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Abstract: In this paper, we consider a hybrid control strategy for stabilization
of nonholonomic systems. In particular, we deal with a typical nonholonomic
system, namely a two-wheeled vehicle. We first rewrite the system in a chained
form, and then transform it into a nonholonomic integrator (NHI) system.
Finally, we apply and modify the hybrid control method for the NHI system, so
that the entire system is exponentially stable. We provide a simulation example
to demonstrate the effectiveness of the transformation and the control, and give
some analysis together with an example for the case where there are constraints
on control inputs. We also extend the discussion to the case of four-wheeled
vehicles.
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1 Introduction

It is known that many mechanical systems are subject to nonholonomic velocity con-
straints (for example, wheeled mobile robots [2], tractor-trailer (or car-trailor) systems
[3], free-floating space [4], etc.), and these constraints can be modelled as symmetrically
affine systems [5,6]. Since such nonholonomic systems do not satisfy the so-called Brock-
ett’s stabilizability condition [7], they can not be asymptotically stabilized to their equi-
librium points by any continuously differentiable, time invariant, state feedback control
laws [7,8]. For this reason, there have been a large quantity of works on the stabilization
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problem of nonholonomic systems in the last two decades, including the efforts of find-
ing continuous, time varying control laws [9,10], discontinuous ones [8,11,12] and middle
strategies (discontinuous and time varying) [13,14].

In this paper, we consider a hybrid control strategy for this challenging problem. In
particular, we deal with a typical nonholonomic system, namely a two-wheeled vehicle.
The significant difference from the abovementioned existing work is that we seek the
possibility of achieving exponential stabilization for such a nonholonomic system. For
this purpose, we first rewrite the model of the two-wheeled vehicle in a chained form, and
then transform it into a nonholonomic integrator (NHI) system [7]. Finally, we apply
and modify the hybrid control method, which was originally proposed in [1], for the NHI
system. We demonstrate by a simulation example the effectiveness of the transformation
and the control. After that, we discuss the case where there are constraints on the control
inputs and propose using the idea of bounded functions in the hybrid control method.
We also extend our discussion to the case of four-wheeled vehicles. By choosing an
alternative control input, we can reduce the stabilization of four-wheeled vehicles to the
same control problem as for two-wheeled vehicles, and thus can apply the same approach.

The remainder of this paper is organized as follows. In Section 2, we describe the
system of a two-wheeled vehicle and then transform it into an NHI system. In Section 3,
we present the hybrid control strategy and the simulation result, and give two important
remarks, which concern the switching time interval and the method of dealing with
singularities. Section 4 considers the case where there exist constraints on the control
inputs, and Section 5 discusses the extension to the case of four-wheeled vehicles. Finally,
we give some concluding remarks in Section 6.

2 System Description and Transformation

We deal with a two-wheeled vehicle as depicted in Figure 2.1, which is known as a typical
nonholonomic system. Let (x, y) denote the position of the vehicle, let θ be the angle
with respect to the x-axis and let v̄1 be the velocity of the vehicle in its body direction.
If we view v̄1 = u1, θ̇ = u2 as control inputs, we obtain the vehicle’s system described by







ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ = u2.

(1)

Note that this is a three-dimensional symmetrically affine system with two control inputs.
In this paper, we propose transforming the system (1) into a chained form, and

then transforming the chained form into an NHI system. More precisely, we first let
µ1 = u1 cos θ, µ2 = u2 to rewrite (1) as







ẋ = µ1,

ẏ = µ1 tan θ,

θ̇ = µ2.

(2)

In (2), we let z1 = x, z2 = tan θ, z3 = y, v1 = µ1, v2 = (sec2 θ)µ2 to obtain







ż1 = v1,

ż2 = v2,

ż3 = z2v1,

(3)
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which is a chained form.
Next, we apply the idea in [6] to transform the chained form (3) into an NHI system.

More precisely, if we define the new variables

x1 = z1 , x2 = z2 , x3 = −2z3 + z1z2 , (4)

then the NHI system






ẋ1 = v1,

ẋ2 = v2,

ẋ3 = x1v2 − x2v1,

(5)

is obtained from (3) easily.

x

y

x , y

Figure 2.1: A two-wheeled vehicle.

It is not difficult to obtain the relation between (x, y, θ) in (1) and (x1, x2, x3) in (5)
as

x = x1 , y =
−x3 + x1x2

2
, θ = tan−1 x2 (6)

and the relation between (u1, u2) in (1) and (v1, v2) in (5) as

u1 =
v1

cos θ
, u2 = v2 cos2 θ . (7)

These relations imply that if we can design a controller v = [v1 v2]
T to make the NHI

system (5) asymptotically/exponentially stable, then the controller u computed by (7)
stabilizes the original nonholonomic system (1) asymptotically/exponentially.

