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Near-Time-Optimal Path Planning
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Abstract: A path planning method which is nearly time-optimal is designed
for computer numerical control machines which must handle sharp corners.
The nominal geometrical trajectory is modified in a way that limitations of
the drives’ accelerations are taken into account, which will avoid acceleration
discontinuities at the cornering point. The method uses two consecutive opti-
mization procedures based on the theory of time-optimal control of single axes
while maximizing the travel length of the fastest axis. Simulation results show
that the method, which can be generalized to a machine with several axes, is
quite effective.
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1 Introduction

The need for increased productivity leads computer numerical control (CNC) machine
tools to be faster, i.e. to reduce cycle time, while keeping a good contouring quality (i.e.
keeping the tool path within prescribed bounds). Whereas the main goal of trajectory
planning is to ensure the following of a nominal geometrical path, smooth modifications
of the path can be used as pre-filtering functions which act as a feedforward controller
for each individual axis. Afterwards, a feedback control algorithm will be designed which
will allow to maintain the positioning accuracy while taking the dynamics into account.
However, high speed machines are generally flexible and have to bear vibrations which
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are harmful for the mechanical parts and deteriorate the accuracy, which excludes dis-
continuities in the drive speed and/or the acceleration. The path planning is thus an
important stage of control because it has to take into account speed, acceleration or jerk
limitations, which is necessary to obtain good overall performances [2].

Time-optimal path planning of a machine tool with one single rigid axis usually results
in a bang-bang scheme [5]. The problem is more complex when considering a machine
with multiple axes, because geometrical constraints generate coupling terms between
the trajectories of the different axes. When considering limitations in acceleration and
jerk, the optimal trajectory of each of the individual axes cannot generally be left to
an optimal bang-bang scheme because the geometrical trajectory would be outside the
prescribed error bounds. For example, when a discontinuity in curvature occurs, the
speed of the axes before and after the cornering point have to be adapted, and, thus,
a discontinuity in acceleration will appear, which is not acceptable in practice. Indeed,
this would excite vibratory modes – that could be neglected or compensated when the
acceleration is smooth [2]. A first way to keep close to the nominal trajectory without
bearing discontinuities in accelerations consists of letting the manipulator come at a full
stop at the corner, and then accelerate again, or gradually reduce the speed to zero
(e.g. introducing jerk limitations in the individual axes) [2], [1], [4]. One can also design
a feedback controller which will manage in a way such that the contouring accuracy
keeps acceptable, e.g. by cross-coupling controllers [8]. This is partially achieved by the
look-ahead function that is built into CNC machines which will ensure that acceleration
commands in the interpolated trajectory never exceed their allowed limitations, or by
low-pass filtering of acceleration commands [9], [10], [11].

Sharp corners can also be traveled by modifying the toolpath and adjusting the fee-
drate, which is classical in robotics applications where interpolation is only needed,[3]
and related references. It is possible to replace sharp corner with a smooth curve, which
can be, for example, a circular arc [6] or an under or over-corner quintic spline [4]. How-
ever, very few indications exist how to perform this smoothing in a way that the traveling
time keeps close to the optimum, while respecting the geometrical error bandwidth.

This paper proposes a method to obtain a near-time-optimal path planning for ma-
chines with several axes, considering speed and acceleration limitations. This optimal
trajectory will be given as a geometrical path where the time is not directly given, and
will be a function of the allowed contouring error. For the sake of simplicity, the algo-
rithm will be presented for only two axes. The trajectory will be divided into 3 parts,
the first one consist of a sequence where the path follows the nominal trajectory which
will be a straight line. Then, the modified geometrical path leaves the nominal trajectory
before corner crossing and will reach the new direction after the cornering point. The
second sequence consists of a point-to-point motion between the leaving and reaching
points. The motion will be designed in a way that it is time-optimal for each part of the
path taken separately, and, in a second time, that the resulting geometrical path uses the
fastest axis at full speed during the maximal time, while staying within the contouring
error bandwidth.

