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1 Introduction

The investigation of the optimal control is of importance in modern control theory. The
theory and the application of optimal control for linear time invariant (LTI) systems have
been developed perfectly. For the convenient implementation, many suboptimal control
methods have risen which do not pursue the optimal control performance indexes. In the
literature, some computational methods were stated to solve finite-time optimal control
problem of the LTI systems, time varying systems, second order linear systems, singular
perturbed systems, nonlinear systems with quadratic cost functions [15, 22, 28-30, 37].

Over the last three decades, considerable attention has been paid to robustness
analysis and control of linear systems affected by structured real parameters. Linear
parameter-varying (LPV) systems have gained a lot of interest as they provide a system-
atic means of computing gain-scheduled controllers, especially those related to vehicle
and aerospace control [2-6, 9, 18, 21].

Generally speaking, a LPV system is a linear system in which the system matrices
are fixed functions of a known parameter vector. A LPV system can be viewed as a non-
linear system that is linearized along a trajectory determined by the parameter vector.
Hence, the parameter vector of an LPV system corresponds to the operating point of
the non-linear system. In the LPV framework, it is assumed that the parameter vector
is measurable for control process. In many industrial applications, like flight control
and process control, the operating point can indeed be determined from measurement,
making the LPV approach viable, see for example [7, 32, 36, 39]. Concerning unknown
parameter vector, an adaptive method has been presented for robust stabilization with
performance of LPV systems in [27].

For LPV systems, establishing stability via the use of constant Lyapunov functions is
conservative. To investigate the stability of LPV systems one needs to resort the use of
parameter-dependent Lyapunov functions to achieve necessary and sufficient conditions
of system stability, see [10, 12-14, 16, 17, 19, 33, 43]. Bliman proposed the problem of
robust stability for LPV systems with scalar parameters in [13]. Also, he developed some
conditions for robust stability in terms of solvability of some linear matrix inequalities
(LMIs) without conservatism. Moreover, the existence of a polynomially parameter-
dependent quadratic (PPDQ) Lyapunov function for systems, which are robustly stable,
is investigated in [14]. However, as for LPV systems, synthesis problems that are solved
by classic control theory lead to difficult computations. People have studied optimal
control of LPV systems for decades.

On the other hand, time delays are often present in engineering systems, which have
been generally regarded as a main source on instability and poor performance [11, 31].
Therefore, the stabilization of LPV state-delayed systems is a field of intense research [38-
41, 44]. Generally, a way to ensure stability robustness with respect to the uncertainty
in the delays is to employ stability criteria valid for any nonnegative value of the delays
that is delay-independent results. This assumption that no information on the value
of the delay is known is often coarse in practice. Recently, systematic ways of the use
of PPDQ functions in the state feedback control and output feedback control for LPV
systems with time-delay in the state vector were proposed in [23-26]. It was shown that
the PPDQ Lyapunov-Krasovskii functions make some sufficient conditions to investigate
robust stability analysis of LPV systems in LMIs.

In this paper, we provide a systematic way to finite-time state feedback control
problem for time-varying LPV systems with a constant delay in the state vector under



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(3) (2007) 289–301 291

quadratic cost functional via a successive approximation algorithm (SAA). This paper is
essentially an extension of the SAA of the linear and nonlinear systems presented in [8] to
the optimal control problem of the time-varying LPV state-delayed systems. The method
of SAA results an iterative scheme, which successively improves any initial control law
ultimately converging to the optimal state feedback control. On the other hand, by ma-
nipulating LMIs imposed by Generalized-Hamiltonian-Jacobi-Bellman (GHJB) method
and the PPDQ functions, sufficient conditions with high precision are given to guarantee
asymptotic stability of the time-varying LPV state-delayed systems independent of the
time delay.