3 Hybrid Control and Simulation

Since the control problem has been reduced to stabilizing the NHI system (5), we propose
applying the hybrid control method in [1]. Define the functions

π1(w) = 0.5(1 − e−
√

w), π2(w) = 1.7π1(w), π3(w) = 2.5π1(w), π4(w) = 4π1(w), (8)
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and the overlapping regions

R1 =
{

x ∈ R3 : 0 ≤ x2
1 + x2

2 ≤ π2(x
2
3)

}

,

R2 =
{

x ∈ R3 : π1(x
2
3) ≤ x2

1 + x2
2 ≤ π4(x

2
3)

}

,

R3 =
{

x ∈ R3 : π3(x
2
3) ≤ x2

1 + x2
2

}

,

R4 = {0} .

(9)

Then, we define the control strategy

v =
[

v1 v2

]T
= gσ(x) , (10)

where σ is a piecewise constant switching signal, which is continuous from the right at
every point and takes value on a finite set J = {1, 2, 3, 4}, and

g1(x)
△
=

[

1
1

]

, g2(x)
△
=





x1 + x2x3

x2

1 + x2

2

x2 −
x1x3

x2

1 + x2

2



 ,

g3(x)
△
=





−x1 + x2x3

x2

1 + x2

2

−x2 −
x1x3

x2

1 + x2

2



 , g4(x)
△
=

[

0
0

]

.

(11)

The switching signal σ is defined recursively by

σ = φ(x, σ−),

φ(x, j) =

{

j, if x ∈ Rj

max{i ∈ J : x ∈ Ri}, if x /∈ Rj .

(12)

Therefore, the above control strategy is a hybrid control which is composed of four
continuous-time controllers and a state-dependent switching law. It has been shown in
[1] that exponential stability is obtained for the NHI system (5) by using the above hybrid
control method. Therefore, as explained before, the original nonholonomic system (1) is
also exponentially stabilized by the hybrid controller defined by (7) and (10)-(12).

The simulation results are described in Figures 3.1 – 3.5, where the initial state is
x1 = 0.25, x2 = 0.15, x3 = 1.0. Figure 3.1 describes how the switching signal changes
with w1 = x2

3, w2 = x2
1 + x2

2. Figure 3.2 and Figure 3.3 respectively show that both
the NHI system (5) and the original system (1) are exponentially stable. Figure 3.4 and
Figure 3.5 depict the switchings in control inputs.

In the end of this section, we give two important remarks concerning the discussion
in this section.

First, as also pointed out in [1], the time interval between consecutive switchings in
the switching law is bounded away from zero, not only on any finite time interval but
also as time goes to infinity. Therefore, chattering phenomena will not happen. Here, we
give more precise description, though similar to that appeared in [1], so that the readers
can follow the design precept.

Let t̄ denote any time instant at which σ switches from Mode 2 (Controller 2) to
Mode 3 (Controller 3). Then one must have

w2(t̄) = π4(w1(t̄)) . (13)
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Figure 3.1: Switchings.
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Figure 3.2: The states of the NHI (5).
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Figure 3.3: The states of the the vehicle (1).
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v

v

Figure 3.4: The control inputs of the NHI (5).
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t 

u

u

Figure 3.5: The control inputs of the vehicle (1).

Suppose that σ switches back to Mode 2 after some time interval ∆t, which implies that

w2(t̄ + ∆t) = π3(w1(t̄ + ∆t)) . (14)

Since ẇ2 = −2w2 on the interval [t̄, t̄ + ∆t), we obtain

w2(t̄ + ∆t) = w2(t̄)e
−2∆t , (15)

and thus

∆t =
1

2
log

π4(w1(t̄))

π3(w1(t̄ + ∆t))
. (16)

Noting the fact that w1 is decreasing for all t ≥ t̄ and π3 is monotone nondecreasing,
which leads to π3(w1(t̄ + ∆t)) ≤ π3(w1(t̄)), we conclude that

∆t ≥
1

2
log

π4(w1(t̄))

π3(w1(t̄))
. (17)

Therefore, we can adjust the switching time interval by choosing the ratio between π4

and π3 (we used the ratio 4

2.5
= 1.6 in (8)). For example, if we desire ∆t ≥ 2, then

we choose π4(w1) = exp(4)π3(w1). In this case, the switchings are done as described in
Figure 3.6.

Next, we give a remark on the system transformation from the original system (1)
to the NHI system (5). In (2) or (7), it is easy to understand that we can’t obtain the
original control input u in singular points such as θ = ±π

2
(which means that the vehicle

is located towards the vertical direction). To say it in other words, the consideration for
the NHI system (5) does not cover the case of θ = ±π

2
. To overcome this difficulty, we

can use an alternative transformation which doesn’t result in singular points. That is,
we let µ1 = u2, µ2 = u1 to rewrite (1) as

ẋ = µ2 cos θ, ẏ = µ2 sin θ, θ̇ = µ1. (18)

Then, we let z1 = θ, z2 = −x cos θ − y sin θ, z3 = −x sin θ + y cos θ, v1 = µ1, v2 =
(x sin θ − y cos θ)µ1 − µ2 in (18) to obtain

ż1 = v1, ż2 = v2, ż3 = z2v1, (19)
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w

w

Figure 3.6: Switchings when π4(w1) = exp(4)π3(w1).

which is also a chained form. The remaining discussion is the same as before.

