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1 Introduction

In almost any solid survey or book on chaotic dynamics, one encounters notions from
classical stability theory such as Lyapunov exponent and characteristic exponent. But
the effect of sign inversion in the characteristic exponent during linearization is seldom
mentioned. This effect was discovered by Oscar Perron [1], an outstanding German math-
ematician. The present survey sets forth Perron’s results and their further development,
see [2]–[4]. It is shown that Perron effects may occur on the boundaries of a flow of
solutions that is stable by the first approximation. Inside the flow, stability is completely
determined by the negativeness of the characteristic exponents of linearized systems.

It is often said that the defining property of strange attractors is the sensitivity of
their trajectories with respect to the initial data. But how is this property connected with
the classical notions of instability? For continuous systems, it was necessary to remember
the almost forgotten notion of Zhukovsky instability. Nikolai Egorovich Zhukovsky, one
of the founders of modern aerodynamics and a prominent Russian scientist, introduced
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his notion of stability of motion in 1882, see [5, 6] — ten years before the publication
of Lyapunov’s investigations [7]. The notion of Zhukovsky instability is adequate to
the sensitivity of trajectories with respect to the initial data for continuous dynamical
systems. In this survey we consider the notions of instability according to Zhukovsky,
Poincaré, and Lyapunov, along with their adequacy to the sensitivity of trajectories on
strange attractors with respect to the initial data.

In order to investigate Zhukovsky stability, a new research tool — a moving Poincaré
section — is introduced. With the help of this tool, extensions of the widely-known
theorems of Andronov–Witt and Demidovic are carried out.

At the present time, the problem of justifying nonstationary linearizations for com-
plicated, nonperiodic motions on strange attractors bears a striking resemblance to the
situation that occurred 120 years ago.

J.C. Maxwell [8] and I.A. Vyshnegradskii [9], the founders of automatic control the-
ory, courageously used linearization in a neighborhood of stationary motions, leaving the
justification of such linearization to H. Poincaré [10] and A.M. Lyapunov [7]. Now many
specialists in chaotic dynamics believe that the positiveness of the largest characteristic
exponent of a linear system of the first approximation implies the instability of solutions
of the original system. Moreover, there is a great number of computer experiments in
which various numerical methods for calculating characteristic exponents and Lyapunov
exponents of linear systems of the first approximation are used. As a rule, authors largely
ignore the justification of the linearization procedure and use the numerical values of ex-
ponents thus obtained to construct various numerical characteristics of attractors of the
original nonlinear systems (Lyapunov dimensions, metric entropies, and so on). Some-
times computer experiments serve as arguments for partial justification of the lineariza-
tion procedure. For example, computer experiments in [11, 12] show the coincidence of
the Lyapunov and Hausdorff dimensions of the attractors of Henon, Kaplan–Yorke, and
Zaslavskii. But for B-attractors of Henon and Lorenz, such coincidence does not hold,
see [13, 14]).

So linearizations along trajectories on strange attractors require justification. This
problem gives great impetus to the development of the nonstationary theory of instability
by the first approximation. The present survey describes the contemporary state of the
art of the problem of justifying nonstationary linearizations.

The method of Lyapunov functions — Lyapunov’s so-called direct method — is an
efficient research device in classical stability theory. It turns out that even in the dimen-
sion theory of strange attractors one can progress by developing analogs of this method.
This interesting line of investigation is also discussed in the present survey.

When the parameters of a dynamical system are varied, the structure of its minimal
global attractor can change as well. Such changes are the subject of bifurcation theory.
Here we describe one of these, namely the homoclinic bifurcation.

The first important results concerning homoclinic bifurcation in dissipative systems
were obtained in 1933 by the outstanding Italian mathematician Francesco Tricomi [15].
Here we give Tricomi’s results along with similar theorems for the Lorenz system.

For the Lorenz system, necessary and sufficient conditions for the existence of homo-
clinic trajectories are obtained.
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2 Definitions of Attractors

The attractor of a dynamical system is an attractive closed invariant set in its phase
space.

Consider the dynamical systems generated by the differential equations

dx

dt
= f(x), t ∈ R

1, x ∈ R
n, (2.1)

and by the difference equations

x(t + 1) = f (x(t)) , t ∈ Z, x ∈ R
n. (2.2)

Here R
n is a Euclidean space, Z is the set of integers, and f(x) is a vector-function:

R
n → R

n.
Definition 2.1. We say that (2.1) or (2.2) generates a dynamical system if for any

initial data x0 ∈ R
n the trajectory x(t, x0) is uniquely determined for t ∈ [0, +∞). Here

x(0, x0) = x0.
It is well known that the solutions of dynamical system (2.1) satisfy the semigroup

property
x(t + s, x0) = x (t, x(s, x0)) (2.3)

for all t ≥ 0, s ≥ 0.
For equation (2.1) on [0, +∞) there are many existence and uniqueness theorems

[16]–[19] that can be used for determining the corresponding dynamical system with the
phase space R

n. The partial differential equations, generating dynamical systems with
different infinite-dimensional phase spaces, can be found in [20]–[24]. The classical results
of the theory of dynamical systems with a metric phase space are given in [25].

For (2.2) it is readily shown that in all cases the trajectory, defined for all t =
0, 1, 2, . . ., satisfying (2.3), and having initial condition x0, is unique. Thus (2.2) always
generates a dynamical system with phase space R

n.
A dynamical system generated by (2.1) is called continuous. Equation (2.2) generates

a discrete dynamical system.
The definitions of attractors are, as a rule, due to [14, 23, 24, 26].
Definition 2.2. We say that K is invariant if x(t, K) = K, ∀t ≥ 0. Here

x(t, K) = {x(t, x0) | x0 ∈ K}.

Definition 2.3. We say that the invariant set K is locally attractive if for a certain
ε-neighborhood K(ε) of K the relation

lim
t→+∞

ρ (K, x(t, x0)) = 0, ∀x0 ∈ K(ε)

is satisfied. Here ρ(K, x) is the distance from the point x to the set K, defined by

ρ(K, x) = inf
z∈K

|z − x|.

Recall that | · | is a Euclidean norm in R
n, and K(ε) is the set of points x such that

ρ(K, x) < ε.
Definition 2.4. We say that the invariant set K is globally attractive if

lim
t→+∞

ρ
(
K, x(t, x0)

)
= 0, ∀x0 ∈ R

n.



52 G. LEONOV

Definition 2.5. We say that the invariant set K is uniformly locally attractive if for
a certain ε-neighborhood K(ε) of it and for any δ > 0 and bounded set B there exists
t(δ, B) > 0 such that

x
(
t, B ∩ K(ε)

)
⊂ K(δ), ∀t ≥ t(δ, B).

Here

x
(
t, B ∩ K(ε)

)
= {x(t, x0) | x0 ∈ B ∩ K(ε)}.

Definition 2.6. We say that the invariant set K is uniformly globally attractive if
for any δ > 0 and bounded set B ⊂ R

n there exists t(δ, B) > 0 such that

x(t, B) ⊂ K(δ), ∀t ≥ t(δ, B).

Definition 2.7. We say that the invariant set K is Lyapunov stable if for any ε > 0
there exists δ > 0 such that

x(t, K(δ)) ⊂ K(ε), ∀t ≥ 0.

Note that if K consists of one trajectory, then the last definition coincides with the
classical definitions of the Lyapunov stability of solution. If such K is locally attractive,
then we have asymptotic stability in the sense of Lyapunov.

Definition 2.8. We say that K is

1) an attractor if it is an invariant closed and locally attractive set;

2) a global attractor if it is an invariant closed and globally attractive set;

3) a B-attractor if it is an invariant, closed, and uniformly locally attractive set;

4) a global B-attractor if it is an invariant, closed, and uniformly globally attractive set.

A trivial example of an attractor is the whole phase set R
n if the trajectories are

defined for all t ≥ 0. This shows that it is sensible to introduce the notion of a minimal
attractor, namely the minimal invariant set possessing the attractive property.

We give the simplest examples of attractors.
Example 2.1. Consider the equations of pendulum motion:

θ̇ = z,
ż = −αz − β sin θ,

(2.4)

where α and β are positive. The trajectories have a well-known asymptotic behavior
(Figure 2.1).

Any solution of (2.4) tends to a certain equilibrium as t → +∞. Therefore the
minimal global attractor of (2.4) is a stationary set.

Consider now a ball B of small radius centered on the separatrix of the saddle. As
t → +∞ the image x(t, B) of this small ball tends to the set consisting of a saddle
equilibrium and of two separatrices, leaving this point and tending to an asymptotically
stable equilibrium (Figure 2.2) as t → +∞.

Thus, a global minimal B-attractor is a union of a stationary set and the separatrices,
leaving the saddle points (unstable manifolds of the saddle points) (Figure 2.3).
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Figure 2.1:

Figure 2.2:

Figure 2.3:
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In more general situations the B-attractor involves the unstable manifolds of saddle
(hyperbolic) points. This fact is often used for estimating the topological dimension of
attractors from below [20]. �

We remark that the natural generalization of the notion of attractor is to weaker
requirements of attraction: on sets of positive Lebesgue measure, almost everywhere,
and so on. As an illustration of such an approach we give a definition of weak attractor
[26].