2 Point to Point Time-Optimal Trajectory Planning for One-Axis Rigid Ma-

chines

The rigid machine is supposed to exhibit an ideal dynamics :

Ẋ = ku,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(2) (2007) 141–150 143

where X is the position, u is the driving force. For the sake of simplicity, k will be set
to 1.

The limitations in speed and acceleration of the drive will be considered, i.e. there
exist A, U such that |Ẋ| = u ≤ U , |Ẍ| = u̇ ≤ A.

The general solution is given for example in [5]. A particular solution is recalled
hereafter when the constraints are met (trajectory with full speed and maximum accel-
eration):

∃ (t1, t2) : |Ẋ(t1)| = U, |Ẍ(t2)| = A.

A “point to point” trajectory starts from X0(t0), Ẋ0(t0), where Ẍ0(t0), . . . , X
(n)
0 (t0) = 0

and reaches Xf (tf ), Ẋf(tf ), where Ẍf (tf ), . . . , X
(n)
f (tf ) = 0.

Particular cases include “rest-to-rest“ motion (Ẋ0(t0) = Ẋf (tf ) = 0), “starting stage”

(Ẋ0(t0) = 0, Ẋf (tf ) 6= 0) and “stop stage” (Ẋ0(t0) 6= 0, Ẋf (tf ) = 0).

Time minimal control t = tf leads to maximize the speed along the trajectory which
increases from 0 to U , which yields a piecewise-polynomial curve,i.e, for a rest-to-rest
motion from X0(t0 = 0) = 0 to Xf :

t ≤
U

A
, Ẋ = At, X = At2/2,

U

A
≤ t ≤

Xf

U
, Ẋ = U, X = Ut −

U2

2A
,

Xf

U
≤ t ≤

Xf

U
+

U

A
= tf , X = Xf − A(t − tf )2/2.

3 Optimal Control of a 2-Axes Rigid Machine: Objectives And Constraints

The aim of time-optimal control is to minimize the final time tf for a motion between

(X0, Y0) and (Xf , Yf ) (where Ẋ0 = Ẏ0 = Ẋf = Ẏf = 0), when spatial and drive con-
straints are taken into account. This is a far most difficult problem than in Section 1,
because, even when the axes are not coupled dynamically, they are made dependent by
the geometric constraints imposed by the trajectory. This is particularly crucial when a
change in angle occurs, because the speed both axes have to change “simultaneously”.
Without any constraints on speed and acceleration, it would be only necessary to fol-
low the nominal trajectory and adapt the driving forces at the cornering point. In fact,
this is not possible because of drive speed and acceleration limitations, and, in practice,
abrupt changes are not desirable because they would excite oscillating modes that are
present in mechanical structures. For high-speed machining which are lighter and thus
very flexible, these oscillations enforce, in industrial drives, to decrease the speed to zero
(or nearly zero) at the crossing point, thus generating an important loss of time.

Figure 3.1: Corner crossing.
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For the sake of simplicity, the case where one axis will move in the first straight line
(Y0 = 0), and the final direction has a slope α will be addressed. Both axes are supposed
to exhibit rigid dynamics:

Ẋ = u, Ẏ = v.

Constraints are of three kinds:
– saturation on drive speed and acceleration,

– constraints on final states (zero derivative and acceleration), which are not consid-
ered in the present case;

– geometrical constraints;

The machine should follow the following contour:

|Y | ≤ ε, X ≤ Xc, |Y − α(X − Xc)| ≤ ε, X ≥ Xc.

As shown in Figure 3.1, is is difficult to stick to the nominal trajectory when drive
constraints exist, when the speed is changed and does not decrease to zero. Moreover,
the trajectory is supposed to be modified as follows: the motion stays on the nominal
trajectory until the point Xd (which is to be determined), and reaches the new direction
at the point Xa (also to be determined), while staying in the error bounds.

The following additional hypotheses are taken:

– Straight lines before and after corner crossing are long enough to reach maximum
speed and acceleration.

– Limitations in speed and acceleration occur, i.e. |Ẋ | = |u| ≤ U , |Ẍ | = |u̇| ≤ A,
|Ẏ | = |v| ≤ V , |Ÿ | = |v̇| ≤ B.