4 Constrained Control Input

In this section, we give some analysis and simulation in the case where there exist con-
straints on the control inputs. Ref. [15] considered the asymptotic stabilization problem
for nonholonomic mobile robots under constraints on control inputs, but it is found that
the convergence rate is very slow there (only asymptotic stability is guaranteed there).
Here, we suggest using the bounded function proposed in [15] for the hybrid controller
(11).

t

x

x

x

Figure 4.1: The states in the saturated case (x1(0) = 0.25, x2(0) = 0.15, x3(0) = 1.0).

Suppose that due to physical environment and/or actuator capability limitation, we
need imposing certain constraints on the control inputs. For simplicity, we consider here
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u

t

Figure 4.2: The norm of the control input in the saturated case (x1(0) = 0.25, x2(0) = 0.15,
x3(0) = 1.0).
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x

x

x

Figure 4.3: The states in the saturated case (x1(0) = 2.5, x2(0) = 1.5, x3(0) = 10).
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t

u

Figure 4.4: The norm of the control input in the saturated case (x1(0) = 2.5, x2(0) = 1.5,
x3(0) = 10).

the case where the constraints can be imposed directly on the NHI system (5) as

∥

∥

∥

∥

[

v1

v2

]∥

∥

∥

∥

≤ r , (20)

where r is a positive scalar indicating the constraint bound. Then, utilizing the idea
of bounded function in the control input vector (11), we propose the new controller
candidates

ḡi =
2r

1 + gT
i gi

gi , i = 1, 2, 3, 4 (21)

instead of (11). Note that the constraints are satisfied with the above controllers since

ḡT
i ḡi =

4r2

(1 + gT
i gi)2

gT
i gi ≤ r2 . (22)

Now, we consider the same system with constrained controller under r = 1. The
simulation result with the same initial state (x1 = 0.25, x2 = 0.15, x3 = 1.0) is shown in
Figure 4.1 and Figure 4.2. Figure 4.1 tells that the system is also exponentially stabilized,
and Figure 4.2 tells that the constraint on the control inputs is satisfied.

Since the controller switchings depend on the initial state significantly, we increase
the initial state to x1 = 2.5, x2 = 1.5, x3 = 10. Then, the simulation result is shown
in Figure 4.3 and Figure 4.4. We see that we have also obtained desired exponential
stability under the constrained control inputs.

5 Extension to Four-Wheeled Vehicles

In this section, we extend our consideration to the case of four-wheeled vehicles, which
are depicted in Figure 5.1.

We let (x, y) and (xf , yf) be the coordinates of the middle point of the rear tire axle
and that of the front tire, respectively, and let L be the length from (x, y) to (xf , yf ).
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Figure 5.1: A four-wheeled vehicle.

Define θ and v̄1 as in the two-wheeled vehicle, and let φ be the angle with respect to its
body direction. If we view v̄1 = u1, φ̇ = u2 as control inputs, we obtain the vehicle’s
system described by























ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ = u1

tanφ

L
,

φ̇ = u2.

(23)

Note that this is a four-dimensional symmetrically affine system with two inputs. We
can transform this system into four-dimensional chained form. However, we find that it
is hard to apply the aforementioned control method since the obtained chained form can
not be transformed further into the NHI system. For this reason, we propose choosing
the control inputs as v̄1 = u1, v̄1 tan φ = u2, and rewrite the vehicle’s system as











ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ =
u2

L
.

(24)

Since (24) is a three-dimensional symmetrically affine system with two inputs, we can
use the same approach as in Section II to transform this system into an NHI system,
and then apply the aforementioned hybrid control strategy for the system. Note that
the relation between (x, y, θ) in (24) and (x1, x2, x3) in (5) is the same as in the case of
two-wheeled vehicles, and the relation between (u1, u2) in (24) and (v1, v2) in (5) is

u1 =
v1

cos θ
, u2 = v2L cos2 θ . (25)

6 Concluding Remarks

We have considered a hybrid control strategy for stabilization of a class of nonholonomic
systems, namely two(four)-wheeled vehicle systems. We first rewrite the system in a
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chained form, and then transform it into a nonholonomic integrator (NHI) system. Fi-
nally, we have applied the hybrid control method proposed in [1] for the obtained NHI
system. The key point is that the transformations are returnable and the switching time
interval can be adjusted easily. We have shown that it is possible to extend the results
to the case involving constrained control inputs.

Future research includes the hybrid control for extended NHI forms (for example,
those with even dimension) and for robust performance of nonholonomic systems.
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