Definition 2.9. We say that K is a weak attractor if K is an invariant closed set for
which there exists a set of positive Lebesgue measure U ⊂ R

n satisfying the following
relation:

lim
t→+∞

ρ(K, x(t, x0)) = 0, ∀x0 ∈ U.

Note that for each concrete system it is necessary to detail the set U .

3 Strange Attractors and the Classical Definitions of Instability

One of the basic characteristics of a strange attractor is the sensitivity of its trajectories
to the initial data.

We consider the correlation of such “sensitivity” with a classical notion of instability.
We recall first the basic definitions of stability.

Consider the system

dx

dt
= F (x, t), t ∈ R

1, x ∈ R
n, (3.1)

where F (x, t) is a continuous vector-function, and

x(t + 1) = F (x(t), t), t ∈ Z, x ∈ R
n. (3.2)

Denote by x(t, t0, x0) the solution of (3.1) or (3.2) with initial data t0, x0:

x(t0, t0, x0) = x0.

Definition 3.1. The solution x(t, t0, x0) is said to be Lyapunov stable if for any ε > 0
and t0 ≥ 0 there exists δ(ε, t0) such that

1. all the solutions x(t, t0, y0), satisfying the condition

|x0 − y0| ≤ δ,

are defined for t ≥ t0,

2. for these solutions the inequality

|x(t, t0, x0) − x(t, t0, y0)| ≤ ε, ∀t ≥ t0

is valid.

If δ(ε, t0) is independent of t0, the Lyapunov stability is called uniform.
Definition 3.2. The solution x(t, t0, x0) is said to be asymptotically Lyapunov stable

if it is Lyapunov stable and for any t0 ≥ 0 there exists ∆(t0) > 0 such that the solution
x(t, t0, y0), satisfying the condition |x0 − y0| ≤ ∆, has the following property:

lim
t→+∞

|x(t, t0, x0) − x(t, t0, y0)| = 0.
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Definition 3.3. The solution x(t, t0, x0) is said to be Krasovsky stable if there exist
positive numbers δ(t0) and R(t0) such that for any y0, satisfying the condition

|x0 − y0| ≤ δ(t0),

the solution x(t, t0, y0) is defined for t ≥ t0 and satisfies

|x(t, t0, x0) − x(t, t0, y0)| ≤ R(t0)|x0 − y0|, ∀t ≥ t0.

If δ and R are independent of t0, then Krasovsky stability is called uniform.
Definition 3.4. The solution x(t, t0, x0) is said to be exponentially stable if there

exist the positive numbers δ(t0), R(t0), and α(t0) such that for any y0, satisfying the
condition

|x0 − y0| ≤ δ(t0),

the solution x(t, t0, y0) is defined for all t ≥ t0 and satisfies

|x(t, t0, x0) − x(t, t0, y0)| ≤ R(t0) exp(−α(t0)(t−
t0))|x0 − y0|, ∀t ≥ t0.

If δ, R, and α are independent of t0, then exponential stability is called uniform.
Consider now dynamical systems (3.1) and (3.2). We introduce the following notation:

L+(x0) =
{
x(t, x0) | t ∈ [0, +∞)

}
.

Definition 3.5. The trajectory x(t, x0) of a dynamical system is said to be Poincaré
stable (or orbitally stable) if for any ε > 0 there exists δ(ε) > 0 such that for all y0,
satisfying the inequality |x0 − y0| ≤ δ(ε), the relation

ρ
(
L+(x0), x(t, y0)

)
≤ ε, ∀ t ≥ 0

is satisfied. If, in addition, for a certain number δ0 and for all y0, satisfying the inequality
|x0 − y0| ≤ δ0, the relation

lim
t→+∞

ρ
(
L+(x0), x(t, y0)

)
= 0

holds, then the trajectory x(t, x0) is said to be asymptotically Poincaré stable (or asymp-
totically orbitally stable).

Note that for continuous dynamical systems we have t ∈ R
1, and for discrete dynam-

ical systems t ∈ Z.
We now introduce the definition of Zhukovsky stability for continuous dynamical

systems. For this purpose we must consider the following set of homeomorphisms:

Hom = {τ(·) | τ : [0, +∞) → [0, +∞), τ(0) = 0}.

The functions τ(t) from the set Hom play the role of the reparametrization of time for
the trajectories of system (3.1).

Definition 3.6 [5, 6, 27, 28]. The trajectory x(t, x0) of system (3.1) is said to be
Zhukovsky stable if for any ε > 0 there exists δ(ε) > 0 such that for any vector y0,
satisfying the inequality |x0 − y0| ≤ δ(ε), the function τ(·) ∈ Hom can be found such
that the inequality

|x(t, x0) − x(τ(t), y0)| ≤ ε, ∀t ≥ 0
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is valid. If, in addition, for a certain number δ0 > 0 and any y0 from the ball {y| |x0−y| ≤
δ0} the function τ(·) ∈ Hom can be found such that the relation

lim
t→+∞

|x(t, x0) − x(τ(t), y0)| = 0

holds, then the trajectory x(t, x0) is asymptotically stable in the sense of Zhukovsky.

This means that Zhukovsky stability is Lyapunov stability for the suitable
reparametrization of each of the perturbed trajectories.

Recall that, by definition, Lyapunov instability is the negation of Lyapunov stability.
Analogous statements hold for Krasovsky, Poincaré, and Zhukovsky instability.

The following obvious assertions can be formulated.

Proposition 3.1. For continuous dynamical systems, Lyapunov stability implies
Zhukovsky stability, and Zhukovsky stability implies Poincaré stability.

Proposition 3.2. For discrete dynamical systems, Lyapunov stability implies Poin-
caré stability.

Proposition 3.3. For equilibria, all the above definitions due to Lyapunov, Zhu-
kovsky, and Poincaré are equivalent.

Proposition 3.4. For periodic trajectories of discrete dynamical systems with con-
tinuous f(x), the definitions of Lyapunov and Poincaré stability are equivalent.

Proposition 3.5. For the periodic trajectories of continuous dynamical systems with
differentiable f(x), the definitions of Poincaré and Zhukovsky stability are equivalent.

Also well known are examples of periodic trajectories of continuous systems that
happen to be Lyapunov unstable but Poincaré stable.

Now we proceed to compare the definitions given above with the effect of trajectory
sensitivity to the initial data for strange attractors.

Lyapunov instability cannot characterize the “mutual repulsion” of continuous trajec-
tories due to small variations in initial data. Neither can Poincaré instability characterize
this repulsion. In this case, the perturbed solution can leave the ε-neighborhood of a
certain segment of the unperturbed trajectory (the effect of repulsion) while simultane-
ously entering the ε-neighborhood of another segment (the property of Poincaré stability).
Thus, mutually repulsive trajectories can be Poincaré stable. Let us consider these effects
in more detail.

Figure 3.1: Unstable manifold of the saddle of the Lorenz system. The first fifty turns.
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In computer experiments it often happens that the trajectories, situated on the un-
stable manifold of a saddle singular point, everywhere densely fill the B-attractor (or
that portion of it consisting of the bounded trajectories). This can be observed on the
B-attractor of the Lorenz system [29]

ẋ = −σ(x − y),
ẏ = rx − y − xz,
ż = −bz + xy,

where σ = 10, r = 28, and b = 8/3 (Figure 2.1).
Example 3.1. Consider the linearized equations of two decoupled pendula:

ẋ1 = y1, ẏ1 = −ω2
1x1,

ẋ2 = y2, ẏ2 = −ω2
2x3.

(3.3)

The solutions are
x1(t) = A sin(ω1t + ϕ1(0)),
y1(t) = Aω1 cos(ω1t + ϕ1(0)),
x2(t) = B sin(ω2t + ϕ2(0)),
y2(t) = Bω2 cos(ω2t + ϕ2(0)).

For fixed A and B, the trajectories of system are situated on two-dimensional tori

ω2
1x

2
1 + y2

1 = A2, ω2
2x

2
2 + y2

2 = B3.

When ω1/ω2 is irrational, the trajectories are everywhere densely situated on the tori for
any initial data ϕ1(0) and ϕ2(0).

This implies asymptotic Poincaré stability of the trajectories of the dynamical system
on tori. However, the motion of the points x(t, x0) and x(t, y0) along the trajectories
occurs in such a way that they do not tend toward each other as t → +∞. Neither are
the trajectories “pressed” toward each other. Hence the intuitive conception of asymp-
totic stability as a convergence of objects toward each other is in contrast to the formal
definition of Poincaré.

It is clear that a similar effect is lacking for the notion of Zhukovsky stability: in the
case under consideration, asymptotic Zhukovsky stability does not occur. �

Example 3.2. We reconsider the dynamical system (3.3) with ω1/ω2 irrational.
Change the flow of trajectories on the tori as follows. Cut the toroidal surface along
a certain segment of the fixed trajectory from the point z1 to the point z2. Then the
surface is stretched diffeomorphically along the torus so that a cut is mapped into the
circle with the fixed points z1 and z2 (Fig. 3.2). Denote by H the interior of the circle.

Change the dynamical system so that z1 and z2 are saddle stationary points and the
semicircles connecting z1 and z2 are heteroclinic trajectories, tending as t → +∞ and
t → −∞ to z2 and z1, respectively (Figure 3.2).

Outside the “hole” H , after the diffeomorphic stretching, the disposition of trajecto-
ries on the torus is the same.

Consider the behavior of the system trajectories from the Poincaré and Zhukovsky
points of view.

