
Nonlinear Dynamics and Systems Theory, 7 (4) (2007) 409–417

Third-Body Perturbation

Using Single Averaged Model:

Application to Lunisolar Perturbations
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Abstract: In this paper, we considered the third-body perturbation using a
single averaged model to study the effect of lunisolar perturbations on high-
altitude Earth satellites. We combine two third-body perturbations. If no
resonance occurs with the Moon or the Sun, short period terms are eliminated.
In this way, we developed a semi-analytical study of the perturbation caused
in a spacecraft by a third body with a single averaged model to eliminate the
terms due to the short time periodic motion of the spacecraft. Several plots
will show the time histories of the Keplerian elements.
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1 Introduction

The effects of the gravitational attractions of the Sun and the Moon in the orbits of an
Earth’s artificial satellites have been studied in several papers. Kozai [8] writes down the
Lagrange’s planetary equations and the disturbing function due to the Sun and to the
Moon, including both secular and long periodic terms. Frick and Garber [4], using linear
analysis, show that the result of the lunisolar attraction is a change of the orbital plane
with small oscillations. Moreover, Musen [10] determines the long periodic disturbances
caused by the Moon and the Sun in the motion of an artificial satellite. Kaula [6] derived
general terms from the disturbing function for the lunisolar disturbance using equatorial
elements for the Moon and the Sun.
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Zee [16] studied the effects of the Sun and the Moon on a near-equatorial synchronous
satellite, with particular attention to the trajectories of a geo-stationary synchronous
satellite under the influence of the gravitational fields of an oblate Earth, the Sun and
the Moon. Another work is the one by Kozai [9] that developed an alternative method
for the calculation of the lunisolar disturbances. The disturbing function was expressed
in terms of the orbital elements of the satellite and the geocentric coordinates of the Sun
and the Moon.

Hough [5] used the Hamiltonian formed by a combination of the declination and the
right ascension of the satellite, the Moon, and the Sun, and studied the periodic perigee
motion for orbits near the critical inclinations 63.400 and 116.600. The theory predicts
the existence of larger maximum fluctuations in eccentricity and faster oscillations near
stable equilibrium points. Delhaise and Morbidelli [3] investigated the lunisolar effects of
a geosynchronous artificial satellite orbiting near the critical inclination, analyzing each
harmonic formed by a combination of the satellite and the Moon’s longitude of the node.
He demonstrated that the dynamics induced by these harmonics does not show resonance
phenomena. Breiter [1] studied the effect in the resonance of apsides for satellites of low
altitude, determining the resonant eccentricities between the secular motion of a satellite
in terrestrial orbit and the longitudes of the Moon and the Sun. This study was made
in hamiltonian form.

All these works present rich contributions and possess a sufficiently analytical ap-
proach, rich in derivations of equations. In the present work, an approach will be used
to search numerical results, aiming to complement the existing literature. Papers more
directed toward results and numerical comparisons had appeared recently, as the ones
made by Broucke [2], Prado [11]. They all studied the disturbance of one third body on
a satellite making an analytical and numerical study.

2 Mathematical Models

Our model can be formulated in a very similar way of the formulation of the planar
restricted three-body problem. There are three bodies involved in the dynamics: one
body with mass m0, fixed in the origin of the reference system, a second massless body
in orbit around m0 and a third body (m’) in a circular orbit around m0 (see Figure
2.1). The motion of the spacecraft (the second massless body) is Keplerian and three-
dimensional, with its orbital elements perturbed by the third body. The motion of the
spacecraft is studied with the single averaged model, where the average is performed
with respect to the true anomaly of the spacecraft (f). The disturbing function is then
expanded in Legendre polynomials. The main body m0 is fixed in the center of the
reference system X-Y. The perturbing body m’ is in a circular orbit with semi-major
axis a’ and mean motion n’. The spacecraft is in a three dimensional orbit, with orbital
elements a, e, i, ω, Ω and mean motion n. In this situation, the disturbing potential that
the spacecraft has from the action of the perturbing body is given by using the expansion
in Legendre polynomials and assuming that r′ ≫ r.

