
Nonlinear Dynamics and Systems Theory, 7 (3) (2007) 303–314

The Sufficient Conditions of Local Controllability

for Linear Systems with Random Parameters

Yu.V. Masterkov and L.I. Rodina
∗

Department of Mathematics, Udmurtia State University,

Universitetskaya 1, 426034 Izhevsk, Russia

Received: April 5, 2006; Revised: May 4, 2007

Abstract: This paper is concerned with the problem of local controllability
for linear nonstationary systems with random parameters. In differ of well-
known problem of controllability for the determinated systems, for systems
with random parameters we must construct a non-predicting control when we
use the information about system only before the current moment. We ob-
tain the sufficient conditions of non-predicting controllability and estimation
of the probability that the given system is a locally controllable on the fixed
time segment. The algorithm of construction of the non-predicting control is
developed.
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1 Introduction

The problems of controllability, observability and stability of dynamical systems with
random parameters was investigated in many works, for example, [1]-[7]. Notice, that
for such type of systems we often have not the information about the systems behaviour
in future, thats why is appeared a problem of existence of a non-predicting control.
The term of the non-predicting control was introduced in Ekaterinburg school on the
control theory (see [8, 9]), the problem of such control construction was investigated also
in [10, 11]. The control u(t, x) is called the non-predicting if for it construction in the
moment t = τ we use the information about system only for t 6 τ.
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In this paper we continue the investigation initiated in [12, 13], where we considered
the linear systems with the stationary random parameters and obtained the sufficient
conditions of existence of the non-predicting control for such systems. In [12, 13] we
investigated the conditions of total controllability when we don’t assumed any restrictions
on the control u ∈ R

m. Here we consider the system

ẋ = A(f tω)x+B(f tω)u, (t, ω, x, u) ∈ R × Ω × R
n × U, (1)

where the function t → ξ(f tω)
.
=

(
A(f tω), B(f tω)

)
of variable t is a piecewise constant

for every ω ∈ Ω. We assume that u ∈ U, where U is a compact convex set in R
m and

U contains the origin in their interior. The aim of this paper is to obtain the sufficient
conditions of the non-predicting local controllability for system (1) on the segment [0, T ].
We prove that in the case u ∈ U for construction of the non-predicting control we must
constantly hold the trajectories of the system (1) solutions in the neighbourhood of the
origin, that lead to some additional conditions for the asymptotical behaviour of the
system ẋ = A(f tω)x solutions.

2 The basic definitions and designations

Suppose e1
.
= col(1, 0, . . . , 0), . . . , en

.
= col(0, . . . , 0, 1) is a standard basis in Euclidean

space R
n; ‖x‖ =

√
x∗x is a norm in R

n; Lin(q1, . . . , qr) is a linear hull of the vectors
q1, . . . , qr ∈ R

n; On
ε (x0) is an ε-neighbourhood of the point x0 in R

n, On
ε

.
= On

ε (0); intU
is an interior of the set U.

Let us consider the probability spaces (Ω1,F1, µ1) and (Ω2,F2, µ2), where Ω1 is a
space of number sequences θ = (θ1, . . . , θk, . . . ), θk ∈ (0,∞), the space Ω2

.
= {ϕ : ϕ =

(ϕ0, ϕ1, . . . ϕk, . . . ), ϕk∈Ψ}, Ψ = {ψj}s
j=1 is a finite set of the matrix pairs ψj

.
= (Aj , Bj),

Fi is a σ-algebra formed by the corresponding cylinder sets, µi is an extension of a measure
µ̃i from the algebra of the cylinder sets to the σ-algebra Fi, i = 1, 2. We also consider
the probability space (Ω,F, µ), where Ω = Ω1 ×Ω2. The construction of σ-algebra F and
the probability measure µ was described in [2].

On the space (Ω2,F2, µ2) for every θ ∈ Ω1 we introduce the sequence of random
variables ζ = (ζ0, ζ1, . . . ) such that ζk(ω) = ζk(ϕ, θ) = ϕk, ϕk ∈ Ψ. We suppose that
the sequence ζ forms the homogeneous Markov chain, which uniquely determines by
the matrix of the transition probabilities P = (pij)

s
i,j=1 and the initial distribution

π = (πi)
s
i=1 (see [14, p. 122]). We also suppose that the Markov chain ζ is a stationary

in the narrow sense (see [14, p. 432]).