Outside the hole H , the trajectories are everywhere dense on torus. They are there-
fore, as before, asymptotically Poincaré stable.

Now we consider a certain δ-neighborhood of the point z0, situated on the torus and
outside the set H . The trajectory leaving z0 is either everywhere dense or coincides with
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Figure 3.2:

the separatrix S of the saddle z1, tending to z1 as t → +∞ (Figure 3.2). Then there
exists a time t such that some trajectories, leaving the δ-neighborhood of z0, are situated
in a small neighborhood of z1 to the right of the separatrix S. At time t the remaining
trajectories, leaving this neighborhood of z0, are situated to the left of S. It is clear that
in this case the trajectories, situated to the right and to the left of S, envelope the hole
H on the right and left, respectively. It is also clear that these trajectories are repelled
from each other; hence, the trajectory leaving z0 is Zhukovsky unstable.

Thus, a trajectory can be asymptotically Poincaré stable and Zhukovsky unstable.

This example shows that the trajectories are sensitive to the initial data and can
diverge considerably after some time. The notion of Zhukovsky instability is adequate
to such a sensitivity.

Note that the set of such sensitive trajectories is situated on the smooth manifold,
named “a torus minus the hole H”. Thus, the bounded invariant set of trajectories, which
are sensitive to the initial data, do not always have a noninteger Hausdorff dimension or
the structure of the Cantor set.

Hence, from among the classical notions of instability for studying strange attractors,
the most adequate ones are Zhukovsky instability (in the continuous case) and Lyapunov
instability (in the discrete case).

4 Characteristic Exponents and Lyapunov Exponents

Definition 4.1. The number (or the symbol +∞,−∞), defined by the formula

λ = lim sup
t→+∞

1

t
ln |f(t)|,

is called a characteristic exponent of the vector-function f(t).
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Definition 4.2. The characteristic exponent λ of the vector-function f(t) is said to
be sharp if there exists the following finite limit:

λ = lim
t→+∞

1

t
ln |f(t)|.

The value

λ = lim inf
t→+∞

1

t
ln |f(t)|

is often called a lower characteristic exponent of f(t).
Consider the linear system

dx

dt
= A(t)x, x ∈ R

n, (4.1)

where the n × n matrix A(t) is continuous and bounded on [0, +∞). Let X(t) =
(x1(t), . . . , xn(t)) be a fundamental matrix of (4.1) (i.e. det X(0) 6= 0). It is well known
that under the above conditions the characteristic exponents λj of the solutions xj(t) are
numbers.

Definition 4.3. Fundamental matrix X(t) is said to be normal if the sum
n∑

j=1

λj

of the characteristic exponents of the vector-functions xj(t) is minimal in comparison to
other fundamental matrices.

The following substantial and almost obvious results are well-known.
Theorem 4.1. For all normal fundamental matrices (x1(t), . . . , xn(t)) the number

of solutions xj(t) having the same characteristic exponent is the same.
We can now introduce the following definitions.
Definition 4.4. The set of characteristic exponents λ1, . . . , λn of the solutions

x1(t), . . . , xn(t) of certain normal fundamental matrices X(t) is called the complete spec-
trum of linear system (4.1), and the numbers λj are called the characteristic exponents
of (4.1).

Thus, any normal fundamental matrix realizes the complete spectrum of the system
(4.1).

In the sequel, by Σ =
n∑

j=1

λj is denoted the sum of characteristic exponents of system

(4.1).
The Lyapunov inequality

Σ ≥ lim sup
t→+∞

1

t

∫ t

0

TrA(τ) dτ (4.3)

is well known. Here Tr is a spur of the matrix A.
Definition 4.5. If the relation

Σ = lim sup
t→+∞

1

t

∫ t

0

TrA(τ) dτ

is satisfied, then system (4.1) is called regular.
It is well-known that each characteristic exponent of a regular system is sharp.
Definition 4.6. The number

Γ = Σ − lim inf
t→+∞

1

t

∫ t

0

TrA(τ) dτ
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is called the coefficient of irregularity for (4.1).

We assume further that λ1 ≥ · · · ≥ λn. The number λ1 is called a largest character-
istic exponent.

Let X(t) be a fundamental matrix of system (4.1). We introduce the singular values
α1(X(t)) ≥ · · · ≥ αn(X(t)) ≥ 0 of X(t). Recall that the singular values αj(X(t)) of a
matrix X(t) are square roots of eigenvalues of the matrix X(t)∗X(t). Geometrically, the
αj(X(t)) coincide with the principal axes of the ellipsoid X(t)B, where B is the unit
ball.

Definition 4.7 [22]. The Lyapunov exponent µj is the number

µj = lim sup
t→+∞

1

t
lnαj(X(t)).

We say that µj is sharp if there exists the finite limit

lim
t→+∞

1

t
lnαj(X(t)).

Proposition 4.1. The largest characteristic exponent λ1 and the Lyapunov exponent
µ1 coincide.

5 Perron Effects

In 1930, O. Perron [1] showed that the negativity of the largest characteristic exponent
of the system of the first approximation does not always imply the stability of the zero
solution of the original system. In addition, in an arbitrary small neighborhood of zero the
solutions of the original system with positive characteristic exponent can exist. Perron’s
results impressed the specialists in the theory of motion stability.

The effect of sign reversal for the characteristic exponent of solutions of the system of
the first approximation, and of the original system under the same initial data, we shall
call the Perron effect.

We cite the outstanding result of Perron. Consider a system

dx1

dt
= −ax1,

dx2

dt
= [sin(ln(t + 1)) + cos(ln(t + 1)) − 2a]x2 + x2

1,

(5.1)

where a satisfies

1 < 2a < 1 +
1

2
exp(−π). (5.2)

The solution of the equation of the first approximation takes the form

x1(t) = exp[−at]x1(0),
x2(t) = exp[(t + 1) sin(ln(t + 1)) − 2at]x2(0).

It is obvious that for the system of the first approximation under condition (5.2) we
have λ1 < 0.
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Now we write the solution of (5.1):

x1(t) = exp[−at]x1(0),

x2(t) = exp[(t + 1) sin(ln(t + 1)) − 2at]

(
x2(0)+

+x1(0)2
∫ t

0

exp[−(τ + 1) sin(ln(τ + 1))]dτ

)
.

(5.3)

Letting t = exp[(2k + 1
2 )π] − 1, where k is an integer, we obtain

exp[(t + 1) sin(ln(t + 1)) − 2at] = e(exp[(1−
− 2a)t]), (1 + t)e−π − 1 > 0,

and
∫ t

0

exp[−(τ + 1) sin(ln(τ + 1))]dτ >

>

∫ g(k)

f(k)

exp[−(τ + 1) sin(ln(τ + 1))] dτ

>

∫ g(k)

f(k)

exp

[
1

2
(τ + 1)

]
dτ

>

∫ g(k)

f(k)

exp

[
1

2
(τ + 1) exp(−π)

]
dτ

= exp

[
1

2
(t + 1) exp(−π)

]
(t+

+ 1)

(
exp

(
−2π

3

)
− exp(−π)

)
,

where
f(k) = (1 + t) exp[−π] − 1,

g(k) = (1 + t) exp

[
−2π

3

]
− 3.

This implies the estimate

exp[(t + 1) sin(ln(t + 1)) − 2at]

∫ t

0

exp[−(τ+

+ 1) sin(ln(τ + 1))]dτ

> exp

[
1

2
(2 + exp(−π)

](
exp

(
−2π

3

)
−

− exp(−π)) · exp

[(
1 − 2a +

1

2
exp(−π)

)
t

]
.

(5.4)

This and condition (5.2) imply that the characteristic exponent λ of the solutions of
system (5.1) for x1(0) 6= 0 is positive.

Thus, all characteristic exponents of the system of the first approximation are nega-
tive, and almost all solutions of the original system (5.1) tend exponentially to infinity
as k → +∞. �
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We consider the similar effect of the sign reversal of characteristic exponents but “on
the contrary”, namely the solution of the system of the first approximation has a positive
characteristic exponent while the solution of the original system with the same initial
data has a negative exponent [2, 3, 4]. Consider a system

ẋ1 = −ax1,
ẋ2 = −2ax2,
ẋ3 = [sin(ln(t + 1)) + cos(ln(t + 1))−
−2a]x3 + x2 − x2

1,

(5.5)

on the invariant manifold

M = {x3 ∈ R
1, x2 = x2

1}.
Here a satisfies (5.2). The solutions of (5.5) on the set M are

x1(t) = exp[−at]x1(0),

x2(t) = exp[−2at]x2(0),

x3(t) = exp[(t + 1) sin(ln(t + 1)) − 2at]x3(0),

x1(0)2 = x2(0).

Obviously, these have negative characteristic exponents.
Consider now the system of the first approximation in the neighborhood of the zero

solution of system (5.5):

ẋ1 = −ax1,

ẋ2 = −2ax2, (5.6)

ẋ3 = [sin(ln(t + 1)) + cos(ln(t + 1)) − 2a]x3 + x2.

Its solutions have the form

x1(t) = exp[−at]x1(0),

x2(t) = exp[−2at]x2(0), (5.7)

x3(t) = exp[(t + 1) sin(ln(t + 1)) − 2at]

(
x3(0)+

+ x2(0)

∫ t

0

exp[−(τ + 1) sin(ln(τ + 1))] dτ

)
.