The methodology will be presented with an illustrative case, but can be generalized to
multiple axes and additional configurations (e.g. maximum speed is not reached, etc. . . ).

4 Near time-Optimal Control

4.1 Basic algorithm

The time optimal criterion can be written as follows

J =

tf
∫

0

dt, (1)

and can be separated into three parts

J =

td
∫

0

dt +

ta
∫

td

dt +

td
∫

ta

dt = J1 + J2 + J3. (2)

where td is the time where the motion leaves the horizontal axis, ta is the time where
the new direction is reached tf is the final time where the final position is reached.

The near-optimal trajectory planning consists of 3 steps.
Given the positions, X0, Xd Xa, Xf the first step consists in minimizing the final

time which leads to minimize the time of motion for each of the three parts



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(2) (2007) 141–150 145

(a) minimize td for fixed X0, Xd given initial conditions in X0,

(b) minimize tf − ta for fixed Xf , Xa given final conditions in Xf ,

(c) minimized ta − td for a motion from fixed Xd to Xa starting from initial conditions
in Xd given by the solution in (a) and final conditions Xa given by (b).

In the case (a), the time optimal control is a “start” from X0(t0) to Xd, where Ẋ0 = 0
which yields Ẋ = U .

In the case (b), geometric constraints imply that Y = α(X − Xc). The maximum
speed of the axis Y is min (αU, V ) and the maximum speed of X is min

(

V
α

, U
)

. If the
maximum speed is reached at the point (Xa, Ya), the minimum-time control tf − ta is of
the “stop” type.

The time-optimal control (c) will be a “point-to-point” strategy for both axes, where
the speed in Y increases from 0 to min(αU, V ) between Yd and Ya and the speed of axis
X stays equal to U or decreases from U to V

α
between Xd and Ya.

In summary, the problem is simplified by solving three time-optimal control problems
for one-axis machines where the solutions are given in Section 2. These solutions are
parametrized by the points Xd, Xa. This is of course a near-optimal control because it
is well known that the sum of optima is not necessarily the optimal solution. However,
the solution is quite simple to obtain and can be expected to be close to the true optimal
control.

The second step consists of minimizing tf , by the optimization of the location of Xd

(and thus of Xa) which will consists of keeping the longest possible trajectory on the axis
which exhibits the higher velocity. Two cases arise based on the comparative values of
αU and V . The strategy will be different whether the axis X is faster or if the motion is
faster along the slope.

In fact, one now tries to keep the maximum speed on the fastest axis, and thus try
to adapt the trajectory and point Xd. Only the first case αU ≤ V will be considered for
illustration of the methodology, as the other case can be considered as “dual”.

4.2 Illustrative example

Let us suppose that αU ≤ V and αA ≤ B. In this case, the velocity of the axis X is kept
to U , from t = 0 to t = tf (while respecting acceleration constraints). Since the axis Y
is faster, it has to adapt and to be bounded.

Applying point (a), the axis Y starts to move at time td, until Y = Ya, the velocity
of axis Y will increase from 0 to αU .

The near optimal control consists of minimizing td and thus Xd while respecting
drive constraints and geometric constraints i.e. |Y | ≤ ε, X ≤ Xc, |Y − α(X − Xc)| ≤ ε,
X ≥ Xc.

The configuration (1) does not answer the problem correctly since td is imposed by
geometric considerations which does not leave any degree of freedom for optimization.
Configuration (2) will allow to maximize the speed on the fastest (slope) axis: one
supposed, for the sake of simplicity, that the maximum speed V is reached by axis Y and
decreases again to reach the nominal speed.

On the X axis, the motion will be:

X = Ut −
U2

2A
, t ≥

U

A
. (3)
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Figure 4.1: Speed profile for X and Y axes.

On the axis Y , time-optimal motion is:

Y = B(t − td)
2/2, t − td ≤

V

B
,

Y = V (t − td) −
(V )2

2B
, if t1 ≥ t − td ≥

V

B
,

Y = V (t − t1) − B(t − t1)
2/2 + Y1, where t2 ≥ t − td ≥ t1,

Y = Uα(t − t2) + Y2, where t − td ≥ t2

with Y1 = Y (t1), Y2 = Y (t2).
Continuity considerations (same derivative and position at breaking points) for axis

Y yield:

Uα = V − B(t2 − t1), Y2 = V (t2 − t1) −
B(t2 − t1)

2

2
+ Y1, Y1 = V (t1 − td) −

(V )2

2B
.