The notations used throughout the paper are fairly standard. The matrices In , 0n

and 0n×p are the identity matrix, the n × n and n × p zero matrices respectively. The
symbol ⊗ denotes Kronecker product, the power of Kronecker products being used with
the natural meaning M0⊗ = 1, Mp⊗ := M (p−1)⊗ ⊗ M . Let Ĵk, J̃k ∈ ℜk×(k+1), and
v[k] be defined by Ĵk := [Ik, 0k×1], J̃k := [0k×1, Ik] and v[k] = [1, v, . . . , vk−1]T ,
respectively, which have essential roles for polynomial manipulations [11]. Finally given
a signal x(t),‖x(t)‖2 denotes the L2 norm of x(t); i.e., ‖x(t)‖2

2 =
∫ ∞

0
xT (t)x(t) dt.

2 Problem Description

Consider in the following a class of time-varying LPV state-delayed system
{

ẋ(t) = A(t; ρ)x(t) + Ad(t; ρ)x(t − h) + B(t; ρ)u(t),

x(t) = φ(t), t ∈ [−h, 0],
(1)

where the constant parameter h is time delay and φ(t) is the continuous vector valued
initial function, also x(t) ∈ ℜn and u(t) ∈ ℜl are the state vector and the control input,
respectively. Moreover, the parameter-dependent matrices A(t; ρ), Ad(t; ρ) and B(t; ρ)
are expressed as

[A(t; ρ) Ad(t; ρ) B(t; ρ)] = [A0(t) A0d(t) B0(t)] +

m∑

i=1

ρi[Ai(t) Aid(t) Bi(t)],

where A0(t), · · · , Am(t), A0d(t), · · · , Amd(t) and B0(t), · · · , Bm(t) are known constant
matrices of appropriate dimensions. Furthermore, it is known that the vector ρ =
[ρ1, ρ2, · · · , ρm] ∈ ℜm is contained in a priori given set whereas the actual curve of
the vector ρ is unknown but can be measured online for control process. In the sequel,
we make the following definitions for the system (1).

Definition 2.1 A finite-time state feedback u(t) = −K(t; ρ)x(t) for t ∈ [0, T ] with
K(t; ρ) ∈ ℜm×n is said to achieve global asymptotic stability of the system (1) if the
closed-loop system

ẋ(t) = (A(t; ρ) − B(t; ρ)K(t; ρ))x(t) + Ad(t; ρ)x(t − h) (2)

is globally asymptotic stable in the Lyapunov sense.

According to Definition 2.1, the main objective of the paper is to develop an iterative
technique for finite-time optimal control problem of the time-varying LPV state-delayed
system (1), which minimizes the following cost functional with respect to some u∗(t; ρ):

J = ‖x(T )‖
2
Q0

+

∫ T

0

‖x(t)‖
2
Q + ‖u(t)‖

2
R dt. (3)
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Definition 2.2 A polynomially parameter-dependent quadratic (PPDQ) function is
said to any quadratic function xT (t)S(ρ)x(t) such S(ρ) is defined as

S(ρ) := (ρ[k]
m ⊗ . . . ⊗ ρ

[k]
1 ⊗ In)T Sk(ρ[k]

m ⊗ . . . ⊗ ρ
[k]
1 ⊗ In) (4)

for a certain Sk ∈ ℜ(kmn)×(kmn). The integer k − 1 is called the degree of the PPDQ
function of S(ρ).

3 Finite-Time Optimal Control Problem

Before deriving the main results, a preliminary Lemma is reviewed.

Lemma 3.1 (Schur Complement lemma) Given constant matrices Ψ1, Ψ2 and Ψ3

where Ψ1 = ΨT
1 and Ψ2 = ΨT

2 > 0, then Ψ1 + ΨT
3 Ψ−1

2 Ψ3 < 0 if and only if

[
Ψ1 ΨT

3

Ψ3 −Ψ2

]

< 0 or equivalently,

[
−Ψ2 Ψ3

ΨT
3 Ψ1

]

< 0.