Comparing (5.7) with (5.3) and applying (5.4), we find that for x2(0) 6= 0 the relation

lim sup
t→+∞

1

t
ln |x3(t)| > 0

holds. It is easily shown that for the solutions of systems (5.5) and (5.6) we have

(x1(t)
2 − x2(t))

• = −2a(x1(t)
2 − x2(t)).

Then

x1(t)
2 − x2(t) = exp[−2at](x1(0)2 − x2(0)).
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It follows that M is a global attractor for the solutions of (5.5) and (5.6). This means
that the relation x1(0)2 = x2(0) yields x1(t)

2 = x2(t) for all t ∈ R
1 and that for any

initial data we have

|x1(t)
2 − x2(t)| ≤ exp[−2at]|x1(0)2 − x2(0)|.

Thus, systems (5.5) and (5.6) have the same global attractor M on which almost all
the solutions of the system of the first approximation (5.6) have a positive characteris-
tic exponent and all the solutions of original system (5.5) have negative characteristic
exponents.

Here the Perron effect occurs on the two-dimensional manifold, namely

{x3 ∈ R
1, x2 = x2

1 6= 0}.

To construct the exponentially stable system for which the first approximation has a
positive characteristic exponent, we change (5.5) to

ẋ1 = F (x1, x2),
ẋ2 = G(x1, x2),
ẋ3 = [sin ln(t + 1) + cos ln(t + 1)−
−2a]x3 + x2 − x3

1.

(5.8)

Here the functions F (x1, x2) and G(x1, x2) have the form

F (x1, x2) = ±2x2 − ax1,

G(x1, x2) = ∓x1 − ϕ(x1, x2),

in which case the upper sign is taken for x1 > 0, x2 > x2
1 and for x1 < 0, x2 < x2

1, the
lower one for x1 > 0, x2 < x2

1 and for x1 < 0, x2 > x2
1. The function ϕ(x1, x2) is defined

as

ϕ(x1, x2) =

{
4ax2, |x2| > 2x2

1,

2ax2, |x2| < 2x3
1.

The solutions of system (5.8) are credited to A.F. Filippov [19]. Then for the given
functions F and G, on the lines of discontinuity {x1 = 0} and {x2 = x2

1} the system

ẋ1 = F (x1, x2),
ẋ2 = G(x1, x2),

(5.9)

has the sliding solutions, which are defined as

x1(t) ≡ 0, ẋ2(t) = −4ax2(t),

and
ẋ1(t) = −ax1(t), ẋ2(t) = −2ax2(t),

x2(t) ≡ x1(t)
2.

In this case the solutions of system (5.9) with the initial data x1(0) 6= 0, x2(0) ∈ R
1

attain the curve {x2 = x2
1} in a finite time, which does not exceed 2π. The phase picture

of such a system is shown in Figure 5.1.
From the above it follows that for the solutions of system (5.8) with the initial data

x1(0) 6= 0, x2(0) ∈ R
1, x3(0) ∈ R

1 for t ≥ 2π we have the relations F (x1(t), x2(t)) =
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Figure 5.1:

−ax1(t), G(x1(t), x2(t)) = −2ax2(t). Therefore on these solutions, for t ≥ 2π system
(5.6) is the system of the first approximation.

This system, as we have shown earlier, has a positive characteristic exponent. At the
same time all the solutions of system (5.8) tend exponentially to zero. �

The technique considered here permits us to construct the different classes of nonlinear
systems for which Perron effects occur.

6 Stability Criteria by the First Approximation

We now describe the most famous stability criteria by the first approximation for the
system

dx

dt
= A(t)x + f(t, x), t ≥ 0, x ∈ R

n. (6.1)

Here A(t) is a continuous n × n matrix bounded for t ≥ 0, and f(t, x) is a continuous
vector-function, satisfying in some neighborhood Ω(0) of the point x = 0 the condition

|f(t, x)| ≤ κ|x|ν , ∀t ≥ 0, ∀x ∈ Ω(0). (6.2)

Here κ and ν are certain positive numbers, ν ≥ 1.
We refer to

dx

dt
= A(t)x (6.3)

as the system of the first approximation. Suppose that there exist C > 0 and a piecewise
continuous function p(t) such that Cauchy matrix X(t)X(τ)−1 of (6.3) satisfies

|X(t)X(τ)−1| ≤ C exp

∫ t

τ

p(s) ds, ∀t ≥ τ ≥ 0.

Theorem 6.1. If condition (6.2) with ν = 1 and the inequality

lim sup
t→+∞

1

t

∫ t

0

p(s) ds + Cκ < 0

hold, then the solution x(t) ≡ 0 of (6.1) is asymptotically Lyapunov stable.
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Theorem 6.1 shows that for the equation of the first order the negativity of the
characteristic exponent of the system of the first approximation implies the asymptotic
Lyapunov stability of the zero solution. (Here ν > 1 or ν = 1 and κ is sufficiently small.)

Let us now assume that X(t)X(τ)−1 satisfies

|X(t)X(τ)−1| ≤ C exp[−α(t − τ) + γτ ],

∀t ≥ τ ≥ 0,
(6.4)

where α > 0 and γ ≥ 0.
Theorem 6.2 [30]. If conditions (6.4) with γ = 0 and (6.2) with ν = 1 and suffi-

ciently small κ are valid, then the solution x(t) ≡ 0 of (6.1) is asymptotically Lyapunov
stable.

Theorem 6.2 results from Theorem 6.1 for p(t) ≡ −α.
Theorem 6.3 [31, 32, 33]. If conditions (6.4), (6.2), and the inequality

(ν − 1)α − γ > 0 (6.5)

hold, then the solution x(t) ≡ 0 of (6.1) is asymptotically Lyapunov stable.
Consider a system

dx

dt
= F (x, t), t ≥ 0, x ∈ R

n, (6.6)

where F (x, t) is a twice continuously differentiable vector-function. Suppose that for the
solutions of system (6.6) with the initial data y = x(0, y) from a certain domain Ω, the
following condition is satisfied. The maximal singular value α1(t, y) of the fundamental
matrix X(t, y) of the linear system

dz

dt
= A(t)z (6.7)

satisfies the inequality

α1(t, y) ≤ α(t), ∀t ≥ 0, ∀y ∈ Ω.

Here

A(t) =
∂F (x, t)

∂x

∣∣∣∣
x=x(t,y)

is the Jacobian matrix of the vector-function F (x, t) on the solution x(t, y), X(0, y) = I.
Theorem 6.4 [34]. Let the function α(t) be bounded on the interval (0, +∞). Then

the solution x(t, y), y ∈ Ω, is Lyapunov stable. If, in addition, we have

lim
t→+∞

α(t) = 0,

then the solution x(t, y), y ∈ Ω, is asymptotically Lyapunov stable.
Consider now the hypotheses of Theorem 6.4. The theorem establishes the asymptotic

Lyapunov stability of solutions with the initial data from Ω if the corresponding equations
(6.7) have negative Lyapunov exponents (or negative characteristic exponents). In this
case the requirement that the negativity of Lyapunov exponents is uniform by Ω replaces
the requirement in Theorem 6.3 that the coefficient of irregularity is small.

Thus, the Perron effects, considered in Section 5, are possible on the boundaries of
the flow stable by the first approximation only.
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7 Instability Criteria

Consider a system
dx

dt
= A(t)x + f(t, x), t ≥ 0, x ∈ R

n, (7.1)

where the n × n matrix A(t) is continuous and bounded on [0,∞). We assume that the
vector-function f(t, x) is continuous and in some neighborhood Ω(0) of the point x = 0
the inequality

|f(t, x)| ≤ κ|x|ν , ∀t ≥ 0, ∀x ∈ Ω(0) (7.2)

holds. Here κ > 0 and ν > 1.
Consider the normal fundamental matrix

Z(t) = (z1(t), . . . , zn(t)), (7.3)

consisting of the linearly independent solutions zj(t) of the following linear system of the
first approximation:

dz

dt
= A(t)z. (7.4)

Theorem 7.1 [35]. If

sup
k

lim inf
t→+∞

[
1

t

(∫ t

0

TrA(s) ds−

−
∑

j 6=k

ln |zj(t)| )] > 0,
(7.5)

then the solution x(t) ≡ 0 of system (7.1) is Krasovsky unstable.
The condition for Krasovsky instability (7.5) was obtained by [31] under the additional

requirement of the analyticity of f(t, x).
Theorem 7.2 [4]. Assume that for some numbers C > 0, β > 0, and αj < β

(j = 1, . . . , n − 1) the following conditions are valid:

1. for n > 2
n∏

j=1

|zj(t)| ≤ C exp

∫ t

0

TrA(s) ds, ∀t ≥ 0.

2.
|zj(t)| ≤ C exp(αj(t − τ))|zj(τ)|,

∀ t ≥ τ ≥ 0, ∀j = 1, . . . , n − 1.

3.
1

(t − τ)

∫ t

τ

TrA(s) ds > β +
n−1∑

j=1

αj ,

∀ t ≥ τ ≥ 0.