Condition Y = α(X − Xc), t ≥ t2, yields Uα(t − t2) + Y2 = α
(

Ut − U2

2A
− Xc

)

, i.e.

Uαt2 − Y2 = α

(

U2

2A
+ Xc

)

.

All variables can be expressed as a function of one degree of freedom (i.e. td or t2 can
be “freely” chosen), one obtains:

Uα = V − B(t2 − t1), (4)

Y2 = V (t2 − t1) − B(t2 − t1)
2/2 + Y1, (5)

Y1 = V (t1 − td) − (V )2/2B, (6)

Uαt2 − Y2 = α

(

U2

2A
+ Xc

)

, (7)

where

t1 =
AU2α2 − 2AUV α + BαU2 + 2ABαXc − 2ABV td

2AB(Uα − V )
.

One can eliminate the expression of time within the equations. Since X−Xd = U(t− td)
one obtains a piecewise polynomial curve:

Y =
B

2

(

X − Xd

U

)2

, X ≥ Xd, Y ≤
V 2

2B
, (8)
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Y = V
X − Xd

U
−

V 2

2B
,

V 2

2B
≤ Y ≤ Y1 (9)

as X − X1 = U(t − t1),

Y = V
X − X1

U
−

B

2

(

X − X1

U

)2

+ Y1, Y1 ≤ Y ≤ Y2, (10)

Y = α(X − Xc), Y2 ≤ Y, (11)

where Xd, Y1, Y2 are given above.
This solution is particularly interesting because it is a geometric path which is sup-

posed to yield the time-optimal controller. One can use it as a geometrical reference
trajectory which the axes should follow using feedback control to eliminate the effect of
disturbances.

Now, one should determine td (or Xd) such that |Y | ≤ ε, X ≤ Xc, |Y −α(X−Xc)| ≤
ε, X ≥ Xc. Since corner crossing Xc can be met in the piecewise parts (8,9,10), the
resulting constraints will be different, and several cases can be considered.

Lets now write the constraints on the trajectory as a function of td:
The profile in Figure 4.1 can exist if the nominal speed is reached after the full

acceleration stage:
td + V/B < t1 (12)

and the leaving time should occur after the acceleration step has been completed:

U

A
≤ td,

td +
V

B
≤

AU2α2 − 2AUV α + BαU2 + 2ABαXc − 2ABV td
2AB(Uα − V )

,

(13)

i.e.
AU2α2 − 4AUV α + BαU2 + 2ABαXc + 2V 2A

2ABUα
≤ td.

Suppose that the cornering point Xc is met during the motion (8). This implies that

the leaving point lies before the corner and td ≤ tc =
Xc

U
+

U

2A
, which can be turned,

eliminating the time,
B

2

(

Xc − Xd

U

)2

≤
V 2

2B
and thus

Xc

U
−

V

B
+

U

2A
≤ td ≤

Xc

U
+

U

2A
. (14)

Once the path has left the nominal trajectory, it should stay nevertheless between pre-
scribed error bounds, e.g. for the section described by equation (8), when the trajectory

stays ahead of the corner:
B

2

(

Xc − Xd

U

)2

< ε and thus

Xc

U
+

U

2A
− U

√

2ε

B
< td. (15)

Since when X ≥ Xc, Y ≤ V 2

2B
one must have for equation (8), when the path travels the

corner and the trajectory should be close to the new direction −ε < Y −α(X −Xc) < ε,
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and, replacing:

−ε <
B

2

(

X − Xd

U

)2

− α(X − Xc) < ε. (16)

The maximum of this function is given for X = Xd + αU
B

2
which yields:

−
ε

αU
+

αU

2B
≤

Xc

U
+

U

2A
− td ≤

ε

αU
+

αU

2B
,

i.e.
Xc

U
+

U

2A
−

ε

αU
−

αU

2B
≤ td ≤

Xc

U
+

U

2A
+

ε

αU
−

αU

2B
. (17)

When, in a second time, the trajectory is given by equation (9), it should also stay within
prescribed error bounds

−ε ≤ V
X − Xd

U
−

V 2

2B
− α(X − Xc) ≤ ε,

where
V 2

2B
≤ V

X − Xd

U
−

V 2

2B
≤ Y1.