In the literature, extensions of the Lyapunov method to the Lyapunov-Krasovskii
method have been proposed for time-delayed systems [11, 31]. To investigate the delay-
independent asymptotically stability analysis of the closed-loop system (2), we define in
the following a class of PPDQ Lyapunov-Krasovskii functions of the degree k − 1

V (x(t); ρ) = xT (t)Pρ(t)x(t) +

∫ t

t−h

xT (σ)Qρ(σ)x(σ) dσ, (5)

where the positive-definite matrices Pρ(t) := P (t; ρ) ∈ ℜn×n and Qρ(t) := Q(t; ρ) ∈ ℜn×n

with the following forms

Pρ(t) = (ρ[k]
m ⊗ . . . ⊗ ρ

[k]
1 ⊗ In)T Pk(t)(ρ[k]

m ⊗ . . . ⊗ ρ
[k]
1 ⊗ In), (6)

Qρ(t) = (ρ[k]
m ⊗ . . . ⊗ ρ

[k]
1 ⊗ In)T Qk(t)(ρ[k]

m ⊗ . . . ⊗ ρ
[k]
1 ⊗ In), (7)

where the positive-definite matrices {Pk(t), Qk(t)} ∈ ℜ(kmn)×(kmn) are to be determined.

Definition 3.1 Given an admissible control u(t; ρ), which ensures the asymptotic
stability of the closed-loop system (2). The function V (x(t); ρ) in (5) satisfies the
Generalized-Hamiltonian-Jacobi-Bellman (GHJB) inequality, written GHJB(V, u) < 0,
if

∂V

∂t
+

∂V T

∂x
(A(t; ρ)x(t) + Ad(t; ρ)x(t − h) + B(t; ρ)u(t)) + ‖x(t)‖

2
Q + ‖u(t)‖

2
R < 0, (8)

where V (T, x) = ‖x(T )‖
2
Q0

.

Remark 3.1 Generally, the Hamiltonian-Jacobi equation being nonlinear is very
difficult to solve. Recently, a new approach for solving the Hamiltonian-Jacobi equation
for a fairly large class of Hamiltonian systems has been studied in [1].

To improve the performance of an arbitrary control u(0) we minimize the following
function

u(1) = arg min
u∈AJ (D)

{
∂V

∂t
+

∂V T

∂x
(A(t; ρ)x(t) + Ad(t; ρ)x(t − h) + B(t; ρ)u(0))
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+ ‖x(t)‖
2
Q +

∥
∥
∥u(0)

∥
∥
∥

2

R
} =

−1

2
R−1BT (t; ρ)

∂V (0)

∂x

= −R−1BT (t; ρ)P (0)
ρ (t)x(t), (9)

where D := [0, T ]× Ω, and Ω is a compact set of ℜn containing a ball around the origin
and AJ (D) is the set of admissible controls. In the infinite-time case, the initial control
law is required to be stabilizing for the SAA to converge. For the finite-time this is not
the case; in particular we may chose u(0) = 0. However, u(0) provides a degree of freedom
which maybe judiciously chosen to speed the convergence of the algorithm.

The cost of u(1) is given by the solution of the equation GHJB(V (1), u(1)) < 0. In
[34], it has been shown that V (1)(t, x) ≤ V (0)(t, x) for each (t, x) ∈ D and the convergence
does not get stuck in local minimum, i.e., if V (i+1)(t, x) = V (i)(t, x) for a fixed i, then
V i(t, x) = V ∗(t, x). Based on this fact, we assume that a unique optimal control u∗

exists and is an admissible control. Then the optimal cost is given by the solution to the
GHJB inequality, i.e.,

∂V ∗

∂t
+

∂V ∗T

∂x
(A(t; ρ)x(t)+Ad(t; ρ)x(t−h)+B(t; ρ)u∗(t))+‖x(t)‖

2
Q+‖u∗(t)‖

2
R < 0. (10)

From the solution to the GHJB inequality (10) we obtain an optimal control law as

u∗(t) =
−1

2
R−1BT (t; ρ)

∂V ∗

∂x

:= −K(t; ρ)x(t), t ∈ [0, T ], (11)

where K(t; ρ) = R−1BT (t; ρ)P ∗
ρ (t) and the optimal cost is

J(x(0), u∗) = φT (0)P ∗

ρ (0)φ(0).

