆zr)T (pr)T (zr + ∆zr) − vr

)

� 0, for all ‖∆zr‖ ≤ ǫ0. (9)

In view of S-Lemma in [26, 18], we can obtain the conclusion: (8) holds if and only if
there exists a µi ≥ 0 for each i such that

















I
√

ǫ

( ∑

r zr

1

) √
ǫ

(

I

0

)

√
ǫ

(

(
∑

r zr)
1

)T

−Ai(
∑

r zr) + xi − 1
2Ai

√
ǫ

(

I

0

)T

− 1
2AT

i 0

















− µi





0 0 0
0 ǫ0 0
0 0 −I



 � 0. (10)

Similarly, (9) holds if and only if there exists a µr ≥ 0 for each r such that





I
√

ǫ
∑

r zr
√

ǫI√
ǫ(

∑

r zr)T (pr)T zr − vr − 1
2pr

√
ǫI − 1

2 (pr)T 0



 − µr





0 0 0
0 ǫ0 0
0 0 −I



 � 0. (11)

Combining (7)–(11), we can obtain following theorem.
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Theorem 3.1 The robust linear programming (6) is equivalent to the following prob-
lem:

maximize

h
∑

r=1

vr, (12)

subject to (10), (11) and ǫ0 ≤ zr ≤ Dr(k), ∀r.

Problem (12) is a typical semi-definite programming. There are many effective meth-
ods [22, 14] to solve this problem.

Now we present a robust heuristic algorithm for network revenue management under
uncertainty based on the robust optimization technique.

Robust Heuristic Algorithm (RHA):
At any current state S(k, x, ǫ), where ǫ is the perturbation bound for all parameters.

1. For a request for itinerary j at class r, computer MAF via solving (12).
2. Sell to itinerary j if and only if its fare pr

j exceeds its MAF, i.e., pr
j ≥ Gj(x, k).

3. Back to step 1 for next request.

4 Hamilton-Jacobi Equation

In this section, we further explore the property of value function and prove that Hamilton-
Jacobi equation [9] still holds under uncertainty.

From (2) and (4), the value function can be expressed an inductive formulation as
follows:

Jk(x + ∆x) = max
uk∈Uk(x,ǫ)

E[(p + ∆p)uk + Jk−1((x + ∆x) − (A + ∆A)uk)]

= Jk−1(x + ∆x) + max
uk∈Uk(x,ǫ)

E[(p + ∆p)uk − Gj(x + ∆x, k)uk]+

= Jk−1(x + ∆x) +
∑

r,j

(λr
j (k) + ∆λr

j(k))[(pr
j + ∆pr

j) − Gj(x + ∆x, k)]+,

where [·]+ := max{0, ·}. Let ∆Jk(x + ∆) = Jk−1(x + ∆x) − Jk(x + ∆x). We obtain the
difference equation as follows:

0 = ∆Jk(x + ∆x) +
∑

r,j

(λr
j(k) + ∆λr

j(k))[(pr
j + ∆pr

j) − Gj(x + ∆x, k)]+.

We call f(x) is an ǫ-approximation of F (x) on X if there exists ǫ > 0 and a constant
α such that ‖f(x) − F (x)‖ ≤ αǫ for all x ∈ X . In view of Hamilton-Jacobi equation
[9], if take ∆Jk(x + ∆x) as an ǫ-approximation of derivation, then we have following
approximately sufficient optimality condition.

Theorem 4.1 Suppose λr
j(t) is continuous about 0 ≤ t ≤ T . Partition [0, T ] into

K sufficiently small intervals and arbitrarily take a point k from each small interval
Tk, k = 1, ..., K. If for any given η > 0, there exist continuous function Jt(x) such that

∆Jk(x + ∆x) is an ǫ-approximation of ∂Jt(x)
∂t

and satisfies

|
∑

r,j

(λr
j(k) + ∆λr

j (k))[(pr
j + ∆pr

j) − Gj(x + ∆x, k)]+ + ∆Jk(x + ∆x)| ≤ η (13)
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and

J0(x + ∆x) = 0

for all ‖(∆x, ∆A, ∆p, ∆λ)‖ ≤ ǫ, where ǫ > 0 is a given parameter. Then, Jk(x + ∆x) is
an ǫ-approximately value function.

Proof Since Jt(x) is continuous and Tk is sufficiently small, we only need to prove
that Jt(x) satisfies Hamilton-Jacobi equation [9].

From |∆Jk(x + ∆x) − ∂
∂t

Jt(x)| ≤ ǫ, the continuity of λr
j(t) and Jt(x) and (13), we

have

|
∑

r,j

λr
j(t)[(p

r
j − Jt−1(x) + Jt−1(x − Aj)]+ +

∂

∂t
Jt(x)| ≤ ρ1η + ρ2ǫ,

where ρ1, ρ2 are constants. Taking ǫ = η will finish the proof. �

Theorem 4.1 has an important meaning: The value function under uncertainty de-
termined by (13) is the ǫ-approximation of value function in certainty.

5 Numerical Experiments

In the section, we will exhibit some numerical examples on the optimal booking control
by the following example.

Example 5.1 Consider the airline network whose leg-itinerary matrix is given as
follows:

A =





1 0 1 0
0 1 1 0
0 0 0 1



 .

The current state we consider is S = (x, T, ǫ), where the capacity vector x =
(600, 500, 280)T and T = 200. There are h = 2 fare classes for itinerary i = 1, 2, 3, 4 in
the problem. The fares and their demand rates are tabulated in Table 5.1.

We take µ1 = 0.75, µ2 = 0.8 in (12) and calculate by Robust Heuristic Algorithm the
value function for each j at various ǫ. The results are presented in Figure 5.1 – Figure
5.4 as follows. The figures display the monotone evolution of the MAFs of disparate
itineraries. The curves in the figures do not intersect with each other, which numerically
depicts the corresponding monotone behaviors. This example shows the algorithm RHA
is effective for a kind of robust revenue management problems.

Itinerary 1 2 3 4
p1

i 400 300 560 320
p2

i 350 260 400 280
λ1

i 50 + 25t 60 + 10t 30 + 15t 25 + 12t

λ2
i 40 + 5t 60 + 10t 50 + 10t 20 + 11t

Table 5.1: The data for Example 5.1.
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Figure 5.1: Picture of MAF for itinerary 1 changes with t for various ǫ.
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Figure 5.2: Picture of MAF for itinerary 2 changes with t for various ǫ.
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Figure 5.3: Picture of MAF for itinerary 3 changes with t for various ǫ.
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Figure 5.4: Picture of MAF for itinerary 4 changes with t for various ǫ.
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6 Conclusion

This paper studies the network revenue management under uncertainty. A robust dy-
namic model for the problem is established and a heuristic is provided to find the robust
solutions. Some numerical results are given to show that the algorithm is efficient. From
the figures, we can observe that MAF is monotone of time for small ǫ. We estimate that
MAF is also monotone of remaining capacity x for small ǫ.
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