R = µ′G(m0 + m′)/
√

r2 + r′2 − 2rr′ cos(S),

R = (µ′(m0 + m′)/r′)

∞
∑

n=2

(r/r′)nPn cos(S).
(1)

The next step is to average all there terms of the disturbing function over the short
period of the satellite. The definition for average used is:
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Figure 2.1: Illustration of the third body perturbation.

〈G〉 = (1/2)
∫

∞

0
GdM. (2)

Remember that M is the mean anomaly of the satellite and M’ is the mean anomaly
of the perturbing body. The results are made for the special case of circular orbits for
the perturbing body and with the initial mean anomaly of the perturbing body equal to
zero. The following relations are available (see [2]):

α = cos(ω) cos(Ω − M ′) − cos(i) sin(ω) sin(Ω − M ′), (3)

β = − sin(ω) cos(Ω − M ′) − cos(i) cos(ω) sin(Ω − M ′). (4)

With those relations it is possible to relate the angle S with the positions of the
perturbing and the perturbed bodies.

cos(S) = α cos(f) + β sin(f). (5)

Substituting expression (5) into equation (1), and considering the equations (2)-(4),
we have, after the averaged equations of motion of the spacecraft that are derived from
the Lagrange’s planetary equations, that they depend on the derivatives of the disturbing
function [14]. It is noticed that the semi-major axis always remains constant. This occurs
because, after the averaging, the disturbing function does not depend on M0 (more details
are available in [13]).

3 Results

We are now interested in the combined effects of the Moon and the Sun. For this, it is
important to find the expansions of the disturbing function of the Sun and the Moon.
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The term of second order due to the Sun is equivalent to the one of fourth order due to
the effects of the Moon. In this section, simulations will consider the expansion made
for the disturbing function of the Sun and the Moon in a combined form. The tests will
be made considering satellites located in orbits with semi-major axis of 0.070 and 0.110
canonical units (26908 km and 42284 km).

Figure 3.1: Behaviour of the orbital elements for values of the initial inclination below the
critical value. (a) Inclination, (b) Eccentricity, both with a = 0.110.

The results for the lunisolar disturbance show a behavior similar to the ones obtained
for the disturbance of the third body. Figure 3.1a shows the evolution of the inclination
for initial values below the critical inclination. For the time scale used, the behavior
of the inclination is constant. When analyzing the behavior of the eccentricity, it can
be observed the several amplitudes reached with the increment of the initial inclination
(Figure 3.1b). For an initial value of the inclination of 30 degrees, the eccentricity presents
an amplitude around of 0.006, and for an initial inclination of 20 degrees, the eccentricity
has an amplitude of 0.002. These small values do not change too much the orbit, since
they still remain as almost-circular.

For larger values of the initial inclination (above the critical value), there is a typical
behavior. It initiates in its initial value and soon it goes down until the critical value
(Figure 3.2a) and then returns to the initial value. This oscillatory behavior presents the
characteristic that, as the initial inclination increases, the amplitude of the inclination
suffer increases. This fact reflects in the evolution of the eccentricity (Figure 3.2b),
where the orbits with small eccentricities (almost circular) reach high values for the
eccentricities, what affects the stability of the near-circular orbits. When the inclination
reaches its minimum value, the eccentricity reaches its maximum value. This repetitive
behavior is shown the Figures 3.2a and 3.2b, where the inclination starts in its initial
value and, after a certain period, the inclination goes to its minimum value and the
eccentricity reaches its maximum value.

For values of the inclination near the critical one (around 40◦), we observe that,
for values smaller than the critical inclination, there is an almost constant variation
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Figure 3.2: Behaviour of the orbital elements for values of the initial inclination above the
critical value. (a) Inclination, (b) Eccentricity, both with a = 0.110.

(Figure 3.3a). As this value suffer increases, the inclination variations become larger. In
the analysis of the eccentricity (Figure 3.3b), we observe that a zone exists where the
eccentricity presents small oscillations. However, there are regions where it suffers large
variations, making the almost circular orbit a very elliptical one. Figure 3.3c shows the
evolution of the argument of the pericenter for values of the initial inclination near the
critical value. The figures show the secular behavior of the argument of the pericenter for
the time scale used. For larger times, it is observed the phenomenon called circulation.
For an interval of shorter times, the secular curves are formed by small oscillations.
Moreover, Figure 3.3d illustrates the retrograde behavior of the longitude of the node.