Then the zero solution of system (7.1) is Lyapunov unstable.
Let us reconsider the ensemble of solutions x(t, t0, x0) of the system

dx

dt
= F (x, t), t ≥ 0, x ∈ R

n, (7.6)
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where F (x, t) is a continuously differentiable function. Here x0 ∈ Ω, where Ω is a certain
bounded open set in R

n, and t0 is a certain fixed nonnegative number.
Assume that for the fundamental matrix X(t, t0, x0) of the system

dz

dt
=

(
∂F (x, t)

∂x

∣∣∣∣
x=x(t,t0,x0)

)
z

with the initial data X(t0, t0, x0) = I and a certain vector-function ξ(t) the relations

|ξ(t)| = 1, inf
Ω

|X(t, t0, x0)ξ(t)| ≥ α(t), ∀t ≥ t0

are valid.
Theorem 7.3 [4]. Suppose that the function α(t) satisfies

lim sup
t→+∞

α(t) = +∞.

Then any solution x(t, t0, x0) with the initial data x0 ∈ Ω is Lyapunov unstable.

Conclusion

Let us summarize the investigations of stability by the first approximation, considered
in Sections 5–7.

Theorems 6.4 and 7.3 give a complete solution to the problem for the flows of solutions
in the noncritical case when for small variations of the initial data of the original system,
the system of the first approximation preserves its stability (or the instability in the
certain “direction” ξ(t)).

Thus, here the classical problem on the stability by the first approximation of time-
varying motions is completely proved in the generic case [32].

The Perron effects, described in Section 5, are possible on the boundaries of flows
that are either stable or unstable by the first approximation only. From this point of
view here we have a nongeneric case.

Progress in the generic case became possible since the theorem on finite increments
permits us to reduce the estimate of the difference between perturbed and unperturbed
solutions to the analysis of the system of the first approximation, linearized along a
certain “third” solution of the original system. Such an approach renders the proof of
the theorem “almost obvious”.

8 Zhukovsky Stability

Zhukovsky stability is simply the Lyapunov stability of reparametrized trajectories. To
study it, we may apply the arsenal of methods and devices that were developed for the
study of Lyapunov stability.

The reparametrization of trajectories permits us to introduce another tool for inves-
tigation, the moving Poincaré section. The classical Poincaré section is the transversal
(n − 1)-dimensional surface S in the phase space R

n, which possesses a recurring prop-
erty. The latter means that for the trajectory of a dynamical system x(t, x0) with the
initial data x0 ∈ S, there exists a time instant t = T > 0 such that x(T, x0) ∈ S. The
transversal property means that

n(x)∗f(x) 6= 0, ∀x ∈ S.
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Here n(x) is a normal vector of the surface S at the point x, and f(x) is the right-hand
side of the differential equation

dx

dt
= f(x), t ∈ R

1, x ∈ R
n, (8.1)

generating a dynamical system.
We now “force” the Poincaré section to move along the trajectory x(t, x0). We assume

further that the vector-function f(x) is twice continuously differentiable and that the
trajectory x(t, x0), whose the Zhukovsky stability (or instability) will be considered, is
wholly situated in a certain bounded domain Ω ⊂ R

n for t ≥ 0. Suppose also that
f(x) 6= 0, ∀x ∈ Ω. Here Ω is a closure of the domain Ω. Under these assumptions there
exist positive numbers δ and ε such that

f(y)∗f(x) ≥ δ, ∀y ∈ S(x, ε), ∀x ∈ Ω.

Here
S(x, ε) = {y | (y − x)∗f(x) = 0, |x − y| < ε}.

Definition 8.1. The set S(x(t, x0), ε) is called a moving Poincaré section.
Note that for small ε it is natural to restrict oneself to the family of segments of the

surfaces S(x(t, x0), ε) rather than arbitrary surfaces. From this point of view a more
general consideration does not give new results. It is possible to consider the moving
Poincaré section more generally by introducing the set

S(x, q(x), ε) = {y | (y − x)∗q(x) = 0, |x − y| < ε},

where the vector-function q(x) satisfies the condition q(x)∗f(x) 6= 0. Such a consideration
can be found in [27]. We treat the most interesting and descriptive case q(x) ≡ f(x).

The classical Poincaré section allows us to clarify the behavior of trajectories using
the information at their discrete times of crossing the section. Reparametrization makes
it possible to organize the motion of trajectories so that at time t all trajectories are
situated on the same moving Poincaré section S(x(t, x0), ε):

x(ϕ(t), y0) ∈ S(x(t, x0), ε). (8.2)

Here ϕ(t) is a reparametrization of the trajectory x(t, y0), y0 ∈ S(x0, ε). This consider-
ation has, of course, a local property and is only possible for t satisfying

|x(ϕ(t), y0) − x(t, x0)| < ε. (8.3)

Let as consider system of the first approximation

dw

dt
=

∂f

∂x
(x(t, x0))w (8.4)

System (8.4) has the one null characteristic exponent λ1. Denote by λ2 ≥ · · · ≥ λn the
remaining characteristic exponents, γ is coefficient of irregularity.

Theorem 8.1.[36] If for system (8.4) the inequality

λ2 + γ < 0

is satisfied, then the trajectory x(t, x0) is asymptotically Zhukovsky stable.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(1) (2008) 49–96 69

This result generalizes the well-known Andronov–Witt theorem.
Theorem 8.2 (Andronov, Witt). If the trajectory x(t, x0) is periodic, differs from

equilibria, and for system (8.4) the inequality

λ2 < 0

is satisfied, then the trajectory x(t, x0) is asymptotically orbitally stable (asymptotically
Poincaré stable).

Theorem 8.2 is a corollary of Theorem 8.1 since system (8.4) with the periodic matrix

∂f

∂x
(x(t, x0))

is regular.
Recall that for periodic trajectories, asymptotic stability in the senses of Zhukovsky

and Poincaré are equivalent.
The theorem of Demidovich is also a corollary of Theorem 8.3.
Theorem 8.3 [37]. If system (8.4) is regular (i.e. γ = 0) and λ2 < 0, then the

trajectory x(t, x0) is asymptotically orbitally stable.

9 Lyapunov Functions in the Estimates of Attractor Dimension

Harmonic oscillations are characterized by an amplitude, period, and frequency, and
periodic oscillations by a period. Numerous investigations have shown that more complex
oscillations have also numerical characteristics. These are the dimensions of attractors,
corresponding to ensembles of such oscillations.

The theory of topological dimension [38, 39], developed in the first half of the 20th
century, is of little use in giving the scale of dimensional characteristics of attractors.
The point is that the topological dimension can take integer values only. Hence the scale
of dimensional characteristics compiled in this manner turns out to be quite poor.

For investigating attractors, the Hausdorff dimension of a set is much better. This
dimensional characteristic can take any nonnegative value, and on such customary objects
in Euclidean space as a smooth curve, a surface, or a countable set of points, it coincides
with the topological dimension. Let us proceed to the definition of Hausdorff dimension.

Consider a compact metric set X with metric ρ, a subset E ⊂ X , and numbers d ≥ 0,
ε > 0. We cover E by balls of radius rj < ε and denote

µH(E, d, ε) = inf
∑

j

rd
j ,

where the infimum is taken over all such ε-coverings E. It is obvious that µH(E, d, ε)
does not decrease with decreasing ε. Therefore there exists the limit (perhaps infinite),
namely

µH(E, d) = lim
ε→0

µH(E, d, ε).

Definition 9.1. The function µH(·, d) is called the Hausdorff d-measure.

For fixed d, the function µH(E, d) possesses all properties of outer measure on X .
For a fixed set E, the function µH(E, ·) has the following property. It is possible to find
dkp ∈ [0,∞] such that

µH(E, d) = ∞, ∀ d < dkp,
µH(E, d) = 0, ∀ d > dkp.
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If X ⊂ R
n, then dkp ≤ n. Here R

n is an Euclidean n-dimensional space.
We put

dimH E = dkp = inf{d | µH(E, d) = 0}.
Definition 9.2. We call dimH E the Hausdorff dimension of the set E.
Example 9.1. Consider the Cantor set

E =

∞⋂

j=0

Ej ,

where E0 = [0, 1] and Ej consists of 2j segments of length 3−j, obtained from the
segments belonging to Ej−1 by eliminating from them the open middle segments of length
3−j. In the classical theory of topological dimension it is well known that dimT E = 0.
From the definitions of Hausdorff dimension we deduce easily that µH(E, d) = 1 for
d = log 2/ log 3 = 0.63010 . . . and, therefore,

dimH E =
log 2

log 3
. �

Topological dimension is invariant with respect to homeomorphisms. Hausdorff di-
mension is invariant with respect to diffeomorphisms, and noninteger Hausdorff dimen-
sion is not invariant with respect to homeomorphisms [38].

In studying the attractors of dynamical systems in phase space, the smooth change
of coordinates is often used. Therefore, in such considerations it is sufficient to assume
invariance with respect to diffeomorphisms.

It is well known that dimT E ≤ dimH E. The Cantor set E shows that this inequality
can be strict.

We give now two equivalent definitions of fractal dimension. Denote by Nε(E) the
minimal number of balls of radius ε needed to cover the set E ⊂ X . Consider the numbers
d ≥ 0, ε > 0 and put

µF (E, d, ε) = Nε(E)εd,

µF (E, d) = lim sup
ε→0

µF (E, d, ε).

Definition 9.3. The fractal dimension of the set E is the value

dimF E = inf{d | µF (E, d) = 0}.

Note that this definition is patterned after that for Hausdorff dimension. However in
this case the covering is by the balls of the same radius ε only.

Definition 9.4. The fractal dimension of E is the value

dimF E = lim sup
ε→0

logNε(E)

log(1/ε)
.