Let us introduce the sequence {τk}∞k=0 : τ0 = 0, τk(θ) =
k∑

i=1

θi, where θ ∈ Ω1. We

assume that θ1, θ2, . . . are the independent positive random variables and θ2, θ3, . . . have
the equal distribution F (t), t ∈ (0,∞) with the mathematical expectation mθ. Denote
by ν(t, θ) a number of points of the sequence {τk}, which lie left than t, that is

ν(t, θ) = max{k : τk 6 t}, t > 0.

The variable ν(t) is called a recovery process. We assume that ν(t) is a stationary recovery
process (that is this process have a stationary recovery speed), then the distribution of
θ1 satisfies the equality (see [15, p. 145–147])

F1(t) =
1

mθ

t∫

0

(1 − F (x))dx, t > 0. (2)
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Let us introduce the shift transformation f t
1θ = (τν+1 − t, θν+2, θν+3, . . . ), t > 0 on

the probability space (Ω1,F1, µ1). The transformation f t
1 preserves the measure µ1,

because the sequence {τk} forms the stationary recovery process. We also introduce
the shift transformation f t

2(θ)ϕ = (ϕν , ϕν+1, . . . ) on the space (Ω2,F2, µ2) for any
θ ∈ Ω1. From the stationarity of the Markov chain ζ it follows that the transforma-
tion f t

2 preserves the measure µ2. In [16, p. 190] was proved that the shift transformation
f tω = f t(θ, ϕ) =

(
f t
1θ, f

t
2(θ)ϕ

)
on the space (Ω,F, µ) preserves the measure µ.

Assume that ξ(ω) = ζ0(ω) is a stochastic variable on the probability space (Ω,F, µ).
We introduce the random process ξ(f tω) =

(
A(f tω), B(f tω)

)
generated by the flow f tω.

Then ξ(f tω) receives the constant values ϕk for t ∈ [τk, τk+1). The function ξ(f tω) is a
stationary in the narrow sense random process (see [14, p. 433], [16, p. 167], [17, p. 189]).
We remind that the process ξ(t, ω) is called stationary in the narrow sense if the equality
µ(f tG) = µ(G) satisfies for any cylinder set G ∈ F (see [16, p. 174]).

We identify the system (1) with the function ξ : Ω → Ψ. For each fixed ω the function
ξ(f tω) designates a linear determinate system. We say that an admissible control of the
system ξ is any bounded and Lebesgue measurable function uω : R×R

n×R
n → U ∈ R

m.
The control type uω(t, x0) is said to be program control if it is not explicitly depends from
x; the control type uω(t, x) is said to be positional control. The program control uω(t, x0)
is said to be non-predicting on the segment [t0, t1] if for it construction in the moment
τ ∈ [t0, t1] we use the information about matrices A(f tω) and B(f tω) only for t 6 τ
(and not use the information for t > τ).

Let us consider the intervals [τk, τk+1), where the function ξ(f tω) receives the constant
values ϕk ∈ Ψ. On any interval [τk, τk+1) the system ξ coincides with one of the systems
ξi, i = 1, . . . , s, where over ξi we denote the system

ẋ = Aix+Biu, (x, u) ∈ R
n × U.

Here U is a compact convex set in R
m and U contains the origin in their interior. In this

work we construct the non-predicting control in such form that on any interval [τk, τk+1),
k = 0, 1, . . . we apply either the positional control, or at first the program control for
t ∈ [τk, τk +α), then the positional control for t ∈ [τk +α, τk+1). Therefore let us improve
in what sense we determine the solution of the system ξ under the fixed ω ∈ Ω. We
introduce the sequence {ϑk}∞k=0, where ϑ0 = 0, ϑk+1 > ϑk such that on the intervals
[ϑk, ϑk+1), k = 1, . . . we apply either only the program control, or only the positional
one in dependence from the number of system ξi that appeared in the corresponding
time moment. If we construct the program control uω(t) on the interval [ϑk, ϑk+1), then
the solution of the system ξ is an absolutely continuous function x(t) = x(t, ϑk, xk, uω),
x(ϑk) = xk, which satisfies the corresponding system ẋ = Aix + Biuω(t) for almost all
t ∈ [ϑk, ϑk+1). For the continuity of the solution we require that x(ϑk, ϑk−1, xk−1) = xk.
Now we assume that on the interval [ϑk, ϑk+1) we must construct the positional control
u = uω(t, x). Let us consider the system ξi closed by the control u = uω(t, x) and denote
by x(t) = x(t, ϑk, xk, uω) the solution of this system. We require that x(t) satisfies the
conditions x(ϑk) = xk, x(ϑk, ϑk−1, xk−1) = xk. Let us denote uω(t) = uω(t, x(t)). Then
for any initial point xk the solution of the system ẋ = Aix + Biuω(t, x) we can also
obtain as the solution of the control system ξi that corresponds the control uω(t), see
[18, p. 431–433].