Remark 3.2 For the finite-time version of the problem, there is generally a unique
solution to GHJB (under appropriate conditions), which brings up the question of obtain-
ing the solution relevant to the infinite-time problem as the limit of the unique solution
of the finite-time one. This question is investigated in [42] for nonlinear systems affine
in the control and the disturbance, and with a cost function quadratic in the control,
where the control is not restricted to lie in a compact set. It establishes the existence of a
well-defined limit, and also obtains a result on global asymptotic stability of closed-loop
system under the H∞ controller and the corresponding worst-case disturbance.

Noting to the expressions (5), (10) and (11), we find

xT (t)(Ṗρ(t)+AT (t; ρ)Pρ(t)+Pρ(t)A(t; ρ)−Pρ(t)B(t; ρ)R−1BT (t; ρ)Pρ(t)+Qρ(t)+Q)x(t)

−xT (t− h)Qρ(t)x(t− h)+ xT (t)Pρ(t)Ad(t; ρ)x(t− h) + (Ad(t; ρ)x(t− h))T Pρ(t)x(t) < 0.

(12)
Then, the aforementioned inequality is rewritten as

XT (t)Mρ(t)X(t) < 0, (13)

where the new vector X(t) = [xT (t), xT (t−h)]T is an augmented state and the parameter-
dependent matrix Mρ(t) is defined as

Mρ(t) =

[
Σ̃11 Pρ(t)Adρ(t)
∗ −Qρ(t)

]

, (14)
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where

Σ̃11 = Ṗρ(t) + AT
ρ (t)Pρ(t) + Pρ(t)Aρ(t) − Pρ(t)Bρ(t)R

−1BT
ρ (t)Pρ(t) + Qρ(t) + Q.

Remark 3.3 Stability of the time-varying LPV state-delayed system (1) can be
provided by finding the positive-definite solutions Pρ(t) and Qρ(t) to the associated
parameter-dependent matrix inequality Mρ(t) < 0.

In the iterative step, we assume a non-singular solution and that V (i)(x(t); ρ) has the
form

V (i)(x(t); ρ) = xT (t)P (i)
ρ (t)x(t) +

∫ t

t−h

xT (σ)Q(i)
ρ (σ)x(σ) dσ (15)

and we let the new control be

u(i)(t; ρ) := −K(i)(t; ρ)x(t) = −R−1BT
ρ (t)P (i−1)

ρ (t)x(t). (16)

By substituting V (i)(x(t); ρ) and the control (16) into (10) and using Schur Complement
Lemma, the following parameter-dependent LMI is easily obtained






Σ̂
(i)
11 P

(i−1)
ρ (t)Bρ(t) P

(i)
ρ (t)Adρ(t)

∗ −R 0

∗ ∗ −Q
(i)
ρ (t)




 < 0, (17)

where
Σ̂

(i)
11 = Ṗ (i)

ρ (t) + P (i)
ρ (t)(Aρ(t) − Bρ(t)R

−1BT
ρ (t)P (i−1)

ρ (t))

+(Aρ(t) − Bρ(t)R
−1BT

ρ (t)P (i−1)
ρ (t))T P (i)

ρ (t) + Q(i)
ρ (t) + Q.

Remark 3.4 A general framework for relaxing parameter-dependent LMI problems
into parameter-independent LMIs (conventional form) has been investigated in [5]. How-
ever, application of the PPDQ Lyapunov functions as a new tool for relaxing parameter
dependency of the matrix inequalities will be stated in the next section.

4 Parameter-Dependent LMI Relaxations

In this section the PPDQ functions as the basis functions are used to relax parameter-
dependent LMIs into conventional parameter-independent LMI problems by utilizing
some positives-definite Lagrange multiplier matrices (see for instance [24,24]).