It is easy to see that
dimH E ≤ dimF E.

Example 9.2. For X = [0, 1] and E = {0, 1, 2−1, 3−1, . . .} we have

dimH E = 0, dimF E =
1

2
. �
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The extension of the scheme for introducing the Hausdorff and fractal measures and
dimensions and the definitions of different metric dimensional characteristics can be found
in [40]. It turns out [41]–[44] that the upper estimate of the Hausdorff and fractal
dimension of invariant sets is the Lyapunov dimension, which will be defined below.

Consider the continuously differentiable map F of the open set U ⊂ R
n in R

n. Denote
by TxF the Jacobian matrix of the map F at the point x. The continuous differentiability
of F gives

F (x + h) − F (x) = (TxF )h + o(h).

We shall assume further that the set K ⊂ U is invariant with respect to the transforma-
tion F : F (K) = K.

Consider the singular values of the n × n matrix A

α1(A) ≥ · · · ≥ αn(A).

Recall that a singular value of A is a square root of an eigenvalue of the matrix A∗A.
Here the asterisk denotes either transposition (in the real case) or Hermitian conjugation.
Further we shall often write

ωd(A) = α1(A) · · ·αj(A)αj+1(A)s,

where d = j + s, s ∈ [0, 1], j is an integer from the interval [1, n].
Definition 9.5. The local Lyapunov dimension of the map F at the point x ∈ K is

the number
dimL(F, x) = j + s,

where j is the largest integer from the interval [1, n] such that

α1(TxF ) · · ·αj(TxF ) ≥ 1

and s is such that s ∈ [0, 1] and

α1(TxF ) · · ·αj(TxF )αj+1(TxF )s = 1.

By definition in the case α1(TxF ) < 1 we have dimL(F, x) = 0 and in the case

α1(TxF ) · · ·αn(TxF ) ≥ 1

we have dimL(F, x) = n.
Definition 9.6. The Lyapunov dimension of the map F of the set K is the number

dimL(F, K) = sup
K

dimL(F, x).

Definition 9.7. The local Lyapunov dimension of the sequence of the maps F i at
the point x ∈ K is the number

dimL x = lim sup
i→+∞

dimL(F i, x).

Definition 9.8. The Lyapunov dimension of the sequence of the maps F i of the set
K is the number

dimL K = sup
K

dimL x.
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For the maps Ft, depending on the parameter t ∈ R
1, we can introduce the following

analog of Definitions 9.7 and 9.8.
Definition 9.9. The local Lyapunov dimension of the map Ft at the point x ∈ K is

the number
dimL x = lim sup

t→+∞
dimL(Ft, x).

Definition 9.10. The Lyapunov dimension of the map Ft of the set K is the number

dimL K = sup
K

dimL x.

Again, the inequality[41]–[44] dimF K ≤ dimL K is an important property of Lya-
punov dimension. Its proof can be found in [43, 44].

Thus, we have
dimT K ≤ dimH K ≤ dimF K ≤ dimL K.

Note that the Lyapunov dimension can be used as the characteristic of the inner
instability of the dynamical system, defined on the invariant set K and generated by the
family of the maps F i or Ft.

The Lyapunov dimension is not a dimensional characteristic in the classical sense.
However, it does permit us to estimate from above a topological, Hausdorff, or fractal
dimension. It is also the characteristic of instability of dynamical systems. Finally, it
is well “adapted” for investigations by the methods of classical stability theory. We
shall demonstrate this, introducing the Lyapunov functions in the estimate of Lyapunov
dimension. The idea of introducing Lyapunov functions in the estimate of dimensional
characteristics first appeared in [45], and was subsequently developed in [46]–[60]. Here
we follow, in the main, these ideas.

Consider the n × n matrices Q(x), depending on x ∈ R
n. We assume that

detQ(x) 6= 0, ∀x ∈ U,

and that there exist c1 and c2 such that

sup
K

ωd(Q(x)) ≤ c1, sup
K

ωd(Q
−1(x)) ≤ c2.

Theorem 9.1. Let F (K) = K and suppose that for some matrix Q(x)

sup
K

ωd

(
Q(F (x))TxFQ−1(x)

)
< 1. (9.1)

Then
dimL(F i, K) ≤ d (9.2)

for sufficiently large natural numbers i.
Proof For the matrix TxF i we have

TxF i = (TF i−1(x)F )(TF i−2(x)F ) · · · (TxF ).

This relation can be represented as

TxF i = Q(F i(x))−1
(
Q(F i(x))TF i−1(x)FQ(F i−1(x))−1)·

·(Q(F i−1(x))TF i−2(x)FQ(F i−2(x))−1)·
· · · · (Q(F (x))TxFQ(x)−1)Q(x).
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From this and the well-known property [60]

ωd(AB) ≤ ωd(A)ωd(B)

we obtain

ωd(TxF i) ≤ c1c2

[
sup
K

ωd(Q(F (x))TxFQ(x)−1

]i

.

This estimate, the condition (10.1) of the theorem, and the definitions of Lyapunov
dimension imply the estimate (9.2).

Condition (9.1) is easily seen to be invariant with respect to the linear nonsingular
change y = Sx, where S is a constant n × n-matrix. It is clear that in the new basis
condition (9.1) is also satisfied with the new matrix Q1(y):

Q1(y) = Q(F (S−1y))S.

Consider the important special case

Q(x) = p(x)S,

where S is a constant nondegenerate n × n matrix, p(x) is the continuous function
R

n → R
1 for which

p1 ≤ p(x) ≤ p2, ∀x ∈ K.

Here p1 and p2 are positive. In this case inequality (9.1) takes the form

sup
K

ωd

(
p(F (x))

p(x)
STxFS−1

)
< 1. (9.3)

As will be shown below in condition (9.3) the multipliers of the type p(F (x))/p(x)
play the role of the Lyapunov type functions. This becomes especially clear in the case
of the passage to the dynamical systems generated by differential equations.

Consider the system

dx

dt
= f(t, x), t ∈ R

1, x ∈ R
n, (9.4)

where f(t, x) is the continuously differentiable T -periodic vector-function R
1×R

n → R
n,

f(t+T, x) = f(t, x). We assume that the solutions x(t, x0) of system (9.4) with the initial
data x(0, x0) = x0 are defined on the interval [0, T ] and denote by GT a shift operator
along the solutions of system (9.4):

GT q = x(T, q).

Suppose that the bounded set K ⊂ R
n is invariant with respect to the operator GT ,

namely

GT K = K.

Denote by J(t, x) the Jacobian matrix of the vector-function f(t, x):

J(t, x) =
∂f(t, x)

∂x
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and consider the nondegenerate n×n matrix S. Denote by λ1(t, x, S) ≥ · · · ≥ λn(t, x, S)
the eigenvalues of

1

2

[
SJ(t, x)S−1 + (SJ(t, x)S−1)∗

]
.

Here the asterisk denotes transposition.
Theorem 9.2. Suppose that for the integer j ∈ [1, n] and s ∈ [0, 1] there exists a

function v(x), continuously differentiable on R
n, and a nondegenerate n × n matrix S

such that

sup
K

∫ T

0

[λ1(t, x(t, q), S) + . . . + λj(t, x(t, q), S)+

+sλj+1(t, x(t, q), S) + v̇(x(t, q))] dt < 0.

(9.5)

Then for sufficiently large i the inequality

dimL(Gi
T , K) ≤ j + s. (9.6)

holds.
Proof Denote the Jacobian matrix by

H(t, q) =
∂x(t, q)

∂q
.

Substituting x(t, q) in (9.4) and differentiating both sides of (9.4) with respect to q, we
obtain

dH(t, q)

dt
= J(t, x(t, q))H(t, q).

Represent this relation as

d

dt
[SH(t, q)S−1] = [SJ(t, x(t, q))S−1][SH(t, q)S−1].

For the singular values σ1(t) ≥ · · · ≥ σn(t) of the matrix SH(t, q)S−1 we have the
inequality [60]

σ1 · · ·σk ≤ exp

(∫ t

0

(λ1 + · · · + λk) dτ

)

for any k = 1, . . . , n. From this and the relation

σ1 · · ·σjσ
s
j+1 = (σ1 · · ·σj)

1−s(σ1 · · ·σj+1)
s

we obtain the estimate

σ1 · · ·σjσ
s
j+1 ≤ exp

(∫ t

0

(λ1 + · · · + λj + sλj+1) dτ

)
. (9.7)

Put
p(x) =

(
exp v(x)

)1/(j+s)

and multiply both sides of (9.7) by the relation

(
p(x(t, q))

p(q)

)j+s

= exp
[
v(x(t, q) − v(q)

]
= exp

(∫ t

0

v̇(x(τ, q)) dτ

)
.
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As a result we obtain

(
p(x(t, q))

p(q)

)j+s

σ1 . . . σjσ
s
j+1

≤ exp

(∫ t

0

(λ1 + · · · + λj + sλj+1 + v̇(x(τ, q)) dτ

)
.

This implies the estimate

α1(t, q) . . . αj(t, q)αj+1(t, q)
s

≤ exp

(∫ t

0

(
λ1(τ, x(τ, q), S) + · · · + λj(τ, x(τ, q), S)

+ sλj+1(τ, x(τ, q), S) + v̇(x(τ, q))
)
dτ

)
, (9.8)

where αk(t, q) are the singular values of the matrix

p(x(t, q))

p(q)
SH(t, q)S−1.