Definition 2.1 The state x0 ∈ R
n of system ξ(f tω) is said to be controllable (non-

predicting controllable) on the segment [t0, t1] if there exists a control uω(t, x, x0) (non-
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predicting control u(f tω, x, x0)), t ∈ [t0, t1] such that the corresponding solution x(t, ω),
x(t0, ω)=x0 satisfies x(t1, ω)=0.

We denote by D[t0,t1](ω) the controllability set of the system ξ(f tω) on the segment
[t0, t1], that is the set of all points, which can be steered to zero on [t0, t1] under the fixed
ω ∈ Ω. We also denote by D[t0,t1](ω) the set of all non-predicting controllable states of
the system ξ = ξ(f tω) on the segment [t0, t1].

Definition 2.2 The system ξ is said to be locally controllable with the probabil-

ity µ0 on the segment [t0, t1] if µ{ω : 0 ∈ intD[t0,t1](ω)} = µ0 and non-predicting lo-

cally controllable with the probability µ0 on the segment [t0, t1] if the probability
µ{ω : 0 ∈ intD[t0,t1](ω)} = µ0.

3 The Construction of the Positional Control

Let us consider the system ξi and denote by Ki the matrix

Ki = (Bi, AiBi, . . . , A
n−1
i Bi), i = 1, . . . , s,

by D[t0,t1](ξi) the controllability set of the system ξi on the segment [t0, t1], by L(ξi)
.
=

LinD[t0,t1](ξi) the controllability space of the system ξi, by Xi(t, s) = Xi(t − s) the
Cauchy matrix of this system. It is known that the controllability space L(ξi) coincides
with the subspace formed by the columns of the matrix Ki, that is L(ξi) = LinKi.
Therefore the condition rankKi = n is the necessary and sufficient condition of the local
controllability for system ξi (see [19, p. 140–145]).

Let us consider a determinate system ξ0, which coincides with the system ξiℓ
on

any interval [(ℓ − 1)α, ℓα), ℓ = 1, . . . , k, that is ξ0 = ψiℓ
for t ∈ [(ℓ − 1)α, ℓα). We can

consider the system ξ0 as the system ξ under the fixed ω = (θ, ϕ) with k first coordinates
ωℓ = (α, ψiℓ

).

Lemma 3.1 [20] Assume that ξ0 = ψiℓ
for t ∈ [(ℓ − 1)α, ℓα), ℓ = 1, . . . , k. Then the

controllability space of system ξ0 on the segment [(ℓ− 1)α, kα]

L[(ℓ−1)α,kα](ξ0) = L(ξiℓ
) +X−1

iℓ
(α)L(ξiℓ+1

) + . . .+X−1
iℓ

(α) · . . . ·X−1
ik−1

(α)L(ξik
).

Suppose that for system ξ there exists ω ∈ Ω such that the corresponding determi-
nate system ξ0 is a totally controllable on the segment [0, kα], that is the controllability
space L[0,kα](ξ0) coincides with R

n. In the present work we investigate the next problem:
is it possible to construct the non-predicting control for the system ξ and what is the
probability that this system is the non-predicting controllable on the fixed time segment
[0, T ] (in the process of construction of such control we assume that for the system ξ in
the moment τ the moments of switching τk and the states of this system for t > τ are
unknown). Further we propose the algorithm of construction of the non-predicting con-
trol when it is not sufficient the equality L[0,kα](ξ0) = R

n. The subspaces L[(ℓ−1)α,kα](ξ0),
ℓ = 2, . . . , k must satisfy some additional condition, that is the trajectory of the system
under some control must retains in given subspace to the next moment of switching. In
Lemma 3.2 we obtain the condition of such retaining when there are not any restrictions
on the control.
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Lemma 3.2 [12] Let M be a subspace in R
n and M be a matrix formed from the

vectors of basis M. If for the system

ẋ = Ax+Bu, (x, u) ∈ R
n × R

m, (3)

we have LinAM ⊂ Lin(M,B), then there exists a positional control u(x) such that for

any point x0 ∈ M the trajectory of solution x(t, t0, x0, u) contains in the subspace M for

all t > 0.