Lemma 4.1 Let the degree of the PPDQ Lyapunov function P
(i)
ρ (t) be k − 1. The

parameter-dependent matrix P
(i)
ρ (t)Bρ(t) can be represented as

P (i)
ρ (t)Bρ(t) := (ρ[k+1]

m ⊗ . . . ⊗ ρ
[k+1]
1 ⊗ In)T H

(i)
k (t)(ρ[k+1]

m ⊗ . . . ⊗ ρ
[k+1]
1 ⊗ Il), (18)

where the matrix H
(i)
k (t) ∈ ℜ((k+1)mn)×((k+1)ml) which depends linearly on the matrix

P
(i)
k (t) is defined as

H
(i)
k (t) = (Ĵm⊗

k ⊗ In)T P
(i)
k (t)(Ĵm⊗

k ⊗B0(t) +

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗Bi(t)). (19)
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Proof According to the structures of the parameter-dependent matrices P
(i)
ρ (t) and

Bρ(t), one has

P (i)
ρ (t)Bρ(t) = (ρ[k]

m ⊗ . . . ⊗ ρ
[k]
1 ⊗ In)T P

(i)
k (t)(ρ[k]

m ⊗ . . . ⊗ ρ
[k]
1 ⊗ In)(B0(t) +

m∑

i=1

ρiBi(t))

and using the property of (ϑ[k] ⊗ In)Bi(t) = (Ik ⊗ Bi(t))(ϑ
[k] ⊗ Il) one finds

P (i)
ρ (t)Bρ(t) = (ρ[k]

m ⊗. . .⊗ρ
[k]
1 ⊗In)T P

(i)
k (t)(Ikm⊗(B0(t)+

m∑

i=1

ρiBi(t)))(ρ
[k]
m ⊗. . .⊗ρ

[k]
1 ⊗Il)

or

P (i)
ρ (t)Bρ(t) = (ρ[k]

m ⊗ . . . ⊗ ρ
[k]
1 ⊗ In)T P

(i)
k (t)((Ikm ⊗ B0(t))(ρ

[k]
m ⊗ . . . ⊗ ρ

[k]
1 ⊗ Il)

+(Ikm ⊗ B1(t))(ρ
[k]
m ⊗ . . . ⊗ ρ1ρ

[k]
1 ⊗ Il) + · · ·

+(Ikm ⊗ Bm(t))(ρmρ[k]
m ⊗ . . . ⊗ ρ

[k]
1 ⊗ Il)),

then by repeated use of the properties Ĵkρ
[k+1]
i = ρ

[k]
i and J̃kρ

[k+1]
i = ρiρ

[k]
i the matrix

H
(i)
k (t) in (19) is obtained. 2

According to Lemma 4.1 for the matrix Adρ(t), we have:

P (i)
ρ (t)Adρ(t) := (ρ[k+1]

m ⊗ . . . ⊗ ρ
[k+1]
1 ⊗ In)T S

(i)
k (t)(ρ[k+1]

m ⊗ . . . ⊗ ρ
[k+1]
1 ⊗ In), (20)

where the matrix S
(i)
k (t) is expressed in the form

S
(i)
k (t) = (Ĵm⊗

k ⊗ In)T P
(i)
k (t)(Ĵm⊗

k ⊗A0d(t)+

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗Aid(t)). (21)

Therefore, the PPDQ Lyapunov function of degree k for the positive-definite matrix

R
(i)
ρ (t) = AT

ρ (t)P
(i)
ρ (t) + P

(i)
ρ (t)Aρ(t) is written as

R(i)
ρ (t) := (ρ[k+1]

m ⊗ . . . ⊗ ρ
[k+1]
1 ⊗ In)T R

(i)
k (t)(ρ[k+1]

m ⊗ . . . ⊗ ρ
[k+1]
1 ⊗ In) (22)

and from Lemma 4.1 the matrix R
(i)
k (t) in (22), which depends linearly on the matrix

P
(i)
k (t) is obtained as follows:

R
(i)
k (t) = (Ĵm⊗

k ⊗ In)T P
(i)
k (t)(Ĵm⊗

k ⊗ A0(t) +
m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ai(t))

+(Ĵm⊗

k ⊗ A0(t) +

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ai(t))

T P
(i)
k (t)(Ĵm⊗

k ⊗ In).