From estimate (9.8) and condition (9.5) of Theorem 9.2 it follows that there exists ε > 0
such that

α1(T, q) · · ·αj(T, q)αj+1(T, q)s ≤ exp(−ε)

for all q ∈ K. Thus, in this case condition (9.3) with F = GT

TqF = TqGT = H(T, q)

is satisfied and, therefore, estimate (9.6) is valid.
The following simple assertions will be useful in the sequel.
Lemma 9.1. Suppose that the real matrix A can be reduced to the diagonal form

SAS−1 =




λ1 0
. . .

0 λn


 ,

where S is a real nonsingular matrix. Then there exist positive numbers c1 and c2 such
that

c1|λ1 · · ·λjλ
s
j+1|i ≤ ωd(A

i) ≤ c2|λ1 · · ·λjλ
s
j+1|i.

Proof It is sufficient to note that the singular values of the matrix




λ1 0
. . .

0 λn




are the numbers |λj |, and for the singular values α1 ≥ · · · ≥ αn the inequalities

αn(C)αj(B) ≤ αj(CB) ≤ α1(C)αj(B)
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are satisfied.

Lemma 9.2. Let F (x) = x and the Jacobian matrix TxF of the map F have the
simple real eigenvalues λ1 ≥ · · · ≥ λn. Then the local Lyapunov dimension of the sequence
of maps F i at the point x is equal to j + s, where j and s are determined from

|λ1 · · ·λjλ
s
j+1| = 1.

Lemma 9.2 is a direct corollary of Lemma 9.1. A similar result holds for the map Ft.
Lemma 9.3. Let TxFt = eAt and the matrix A satisfy the condition of Lemma 9.1.

Then the local Lyapunov dimension of the map Ft at the point x is equal to j + s, where
j and s are determined from

λ1 + · · · + λj + sλj+1 = 0.

Lemma 9.3 is also a corollary of Lemma 9.1.
Now we apply Theorems 9.1 and 9.2 to the Henon and Lorenz systems in order to

construct Lyapunov functions p(x) (for the Henon system) and v(x) (for the Lorenz
system). Consider the Henon map F : R

2 → R
2

x → a + by − x2,
y → x,

(9.9)

where a > 0, b ∈ (0, 1) are the parameters of mapping. Consider the bounded invariant
set K of map (9.9), FK = K, involving stationary points of this map:

x+ =
1

2

[
b − 1 +

√
(b − 1)2 + 4a

]
,

x− =
1

2

[
b − 1 −

√
(b − 1)2 + 4a

]
.

Theorem 9.3. For the map F we have

dimL K = 1 +
1

1 − ln b/ lnα1(x−)
,

where

α1(x−) =
√

x2
− + b − x−.

Proof Denote ξ =

(
x
y

)
. The Jacobian matrix TξF of the map F takes the

form (
−2x b

1 0

)
.

We introduce the matrix

S =

(
1 0

0
√

b

)
.

In this case

STξFS−1 =

(
−2x

√
b√

b 0

)
. (9.10)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(1) (2008) 49–96 77

We shall show that the singular values of (9.10) are

α1(x) =
√

x2 + b + |x|,
α2(x) =

√
x2 + b − |x| =

b

α1(x)
.

(9.11)

It is obvious that
α1(x)2 = 2x2 + b + 2|x|

√
x2 + b ,

α2(x)2 = 2x2 + b − 2|x|
√

x2 + b .

It is clear that αk(x)2 are zeros of the polynomial

λ2 − (4x2 + 2b)λ + b2,

which is the characteristic polynomial of the matrix

(
−2x

√
b√

b 0

)(
−2x

√
b√

b 0

)
.

Thus, formulas (9.11) are proved.
From Theorem 9.1 it follows that if there exist s ∈ [0, 1) and a continuously differen-

tiable function p(ξ), positive on K and such that

sup
ξ∈K

α1(x)α2(x)s

(
p(F (ξ))

p(ξ)

)1+s

< 1, (9.12)

then
dimL K ≤ 1 + s.

Put
p(ξ)1+s = eγ(1−s)(x+by),

where γ is a positive parameter. It is not hard to prove that

(
p(F (ξ))

p(ξ)

)1+s

= eγ(1−s)(a+(b−1)x−x2).

This implies that after taking the logarithm, condition (9.12) becomes

sup
K

[
lnα1(x) + s lnα2(x) + γ(1 − s)(a + (b − 1)x − x2)

]

= sup
K

[
(1 − s) lnα1(x) + s ln b + γ(1 − s)(a + (b − 1)x − x2)

]
< 0.

This inequality is satisfied if

s ln b + (1 − s)ϕ(x) < 0, ∀x ∈ (−∞, +∞),

where
ϕ(x) = ln

[√
x2 + b + |x|

]
+ γ(a + (b − 1)x − x2).

The inequalities γ > 0, b − 1 < 0 result in the estimate

ϕ(−|x|) ≥ ϕ(|x|).
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Therefore it suffices to consider the extremum point of the functions ϕ(x) for x ∈ (−∞, 0].
It is clear that on this set we have

ϕ′(x) =
−1√
x2 + b

+ γ
[
(b − 1) − 2x

]
, ϕ′′(x) < 0.

Letting

γ =
1

(b − 1 − 2x−)
√

x2
− + b

,

we find that ϕ′(x−) = 0 and therefore, for such a choice of γ,

ϕ(x) ≤ ln

(√
x2
− + b + |x−|

)
= lnα1(x−).

Thus, inequality (9.12) holds for all s satisfying

s >
lnα1(x−)

lnα1(x−) − ln b
. (9.13)

Hence the estimate

dimL K ≤ 1 + s

is valid for all s satisfying (9.13). Passing to the limit, we obtain

dimL K ≤ 1 +
1

1 − ln b/ lnα1(x−)
. (9.14)

Note that the point x = x−, y = x− is stationary for the map F . Then

α1(x−)α2(x−)s = 1, (9.15)

where

s =
1

1 − ln b/ lnα1(x−)
.

It is easily shown that α1(x−) and α2(x−) are the eigenvalues of the Jacobian matrix
TξF of the map F at the fixed point y = x = x−:

TξF =

(
−2x− b

1 0

)
.

From relation (9.15) by Lemma 9.2 we conclude that the local Lyapunov dimension of
the sequence of maps F i at this stationary point is equal to

1 +
1

1 − ln b/ lnα1(x−)
. (9.16)

By inequality (9.14) we obtain the assertion of Theorem 9.3. �

Note that for a = 1.4, b = 0.3 from Theorem 9.3 we have

dimL K = 1.49532 . . .
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Consider a Lorenz system
ẋ = −σx + σy,
ẏ = rx − y − xz,
ż = −bz + xy,

(9.17)

where r, b, σ are positive. Suppose that the inequalities r > 1,

σ + 1 ≥ b ≥ 2, (9.18)

are valid. Consider the shift operator along the trajectory of system (9.17) GT , where T
is an arbitrary positive number. Let K be an invariant set with respect to this operator
GT . Suppose that K involves the stationary point x = y = z = 0. Such a set is
represented in Fig. 3.1. We provide a formula for the Lyapunov dimension dimL K of
the set K with respect to the sequence of maps (GT )i.

Theorem 9.4. Suppose the inequalities (9.18) and

rσ2(4 − b) + 2σ(b − 1)(2σ − 3b) > b(b − 1)2 (9.19)

are valid. Then

dimL K = 3 − 2(σ + b + 1)

σ + 1 +
√

(σ − 1)2 + 4rσ
. (9.20)

Proof The Jacobian matrix of the right-hand side of system (9.17) has the form

J =




−σ σ 0

r − z −1 −x
y x −b



 .

Introduce the matrix

S =




−a−1 0 0
−σ−1(b − 1) 1 0

0 0 1


 ,

where a =
σ√

rσ + (b − 1)(σ − b)
. In this case we obtain

SJS−1 =




b − σ − 1 σ/a 0
σ

a
− az −b −x

ay +
a(b − 1)

σ
x x −b


 .

Therefore the characteristic polynomial of the matrix

1

2
((SJS−1)∗ + (SJS−1)) =




b − σ − 1
σ

a
− az

2

1

2

(
ay +

a(b − 1)

σ
x

)

σ

a
− az

2
−b 0

1

2

(
ay +

a(b − 1)

σ
x

)
0 −b
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takes the form

(λ + b)

{[
λ2 + (σ + 1)λ + b(σ + 1 − b) −

(σ

a
− az

2

)2
]
−
[
a(b − 1)

2σ
x +

ay

2

]2}
.

This implies that eigenvalues of the matrix

1

2
[(SJS−1)∗ + (SJS−1)]

are the values
λ2 = −b,

and

λ1,3 = −σ + 1

2
± 1

2

[
(σ + 1 − 2b)2 +

(
2σ

a
− az

)2

+

(
a(b − 1)

σ
x + ay

)2
]1/2

.

From relations (9.18) it follows easily that λ1 ≥ λ2 ≥ λ3.
Consider the Lyapunov type function

v(x, y, z) =
1

2
aθ2(1 − s)

(
γ1x

2 + γ2

(
y2 + z2 − (b − 1)2

σ2
x2

)
+ γ3z

)
,

where s ∈ (0, 1),

θ2 =


2

√

(σ + 1 − 2b)2 +

(
2σ

a

)2



−1

,

γ3 = −4σ

ab
, γ2 =

a

2
,

γ1 = − 1

2σ

[
2γ2

rσ − (b − 1)2

σ
+ γ3 + 2

a(b − 1)

σ

]
.