Further we consider the system S : ẋ = Ax + Bu, (x, u) ∈ R
n × U, where U ⊂ R

m

is a compact convex set containing the origin in their interior. We denote by L(S)
.
=

LinD[t0,t1](S), then L(S) is a controllability space for the system (3).
In the next statement we obtain the sufficient conditions of existence of the positional

control u(x) ∈ U for the system S. This control must retains the trajectory of solution
x(t, t0, x0, u) on the subspace M for t > t0, if x0 is a point located on this subspace in the
moment t0. Furthermore, for u(x) ∈ U must exists ε > 0 such that from the inequality
‖x0‖ < ε follows that the solution ‖x(t, t0, x0, u)‖ < ε for all t > t0.

We denote by λ1, . . . , λp the eigenvalues of matrix A corresponding to the different
Jordan cells (for this eigenvalues not required to be different), by mk we denote the
size of Jordan cell corresponding to the eigenvalue λk. We also denote by Λ the set of
eigenvalues λk such that either Reλk > 0 or Reλk = 0 and the size of corresponding
Jordan cell is more than one, that is

Λ
.
=

{
λk : λk ∈ {Reλk > 0} ∪ {Reλk = 0,mk > 1}

}
.

Lemma 3.3 Let M be a subspace in R
n and M be a matrix from the vectors of basis

M. Suppose that the system S and the subspace M satisfy the conditions:

(1) M∩ L(S) = {0};
(2) LinAM ⊂ Lin(M,B);
(3) the controllability space L(S) contains all rooted subspaces of matrix A, corre-

sponding to the eigenvalues λk ∈ Λ.
Then there exists the positional control u(x) ∈ U, for which we can find ε > 0 and

δ = δ(ε) > 0 such that for any point x0 ∈ M∩Oδ the trajectory of solution x(t, t0, x0, u)
contains in M∩Oε for all t > t0.

Proof Assume that for the system S a dimension of the controllability space
dimL(S) = r. Then there exists a linear transformation x = Cy that reduce the system

S to the system type S̃ = (Ã, B̃) :

ẏ1 = A11y
1 +A12y

2 +B1ũ,

ẏ2 = A22y
2,

where y1 ∈ R
r, y2 ∈ R

n−r and the controllability subspace L(S̃) determines in R
n by the

equation y2 = 0 (see [18, p. 110]). From the equalities Ã = C−1AC and B̃ = C−1B it is

easy to verify that the controllability spaces of the systems S and S̃ satisfy the condition

L(S̃) = C−1L(S). (4)

Let us denote M̃ = C−1M. Then from the conditions (1) and (4) follows that M̃ ∩
L(S̃) = {0}. The conditions (2) and LinCÃM̃ ⊂ Lin(CM̃,CB̃) are equivalent, therefore

Lin ÃM̃ ⊂ Lin(M̃, B̃).
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It is known that the similar matrices A and Ã have the equal eigenvalues λk, k =
1, . . . , p. Let ℓi and ℓ̃i be the eigen and the adjoint vectors of matrices A and Ã. If ℓi
and ℓ̃i correspond to the equal λi, then we have ℓi = Cℓ̃i (see [21, p. 31]). Therefore the

condition (3) is equivalent the follow condition: the subspace L(S̃) contains all rooted

subspaces of matrix Ã, corresponding to the λk ∈ Λ.
Note, that the vectors ℓ̃i type ℓ̃i = (ℓ1i , 0), ℓ1i ∈ R

r, i = 1, . . . , r, are contained in

the controllability subspace L(S̃) = Lin(e1, . . . , er). The matrix Ã also have the rooted

subspaces formed by the vectors ℓ̃i = (ℓ1i , ℓ
2
i ), ℓ

2
i 6= 0, i = r + 1, . . . , n that dont lie in

L(S̃). Here ℓ1i ∈ R
r, ℓ2i ∈ R

n−r and vectors ℓ2i are the eigen or the adjoint ones of matrix

A22 (vectors ℓ̃i and ℓ2i , i = r + 1, . . . , n correspond to the equal eigenvalues). Since (3),
it follows that for these eigenvalues Reλk < 0 or Reλk = 0 and mk = 1.

Using the conditions L(S̃) = Lin(e1, . . . , er) and M̃ ∩ L(S̃) = {0}, we get that the

subspace M̃ don’t contains the unit vectors e1, . . . , er. Therefore we can represent this
subspace in the form

M̃ = col(M̃1,M̃2) = Lin(h1, . . . , hj), hi = col(h1
i , h

2
i ),

M̃1 = Lin(h1
1, . . . , h

1
j), M̃2 = Lin(h2

1, . . . , h
2
j), j 6 n− r,

where vectors h1
i ∈ R

r, h2
i are the linear independent vectors in R

n−r.