For an orbit with semi-major axis of 0.07 canonical units, one of the main character-
istics is the small number of oscillations per unit of time. This brings, as a consequence,
that when the satellite is located in a orbit with a semi-major axis of 0.110 canonical
units, it reaches the critical inclination quickly. In Figure 3.5a we observe that, for initial
inclination of 45 degrees, the satellite reaches its first critical value for a time of 25000
canonical units. In Figure 3.2a it is observed that the orbit reaches the critical inclination
near 12000 canonical units of time. In the evolution of the inclination and the eccentric-
ity, for the values of the initial inclination below the critical value, the inclination (Figure
3.4a) keeps its typical behavior, even that the eccentricity does not change significantly.
As a consequence of that, the time necessary to reach the critical inclination is larger,
and the number of oscillations in the evolution of the eccentricity is smaller (Figure 3.4b
and Figure 3.5b). So, the analyzed behavior shows that, with high eccentricities, smaller
inclinations are reached, as can be seen in the previous figures.

The evolution of the argument of the pericenter for initial inclinations larger than
the critical value has secular and oscillatory behavior. It is an interesting point that,
as the initial inclination increases, the satellite reaches higher values for the argument
of the perigee. In the case of the longitude of the node, it presents the secular and
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Figure 3.3: Behaviour of the orbital elements for values of the initial inclination near of critical
value (a=0.110).
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Figure 3.4: Behaviour of the orbital elements for values of the initial inclination below the
critical value. (a) Inclination, (b) Eccentricity, both with a = 0.07.

Figure 3.5: Behaviour of the orbital elements for values of the initial inclination above the
critical value. (a) Inclination, (b) Eccentricity, both with a = 0.07.
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Figure 3.6: Eccentricity vs. inclination for several initial inclination. (a) Initial inclination
below the critical value, (b) Initial inclination above the critical value, both with a = 0.07.

retrograde typical behavior. Figure 3.6 shows the behavior of the inclination and the
eccentricity. For values of the inclination smaller than the critical value, there are small
variations in the inclination and the eccentricity. These small oscillations allow that the
almost circular orbits remain almost circular, but when the initial inclinations increase,
the amplitude become larger.

4 Conclusions

Broucke [2] and Prado [11] used the approach of double-averaging technique to develop
semi-analytical methods for the third-body perturbation. In another work, Solórzano
et al [12] determined the effect of the disturbance of the third body by means of the
single averaged model, being dedicated to the perturbative effects of the Moon in a
spacecraft, but it did not considerer the case of lunisolar perturbation. When considering
the disturbance of the third body by means of the single averaged model for the combined
effect of the Sun and the Moon, in particular when the values of the initial inclination
are below the critical value, the near-circular orbits remain near-circular. However, for
values of the initial inclination above this value, the near-circular orbits become highly
elliptical. This fact causes serious problems for the the stability of these orbits, being
able to cause the collision of a spacecraft with the mother planet or the expulsion of
the spacecraft of the orbit around the primary. All the results are a demonstration of
the Kozai resonance. Our solution to the problem take terms of up to second-order in
the expansion of the Sun’s disturbing function and the fourth-order in the expansion of
the Moon’s disturbing function. The orbits of both (Sun and Moon) are considered as
circular and coplanar. The critical angle of the disturbance of the third body appears of
similar form to the critical angle obtained for the perturbative effects of the oblatenesses
of the Earth on the spacecraft. However, other works as Kinoshita and Nakai [7] and
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Yokoyama [15] make an estimate of the critical semi-major axis, as being the distance to
which the effect of the oblatenesses and the solar disturbance are equivalent.
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[12] Solórzano, C.R.H., Prado, A.F.B.A. and Kuga, H.K. Third-body perturbation using a single
averaged model. Proc. of the 16th Int. Symposium on Space Flight Dynamics. Pasadena,
California, EE.UU, 2001, 9 p.
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