Since the function is increasing, one has only to verify, that −ε ≤ Y1−α(X1−Xc) ≤ ε,
where Y1 = V (t1 − td) − (V )2/2B which yields:

−ε ≤ V (t1 − td) −
V 2

2B
− α

(

Ut1 −
U2

2A
− Xc

)

≤ ε

and one obtains

−ε ≤ V
X − X1

U
−

B

2

(

X − X1

U

)2

+ Y1 − α(X − Xc) ≤ ε,

if Y1 ≤ V
X − X1

U
−

B

2

(

X − X1

U

)2

+ Y1 ≤ Y2.

(18)

Last, when the trajectory is described by equation (10), one has to check that

−ε ≤ V
X2 − X1

U
−

B

2

(

X2 − X1

U

)2

+ Y1 − α(X2 − Xc)) ≤ ε

which leads to −ε ≤ Uαt2 − α
(

U2

2A
+ Xc

)

− α
(

Ut2 + U2

2A
− Xc

)

≤ ε, i.e.

α

(

U2

A

)

≤ ε. (19)

In summary, one obtains easily a set of inequality constraints (13)–(19) which should
in a first time be all compatible in a way such that the profile (2) in Figure 4.1 is really
feasible. This gives upper and lower bounds on the value of td, and, since the motion on
the fastest axis (the vertical one) should be preferred, the value of td will be the minimum
one.
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Figure 4.2: Near-time-optimal trajectory.

Figure 4.3: Near-optimal versus full stop at corner trajectory.

Example 4.1 Taking numerical values as

U = 1, A = 4, B = 0.4, V = 1, Xc = 4, ε = 0.2, α = 0.8.

The maximum constraints are given by (13) and (18) which yields 3.25 ≤ td ≤ 3.37.
The optimal path is given in Figure 4.2. The “nominal” path (a stop of the axis

X at point Xc, and a “start” from point Xc of axes X and Y , considering speed and
acceleration limitations) is also represented in Figure 4.2. One sees that the result is
an “under corner” trajectory smoothing [4]. In Figure 4.3, the time history of axis X
is represented; for the nominal trajectory following, ones sees that a stop is needed for
X = Xc. Modified trajectory (solid), nominal trajectory and error bounds (dotted) X
position as a function of time, near-optimal trajectory in solid. Classical (with full stop
and restart at the corner) dotted. In the case of the modified trajectory, the axis X stays
at full speed. The saved time exceeds that which would have been saved by canceling the
start and stop procedures, i.e. 2U

A
. The time for which the modified trajectory reaches

X = 8 equals 8.14 s compared to 12.38 s for the traditional algorithm. One also can verify
that the modified trajectory does not reach the upper breaking point (X = Xc, Y = ε)
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since, in this case, other limitations (in speed, acceleration, or geometrical) would not be
respected. This demonstrates that the optimum path planning does not reduce to taking
the chord.

5 Conclusion

A near-time-optimal path planning method for traveling sharp corners has been designed
for a machine with multiple axes. Its main originality consists of modifying, on purpose,
the geometric path in order to smooth the nominal trajectory and to respect the drives’
capabilities in term of acceleration and speed. The time-dependent trajectory is bang-
bang when traveling straight lines and is a point-to-point optimal trajectory between the
two points where the trajectory deviates from the geometrical discontinuity. The second
step of the algorithm consists of maximizing the travelling time of the fastest axis, by
moving forward or backward the point where the modified trajectory leaves the nominal
path, while staying within the prescribed contouring accuracy.

This method proves to be quite effective and can be generalized to a machine with
more than two axes. In a next work, this algorithm will be tested on a real-time cartesian
machine tool.
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