(23)

Similarly, the constant positive-definite matrices R ∈ ℜl×l, and Q ∈ ℜn×n can be repre-
sented as

R = (ρ[k+1]
m ⊗ . . .⊗ρ

[k+1]
1 ⊗ Il)

T (Ĵm⊗

k ⊗ Il)
T R̄k(Ĵm⊗

k ⊗ Il)(ρ
[k+1]
m ⊗ . . .⊗ρ

[k+1]
1 ⊗ Il), (24)
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and

Q = (ρ[k+1]
m ⊗. . .⊗ρ

[k+1]
1 ⊗In)T (Ĵm⊗

k ⊗In)T Q̄k(Ĵm⊗

k ⊗In)(ρ[k+1]
m ⊗. . .⊗ρ

[k+1]
1 ⊗In), (25)

where the certain matrices R̄k and Q̄k are defined, respectively, as

R̄k = diag (R, 0l, · · · , 0l
︸ ︷︷ ︸

(km−1) elements

),

and
Q̄k = diag (Q, 0n, · · · , 0n

︸ ︷︷ ︸

(km−1) elements

).

We are now in the position to state our main result in the following Theorem.

Theorem 4.1 For a given positive parameter k if there exist positive-definite matri-

ces P
(i)
k (t), Q

(i)
k (t) and the set of positive definite Lagrange multipliers Q̂

(1)
i,k (t), Q̂

(2)
i,k (t)

and Q̂
(3)
i,k (t) for i = 1, 2, · · · , m to the following parameter-independent differential linear

matrix inequality (DLMI),





Σ11 H
(i−1)
k (t) S

(i)
k (t)

∗ Σ22 0
∗ ∗ Σ33



 < 0, (26)

where
Σ11 = (Ĵm⊗

k ⊗ In)T Ṗ
(i)
k (t)(Ĵm⊗

k ⊗ In) + R̂
(i)
k (t)

+(Ĵm⊗

k ⊗ In)T (Q
(i)
k (t) + Q̄k)(Ĵm⊗

k ⊗ In)

+

m∑

i=1

(Ĵ
(m−i+1)⊗
k ⊗ I(k+1)i−1n)T Q̂

(1)
i,k (Ĵ

(m−i+1)⊗
k ⊗ I(k+1)i−1n)

−
m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1n)T Q̂

(1)
i,k (Ĵ

(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1n),

Σ22 = −(Ĵm⊗

k ⊗ Il)
T R̄k(Ĵm⊗

k ⊗ Il)

+
m∑

i=1

(Ĵ
(m−i+1)⊗
k ⊗ I(k+1)i−1l)

T Q̂
(2)
i,k (Ĵ

(m−i+1)⊗
k ⊗ I(k+1)i−1l)

−

m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1l)

T Q̂
(2)
i,k (Ĵ

(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1l),

and
Σ33 = −(Ĵm⊗

k ⊗ In)T Q
(i)
k (t)(Ĵm⊗

k ⊗ In)

+

m∑

i=1

(Ĵ
(m−i+1)⊗
k ⊗ I(k+1)i−1n)T Q̂

(3)
i,k (Ĵ

(m−i+1)⊗
k ⊗ I(k+1)i−1n)

−

m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1n)T Q̂

(3)
i,k (Ĵ

(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1n),
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with

R̂
(i)
k (t) = {Ĵm⊗

k ⊗ A0(t) +

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ai(t) − (Ĵm⊗

k ⊗ B0(t)