We denote by y(t) = y(t, t0, y0, ũ) = col(y1(t), y2(t)) the solution of the system S̃
closed by the control ũ(y) ∈ U. Here y1(t) = y1(t, t0, y

1
0 , ũ) and y2(t) = y2(t, t0, y

2
0) is the

solution of the system ẏ2 = A22y
2. Let us obtain the solution y(t) such that its trajectory,

going in the moment t0 from the point y0 = (y1
0 , y

2
0) ∈ M̃, remains in the subspace M̃

for all t > t0. Note, that from the condition Lin ÃM̃ ⊂ Lin(M̃, B̃) follows the condition

LinA22M̃2 ⊂ Lin M̃2, which means that for every point y2
0 ∈ M̃2 the trajectory of y2(t)

contains in the subspace M̃2 = Lin(h2
1, . . . , h

2
j) for all t > t0. Therefore we can represent

the solution y2(t) in the form

y2(t) = α1(t)h
2
1 + · · · + αj(t)h

2
j , αi(t) =

q∑

l=1

eλltQil(t),

where the degree of polynomials Qil(t) not more than ml − 1. The solution y2(t) is
bounded for t0 6 t < ∞ because the eigenvalues λk of matrix A22 satisfy the condition
Reλk < 0 or Reλk = 0 and mk = 1.

Notice, that if Lin ÃM̃ ⊂ Lin(M̃, B̃), then for any basic vector hi ∈ M̃, i = 1, . . . , j

there exists a vector ui ∈ R
m such that Ãhi + B̃ui ∈ M̃. This means that there exists a

vector ci = col(c1i . . . cji) such that the system M̃ci−B̃ui = Ãhi has the solution. Let us
construct the positional control ũ = α1(t)u1 + . . .+αj(t)uj and denote by c = α1(t)c1 +

. . .+ αj(t)cj . Suppose that y0 ∈ M̃ and y(t) = y(t, t0, y0, ũ) = α1(t)h1 + . . .+ αj(t)hj is

the solution of the system S̃ such that its trajectory lies in the subspace M̃. Then the
vector col(c, ũ) ∈ R

k+m is the solution of the system

M̃c− B̃ũ = Ãy, y ∈ M̃. (5)

Combining M̃ = col(M̃1,M̃2), B̃ = col(B̃1, 0), rank M̃2 = j, rank B̃1 = m and condition

(2), we obtain that rank(M̃, B̃) = rank(M̃, B̃, ÃM̃) = j + m. This implies that the
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system (5) is compatible and has a unique solution ũ, which we can represent in the form
ũ = ũ(y) = Dy. Here D is some matrix sizes m × n. Then there exists ε > 0 such that
ũ(y) ∈ U for ‖y‖ < ε.

Since we can express the solution y(t) over the same functions αi(t), i = 1, . . . , j that
enters in y2(t), therefore this solution is also bounded for t > t0. This means that for any
ε > 0 there exists δ > 0 such that ‖y(t)‖ < ε for all t > t0 if ‖y0‖ < δ. Let us consider the

phase trajectories of the system S̃ closed by the control ũ(y) ∈ U. Thus, we proved that

if these trajectories go from the points y0 ∈ M̃∩Oδ, then they lie in the set M̃∩Oε for
all t > t0. Let us put u(x) = ũ(y), then the last condition is equivalent the next one: the
phase trajectories of the system S, going from the points x0 ∈ M∩Oδ under the control
u(x) ∈ U, lie in the set M∩Oε for all t > t0 (here ε and δ may be other).

In addition, note that the vector col(c, u) is the solution of the system

Mc−Bu = Ax, x ∈ M, (6)

which is equivalent the system (5). Thus, the lemma is proved. 2

Lemma 3.4 Suppose L(S) contains all rooted subspaces of matrix A, which corres-

pond to the eigenvalues λk ∈ Λk. Then there exists the positional control u(x) ∈ U type

u = Hx, and for this control there exist ε > 0 and δ = δ(ε) > 0 such that for any point

‖x0‖ < δ the solution ‖x(t, t0, x0, u‖ < ε for all t > t0.

Proof Assume that dimL(S) = r. Let us reduce the system S to the system S̃
by the linear transformation x = Cy. The matrix A22 of the system ẏ2 = A22y

2 have the
eigenvalues λk such that Reλk < 0 or Reλk = 0 and mk = 1. In [22, p. 30] was proved
that there exists a control u = Hx that gives to the matrix A+BH of the closed system r
predesigned eigenvalues and the rest eigenvalues of A+BH coincide with the eigenvalues
of matrix A22. Therefore, we can choose the control u = Hx such that all eigenvalues of
matrix A + BH satisfy the condition Reλk < 0 or Reλk = 0 and mk = 1. Then there
exists ε > 0 that u(x) ∈ U for ‖x‖ < ε and there exists δ = δ(ε) > 0 that for any point
‖x0‖ < δ the solution x(t) = x(t, t0, x0, u) satisfies the equality ‖x(t, x0, u(·))‖ < ε for all
t > t0. The lemma is proved. 2

4 The Conditions of the Non-predicting Local Controllability

We say that the finite sequence V = (ψi1 , . . . , ψik
), where ψij

∈ Ψ is called a word V. Let
us put in correspondence to the word V the linear systems ξi1 , . . . , ξik

, the controllability
spaces of these systems L(ξi1), . . . , L(ξik

) and the controllability spaces L[(ℓ−1)α,kα](ξ0),
ℓ = 1, . . . , k, constructed in Lemma 3.1.

Let us denote by µ(T ) the probability of appearance the word V on the segment
[0, T ].

Lemma 4.1 Suppose that 0 < α 6 θk 6 β for all k = 2, . . . , the set Ψ = {ψ1, ψ2},
the word V = (ψi1 , ψi2). Then for T > 2Nβ, N = 1, 2, . . . , the probability µ(T ) satisfies

the inequality

µ(T ) > (1 − πi2p
N−1
i2i2

)(1 − pN
i1i1

). (7)

Proof Here we consider the case, when the set Ψ contains two states, then the
probability µ(T ) equals to the probability of appearance the word V = (ψi1 , ψi2) on the
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segment [0, T ]. Notice that µ(T ) not less than the probability of transition the system
from any initial state to the state ψi1 over not more than N steps and then from ψi1 to
ψi2 also not more than for N steps. It is clear that for such transition of the system on
the segment [0, T ] must appeared not less than 2N jumps of the process, that always true
for T > 2Nβ. Let us denote by fi1i1(N) the conditional probability of the first reaching
of the system the state ψi1 from this own initial state not more than over N steps. The
probability fi1i1(N) equals to the probability that the system either reaches the state
ψi1 for one step or goes to ψi2 , then a few times goes again to ψi2 and then reaches the
initial state ψi1 , hence

fi1i1(N) = pi1i1 + pi1i2pi2i1(1 + pi2i2 + . . .+ pN−2
i2i2

) = 1 − pi1i2p
N−1
i2i2

.

Let fi2i1(N) be the conditional probability of the first reaching of the system the state
ψi1 from the state ψi2 not more than over N steps. For this aim the system from the
state ψi2 can reach the state ψi1 either over one step or at first it can go a few times to
ψi2 , then it goes to ψi1 , therefore,

fi2i1(N) = pi2i1(1 + pi2i2 + . . .+ pN−1
i2i2

) = 1 − pN
i2i2

.

In the same way, we denote the probability fi1i2(N), then fi1i2(N) = 1 − pN
i1i1

. Further
note that the system can reach the state ψi1 either from ψi1 or from ψi2 , hence for
T > 2Nβ we have the inequality

µ(T ) >

(
πi1fi1i1(N) + πi2fi2i1(N)

)
fi1i2(N) =

(
1 − πi1pi1i2p

N−1
i2i2

− πi2p
N
i2i2

)
(1 − pN

i1i1
).

It is well known that if the Markov chain is a stationary in the narrow sense, then the

initial and transition probabilities satisfy the equations
s∑

j=1

πjpjk = πk, k = 1, . . . , s.

Hence in the case s = 2 we have πi1pi1i2 + πi2pi2i2 = πi2 . Therefore µ(T ) > (1 −
πi2p

N−1
i2i2

)(1 − pN
i1i1

). Thus, the lemma is proved. 2

Let p
(ℓ)
ij be the probability of transition from the state ψi to the state ψj over ℓ steps.

The state ψj is called an attainable from the state ψi if there exists ℓ > 0 such that

p
(ℓ)
ij > 0. The states ψi and ψj are called the connected if the state ψj is attainable from

the state ψi and the state ψi is attainable from ψj (see [14, p. 598]).