+

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Bi(t))R

−1H
(i−1)T

k (t)}T P
(i)
k (t)(Ĵm⊗

k ⊗ In)

+(Ĵm⊗

k ⊗ In)T P
(i)
k (t){Ĵm⊗

k ⊗ A0(t) +

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Ai(t)

−(Ĵm⊗

k ⊗ B0(t) +

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ Bi(t))R

−1H
(i−1)T

k (t)},

then the parameter-dependent finite-time state feedback control

u(i)(t; ρ) = −R−1BT
ρ (t)P (i−1)

ρ (t)x(t), t ∈ [0, T ] (27)

achieves global asymptotic stability for the time-varying LPV state-delayed system (1)
with the quadratic cost function (3).

Proof By substituting the relations (18)-(25) into the parameter-dependent LMI
(17), one parameter-dependent matrix inequality is obtained which includes left- and
right-multiplication of the (26) by






ρ
[k]
m ⊗ . . . ⊗ ρ

[k]
1 ⊗ In 0 0

∗ ρ
[k]
m ⊗ . . . ⊗ ρ

[k]
1 ⊗ Il 0

∗ ∗ ρ
[k]
m ⊗ . . . ⊗ ρ

[k]
1 ⊗ In




 ,

and its transpose. Then, it can be concluded that the LMI (26), which in-

cluded the positive-definite Lagrange multipliers Q̂
(1)
1,k, · · · , Q̂

(1)
m,k, Q̂

(2)
1,k, · · · , Q̂

(2)
m,k and

Q̂
(3)
1,k, · · · , Q̂

(3)
m,k, is a sufficient condition to fulfil the parameter-dependent matrix in-

equality (17) for any vector ρ contained in a priori given set. 2

It is essential in this result that the matrices P
(i)
k (t) and Q

(i)
k (t) are calculated in-

dependently from the parameter vector ρ and thereafter P
(i)
ρ (t), Q

(i)
ρ (t) and the control

law are found analytically by (6), (7) and (27), respectively.

Remark 4.1 The solution to the DLMI in (26) can be obtained by discretizing the
time interval [0, T ] into equally spaced time instances {tj , j = 1, · · · , N, tN = T, t0 = 0}
[35], where

tj − tj−1 := κ = N−1T, j = 1, · · · , N.

The discretized DLMI problem thus becomes one of finding, at each κ ∈ [1, N ], P
(i)j−1

k (:=

P
(i)
k (tj−1)) that satisfies






Σ̂11 H
(i−1)j

k S
(i)j

k

∗ Σ̂22 0

∗ ∗ Σ̂33




 < 0 (28)
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with P
(i)N

k = Q0 and

Σ̂11 = (Ĵm⊗

k ⊗ In)T (−P
(i)j−1

k + P
(i)j

k )(Ĵm⊗

k ⊗ In) + κR̂
(i)j

k (t)

+κ(Ĵm⊗

k ⊗ In)T (Q
(i)j

k (t) + Q̄k)(Ĵm⊗

k ⊗ In)

+κ

m∑

i=1

(Ĵ
(m−i+1)⊗
k ⊗ I(k+1)i−1n)T Q̂

(1)
i,k (Ĵ

(m−i+1)⊗
k ⊗ I(k+1)i−1n)

−κ

m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1n)T Q̂

(1)
i,k (Ĵ

(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1n),

Σ̂22 = −κ−1(Ĵm⊗

k ⊗ Il)
T R̄k(Ĵm⊗

k ⊗ Il)

+κ−1
m∑

i=1

(Ĵ
(m−i+1)⊗
k ⊗ I(k+1)i−1l)

T Q̂
(2)
i,k (Ĵ

(m−i+1)⊗
k ⊗ I(k+1)i−1l)

−κ−1
m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1l)

T Q̂
(2)
i,k (Ĵ

(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1l),

Σ̂33 = −κ−1(Ĵm⊗

k ⊗ In)T Q
(i)j

k (Ĵm⊗

k ⊗ In)