Theorem 4.1 Suppose that for the system ξ the set Ψ = {ψ1, ψ2}, the states ψ1, ψ2

are connected and 0 < α 6 θk 6 β for all k = 2, . . . If there exist a word V = (ψi1 , ψi2)
and a subspace M ⊂ L(ξi2) such that:

(1) M∩ L(ξi1 ) = {0}, L(ξi1) + M = R
n;

(2) LinAi1M ⊂ Lin(M,Bi1);
(3) the controllability space L(ξi1) contains all rooted subspaces of matrix Ai1 and

the controllability space L(ξi2) contains all rooted subspaces of Ai2 , corresponding to the

eigenvalues λk ∈ Λ,
then the system ξ is non-predicting controlled on [0, T ] with probability µ(T ) that satisfies

(7) for all T > 2Nβ, N = 1, 2, . . . .
The probability µ(T ) → 1 as T → ∞.

Proof Let us describe the construction of the non-predicting control for the sys-
tem ξ that satisfies the conditions of the theorem.
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1. First let us consider the case, when in the initial moment the system ξ is in the
state ψi1 . The first task is to translate the points x0 ∈ Oε to the set M ∩ Oε1

by the
program control u(t) ∈ U for time α. We denote by D[t0,t1](S,M0) the controllability

set of the system S to the set M0 on the segment [t0, t1]. The point x0 lies in the set
D[t0,t1](S,M0) if and only if there exists an admissible control u(t) such that the solution
x(t) = x(t, t0, x0, u) of the system S satisfies the condition x(t1) ∈M0. It is known that
the set D[t0,t1](S,M0) satisfies the equality

D[t0,t1](S,M0) = D[t0,t1](S) +X−1(t1 − t0)M0.

Here under the algebraic sum of the sets A and B from R
n we intend the set A + B =

{a+ b : a ∈ A, b ∈ B}, by X(t, s) = X(t− s) we denote the Cauchy matrix of the system
ẋ = Ax. We obtain

LinD[0,α](ξi1 ,M∩Oε1
) = Lin

(
D[0,α](ξi1) +X−1

i1
(α)(M∩Oε1

)
)

=

= L(ξi1) +X−1
i1

(α)M.

In the work [20] was proved that the conditions L(ξi1) +X−1
i1

(α)M = R
n and L(ξi1) +

M = R
n are equivalent, hence from the condition (1) it follows that LinD[0,α](ξi1 ,M∩

Oε1
) = R

n. Since {0} ∈ intM and {0} ∈ intD[0,α](ξi1), then {0} ∈ intD[0,α](ξi1 ,M∩Oε1
).

Therefore the set D[0,α](ξi1 ,M∩Oε1
) contains some neighbourhood Oε of the origin such

that all points of Oε reach the set M∩Oε1
by u(t) ∈ U for time α.

Let us suppose that the system ξ have not the jumps for time t = α, that is τ1 > α.
Since the system ξi1 and the subspace M satisfy the conditions of lemma 3.3, then there
exists the positional control u(x) ∈ U, which retains the solution x(t) = x(t, α, xα, u),
x(α) = xα on the subspace M for all t > α. In this case for every ε2 > 0 there exists
ε1 > 0 such that for all ‖x0‖ < ε1 the solution ‖x(t)‖ < ε2 for all t > α. Suppose that in
the moment τ1 the state ψi2 is appeared; then we can translate the points of M∩ Oε2

to null for time α, because M contains in the controllability set L(ξi2). In this case we
choose ε2 such that the program control u(t) ∈ U for t ∈ [τ1, τ1 + α]. The case τ1 < α
considered further in item 3.

2. Suppose that in the initial moment the system ξ is in the state ψi2 . In this case
we must wait for the moment of jump τ1 during some unknown time and simultaneously
choose the control u(x) ∈ U that satisfy the follow condition: there exist ε > 0 and
δ = δ(ε) > 0 that all points from the neighbourhood Oδ contain in Oε for any long time
(to the moment τ1). In Lemma 3.4 we prove the existence of such control u(x) ∈ U.
If the state ψi2 appears again in the next moments of jumping τ1, . . . , τk, then we keep
on restrain the trajectory of the system in the neighbourhood Oε until the state ψi1

appeared in some moment τk+1. For t > τk+1 we construct the control as in item 1.
3. Notice that in the initial moment we don’t know about the time τ1 of first jump of

the process, thats why we cannot always reach the sets constructed above for this time.
Therefore for t < τ1 we must construct the program control similarly as in the first or
second item in dependence of the state of the system in the initial moment. Now suppose
that the first jump of the process was in the moment τ1 < α and we don’t reach the
necessary sets for this time, then after the moment τ1 we have a reserve time α without
the next moment of jump τ2 (because θk ∈ [α, β]). Thus, for t > τ1 we build the control
as above in dependence from the number of state in the moment τ1.

4. Finally let us prove that µ(T ) → 1 as T → ∞. The states ψ1, ψ2 are connected,
hence p11 6= 1, p22 6= 1. Therefore from the inequality (7) we have that µ(T ) → 1 as
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N → ∞. Notice, that in this case T → ∞, because T > α(N − 1), α > 0. Thus, the
theorem is proved. 2

5 Illustrative Example

Assume that the system ξ has two states ψ1 = (A1, B1), ψ2 = (A2, B2) with the next
matrices:

A1 =




2 0 0
1 1 2
0 0 −1


 , B1 =




1 0
0 1
0 0


 , A2 =




−1 1 0
0 −1 4
1 1 −2


 , B2 =




1
2
1


 .

It is also given the matrix of transition probabilities P =

(
3/5 2/5
4/5 1/5

)
and the initial

distribution π = (2/3, 1/3). Note, that the initial and transition probabilities satisfy the

equations
2∑

j=1

πjpji = πi, i = 1, 2. We also suppose that the length of intervals between

the system jumps θk ∈ [0, 5; 1], k = 2, 3 . . . , then from (2) follows that θ1 ∈ [0; 1].
It is easily shown that the controllability spaces of these systems L(ξ1) = LinB1,

L(ξ2) = LinB2. We choose the word V = (ψ1, ψ2) and the subspace M = L(ξ2), then
the subspaces M and L(ξ1) satisfy the equalities:

M∩ L(ξ1) = {0}, L(ξ1) + M = R
3, LinA1M ⊂ Lin(M, B1) = R

3.

Further, the controllability space L(ξ1) contains the eigenvectors of matrix A1, v1 =
col(0, 1, 0) and v2 = col(1, 1, 0) that correspond to the eigenvalues λ1 = 1 and λ2 = 2; the
matrix A1 also has the eigenvalue λ3 = −1. The subspace L(ξ2) contains the eigenvector
v1 = col(1, 2, 1) of matrix A2, corresponding λ1 = 1, the other eigenvalues of A2 are
λ2 = −2, λ3 = −3. From the Theorem 4.1 it follows that the system ξ is the non-
predicting controlled on the segment [0, T ] with the probability µ(T ), which satisfies the
next inequality for T > 2N :

µ(T ) >

(
1 − 1

3
· 0, 2N−1

)
(1 − 0, 6N).

Let us describe the construction of the non-predicting control for this system and
obtain the corresponding positional controls. Assume that in the initial moment the
system ξ is in the state ψ1. First we translate the points x0 ∈ Oε to the set M ∩ Oε1

by the program control u(t) ∈ U for the time α = 0, 5. If the system has not the jumps
during the time interval α, that is τ1 > α, then we restrain the trajectories of the system
ξ1 in the set M ∩ Oε1

by the control u(x) to the jump moment τk, when the system
goes to the state ψ2. For obtaining the control u(x) we represent the vector x ∈ M in
the form x = col(x1, 2x1, x1), then from the system (6) we have u(x) = col(u1, u2) =
col(−3x1,−7x1). We obtain the solution x(t, α, x0, u) of the system ξ1, closed by the
control u(x), going from the point x0 = (x1

0, 2x
1
0, x

1
0) :

x(t, α, x0, u) = col
(
x0

1e
−(t−α), 2x0

1e
−(t−α), x0

1e
−(t−α)

)
.

Note, that this solutions satisfies the inequality ‖x(t, α, x0, u)‖ 6 ‖x0‖ < ε1 and its
trajectory contains in the subspace M for all t > α. Further, when the state ξ2 appears
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in the moment τk, we translated the points from M∩Oε1
to null by the corresponding

program control.
Suppose that τ1 < α and in the moment τ1 the state ψ2 appears, then the trajectories

of the system cannot always reach the set M∩Oε1
for the moment τ1. In this case after τ1

we must restrain the trajectories in some neighbourhood of the origin for the moment τq,
when the system will be in the state ψ1 again. For this aim we construct the positional
control for the system ξ2 : u(x) = −x1 − x2, such that all eigenvalues of the matrix of
closed system are equal −2. Then there exist ε > 0 that u(x) ∈ U for ‖x‖ < ε and
δ = δ(ε) > 0 that for any point ‖x0‖ < δ the solution ‖x(t, τ1, x0, u)‖ < ε for all t > τ1.
After appearing the state ψ1 we deal as in the first case. In the same way, if in the moment
t = 0 appears the state ψ2, we must restrain the trajectories in some neighbourhood of
the origin for the moment τq, when the system will be in the state ψ1.

The work is supported by Russian Foundation of Basic Research (grant No. 06-01-
00-258).
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