+κ−1
m∑

i=1

(Ĵ
(m−i+1)⊗
k ⊗ I(k+1)i−1n)T Q̂

(3)
i,k (Ĵ

(m−i+1)⊗
k ⊗ I(k+1)i−1n)

−κ−1
m∑

i=1

(Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1n)T Q̂

(3)
i,k (Ĵ

(m−i)⊗
k ⊗ J̃k ⊗ I(k+1)i−1n),

H
(i−1)j

k := H
(i−1)
k (tj)

= (Ĵm⊗

k ⊗ In)T P
(i−1)j

k (Ĵm⊗

k ⊗ B
j
0 +

m∑

l=1

Ĵ
(m−l)⊗
k ⊗ J̃k ⊗ Ĵ

(l−1)⊗
k ⊗ B

j
i ),

and
S

(i)j

k := S
(i)
k (tj)

= (Ĵm⊗

k ⊗ In)T P
(i)j

k (Ĵm⊗

k ⊗ A
j
0d +

m∑

l=1

Ĵ
(m−l)⊗
k ⊗ J̃k ⊗ Ĵ

(l−1)⊗
k ⊗ A

(j
ld),

with
R̂

(i)j

k := R̂
(i)
k (tj)

= {Ĵm⊗

k ⊗ A
j
0 +

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ A

j
i − (Ĵm⊗

k ⊗ B
j
0

+

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ B

j
i )R

−1H
(i−1)T

j

k }T P
(i)j

k (Ĵm⊗

k ⊗ In)

+(Ĵm⊗

k ⊗ In)T P
(i)j

k {Ĵm⊗

k ⊗ A
j
0 +

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ A

j
i

−(Ĵm⊗

k ⊗ B
j
0 +

m∑

i=1

Ĵ
(m−i)⊗
k ⊗ J̃k ⊗ Ĵ

(i−1)⊗
k ⊗ B

j
i )R

−1H
(i−1)T

j

k },

where A
j
i := Ai(tj), A

j
ld := Ald(tj) and B

j
i := Bi(tj).
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Remark 4.2 From the DLMI (26) in Theorem 4.1, it can be concluded that a
unique positive-definite solution to (8) exists, then V (0)(x(t); ρ) ≥ V (1)(x(t); ρ) ≥ · · · ≥
V ∗(x(t); ρ) with equality holding if and only if V (i)(x(t); ρ) ≡ V ∗(x(t); ρ). Furthermore
V (i)(x(t); ρ) → V ∗(x(t); ρ) and u(i)(x(t); ρ) → u∗(x(t); ρ) pointwise for all x(t), ρ and
t ∈ [0, T ].

Remark 4.3 It is observed that the discretized DLMI (28) is linear in P
(i)j

k ,

Q
(i)j

k , Q̂
(1)
1,k, · · · , Q̂

(1)
m,k, Q̂

(2)
1,k, · · · , Q̂

(2)
m,k and Q̂

(3)
1,k, · · · , Q̂

(3)
m,k thus the standard LMI tech-

niques, [20], can be exploited to find the positive-definite solutions. It is also seen from
the above results that the choice of appropriate parameter k − 1 as the degree of the

PPDQ Lyapunov functions of the matrix P
(i)
k (t) and Q

(i)
k (t) play the role of freedom of

design in the control law.

5 Conclusion

A successive approximation algorithm was used to generate the finite-time optimal feed-
back gains for a class of time-varying LPV state-delayed systems under quadratic cost
functional. The method of SAA was developed, which successively improves any initial
control law ultimately converging to the optimal state feedback control. By manipulat-
ing LMIs imposed by Generalized-Hamiltonian-Jacobi-Bellman method and the PPDQ
functions, sufficient conditions with high precision were given to guarantee asymptotic
stability of the time-varying LPV state-delayed systems independent of the time delay.
In this paper, the results are presented on the delay-independent stability conditions
case, and the extension of the results to delay-dependent stability conditions is a topic
currently under study.
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