Consider the relation

2
[
λ1 + λ2 + sλ3 + v̇

]
= −(σ + 1 + 2b) − s(σ + 1) + (1 − s)ϕ(x, y, z),

where

ϕ(x, y, z) =

(
(σ + 1 − 2b)2 +

(
2σ

a
− az

)2

+

(
a(b − 1)

σ
x + ay

)2)1/2

+ θ2

{(
−2aγ1σ + 2γ2

a(b − 1)2

σ

)
x2 − 2aγ2y

2

− 2aγ2bz
2 + a

(
2σγ1 + 2γ2

rσ − (b − 1)2

σ
+ γ3

)
xy − γ3abz

}
.
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By using the obvious inequality

√
u ≤ 1

4θ2
+ θ2u,

we obtain the estimate

ϕ(x, y, z) ≤ 1

4θ2
+ θ2

{
(σ + 1 − 2b)2 +

(
2σ

a

)2

+

[
−2aγ1σ + 2γ2

a(b − 1)2

σ
+

a2(b − 1)2

σ2

]
x2

+ [a2 − 2aγ2]y
2 + [a2 − 2γ2ab]z2

+

[
a

(
2σγ1 + 2γ2

rσ − (b − 1)2

σ
+ γ3

)

+ 2a2 b − 1

σ

]
xy − [γ3ab + 4σ]z

}
.

Note that the parameters γ1, γ2, and γ3 are chosen in such a way that

ϕ(x, y, z) ≤ 1

4θ2
+ θ2

{
(σ + 1 − 2b)2 +

(
2σ

a

)2

+

[
− 2aγ1σ + 2γ2

a(b − 1)2

σ
+

a2(b − 1)2

σ2

]
x2

}
.

It is not hard to prove that for the above parameters γ1, γ2, γ3 under condition (9.19) we
have

−2aγ1σ + 2γ2
a(b − 1)2

σ
+

a2(b − 1)2

σ2
≤ 0.

Thus, for all x, y, z we have

ϕ(x, y, z) ≤
√

4rσ + (σ − 1)2 .

This implies that for any number

s < s0 =

√
4rσ + (σ − 1)2 − 2b − σ − 1√

4rσ + (σ − 1)2 + σ + 1

there exists ε > 0 such that for all x, y, z the estimate

λ1(x, y, z) + λ2(x, y, z) + sλ3(x, y, z) + v̇(x, y, z) < −ε

is satisfied. Letting s → s0 on the right, by Theorem 9.2 we obtain

dimL K ≤ 3 − 2(σ + b + 1)

σ + 1 +
√

(σ − 1)2 + 4rσ
. (9.21)

By Lemma 9.3 we see that the local Lyapunov dimension of the stationary point x =
y = z = 0 of system (9.17) is equal to

3 − 2(σ + b + 1)

σ + 1 +
√

(σ − 1)2 + 4rσ
. (9.22)

Relations (9.21) and (9.22) yield the formula (9.20).
By using a similar approach to the construction of the Lyapunov functions, we can

obtain formulas for the Lyapunov dimension of the attractors of the dissipative Chirikov
map [56].
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10 Homoclinic Bifurcation

When the parameters of a dynamical system are varied, the structure of the minimal
global attractor can vary as well. Such changes are the subject of bifurcation theory.
Here we describe one particular phenomenon: the homoclinic bifurcation.

The first important results, concerning homoclinic bifurcations in dissipative dynami-
cal systems, were obtained in 1933 by the outstanding Italian mathematician Franchesko
Tricomi [15]. Here we give Tricomi’s results and similar theorems for the Lorenz systems.

Consider the second-order differential equation

θ̈ + αθ̇ + sin θ = γ, (10.1)

where α and γ are positive. This describes the motion of a pendulum with a constant
moment of force, the operation of a synchronous electrical machine, and the phase-locked
loop [61, 62]. For γ < 1 the equivalent system

θ̇ = z,
ż = −αz − sin θ + γ,

(10.2)

has the saddle equilibria z = 0, θ = θ0 + 2kπ. Here θ0 is a number for which sin θ0 = γ
and cos θ0 < 0.

Consider the trajectory z(t), θ(t) of (10.2) for which

lim
t→+∞

z(t) = 0, lim
t→+∞

θ(t) = θ0, z(t) > 0, ∀ t ≥ T.

Here T is a certain number. In Fig. 1, such a trajectory is denoted by S. It is often
called a separatrix of the saddle.

Fix γ > 0 and vary the parameter α. For α = 0 the system (10.2) is integrable. It is
easily shown that in this case, for the trajectory S = {z(t), θ(t)} there exists τ such that

z(τ) = 0, θ(τ) ∈ (θ0 − 2π, θ0)
z(t) > 0, ∀ t > τ.

(10.3)

Consider now the line segment z = −K(θ − θ0), θ ∈ [θ0 − 2π, θ0]. It is not hard to
prove that on this segment for system (10.2) the relations

(z + K(θ − θ0))
•

= −αz + Kz − sin θ + γ

= (θ − θ0)

(
−K(K − α) +

γ − sin θ

θ − θ0

)

are valid. We make use of the obvious inequality
∣∣∣∣
γ − sin θ

θ − θ0

∣∣∣∣ ≤ 1, ∀ θ 6= θ0.

If the conditions

α > 2,
α

2
−
√

α2

4
− 1 < K <

α

2
+

√
α2

4
− 1,

are satisfied, we obtain the estimate

(z + K(θ − θ0))
• < 0
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Figure 10.1: Estimate of separatrix.

for z = −K(θ − θ0), θ ∈ (θ0 − 2π, θ0). See Fig. 10.1.
The figure shows that there does not exist τ such that conditions (10.3) are satisfied

(Fig. 2).
It is well known that the piece of the trajectory S : {z(t), θ(t) | t ≥ τ} is continuously

dependent on the parameter α. Here τ satisfies (10.3).
Then from the disposition of the trajectory S for α > 2 (Fig. 10.2) it follows that

there exists α0 ∈ (0, 2) such that the trajectory S of system (10.2) with α = α0 satisfies
the relation

lim
t→−∞

z(t) = 0, lim
t→−∞

θ(t) = θ0 − 2π. (10.4)

Figure 10.2: Behavior of separatrix.

Thus, α = α0 is a bifurcational parameter. To this parameter corresponds the het-
eroclinic trajectory S = {z(t), θ(t) | t ∈ R

1}. Recall that the trajectory x(t) of the
system

ẋ = f(x), x ∈ R
n (10.5)

is said to be heteroclinic if

lim
t→+∞

x(t) = c1, lim
t→−∞

x(t) = c2, c1 6= c2.

In the case c1 = c2, the trajectory x(t) is called homoclinic.
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Sometimes for systems involving angular coordinates, the cylindrical phase space is
introduced. We do this for system (10.2).

It is obvious that the properties of system (10.2) are invariant with respect to the
shift x + d. Here

x =

(
θ
z

)
, d =

(
2π
0

)
.

In other words, if x(t) is a solution of system (10.2), then so is x(t) + d.
Consider a discrete group

Γ = {x = kd | k ∈ Z}.

We consider the factor group R2/Γ, the elements of which are the classes of the residues
[x] ∈ R2/Γ. They are defined as

[x] = {x + u | u ∈ Γ}.

We introduce the so-called plane metric

ρ([x], [y]) = inf
u∈[x]
v∈[y]

|u − v|.

Here, as above, | · | is a Euclidean norm in R
2.

It is obvious that [x(t)] is a solution and the metric space R2/Γ is a phase space of
system (10.2). This space is partitioned into the nonintersecting trajectories [x(t)], t ∈
R

1.
It is easy to establish the following diffeomorphism between R2/Γ and a surface of

the cylinder R1 × C. Here C is a circle of unit radius.
Consider the set Ω = {x | θ ∈ (0, 2π], z ∈ R

1}, in which exactly one representer of
each class [x] ∈ R

2/Γ is situated. Cover the surface of cylinder by the set Ω, winding Ω
round this surface (Fig. 3)

Figure 10.3: Cylindrical space.

It is obvious that the map constructed is a diffeomorphism. Therefore, the surface of
the cylinder is also partitioned into nonintersecting trajectories. Such a phase space is
called cylindrical.
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Note that heteroclinic trajectory (10.4) in the phase space R
2 becomes homoclinic in

the cylindrical phase space and in the phase space R2/Γ since we have

lim
t→+∞

[x(t)] = lim
t→−∞

[x(t)] =

[
θ0

0

]
,

[
θ0

0

]
=

{(
θ0 + 2kπ

0

)
| k ∈ Z

}
.

Now the assertion obtained is formulated in the following way. Consider the smooth
path α(s) (s ∈ [0, 1]) such that α(0) = 0, α(s) > 0, ∀ s ∈ (0, 1), α(1) > 2.

Theorem 10.1 (Tricomi). For any γ > 0 there exists s0 ∈ (0, 1) such that system
(10.2) with the parameters γ, α(s0) has a homoclinic trajectory in the phase space R2/Γ.

We proceed to obtain a similar assertion for the Lorenz system

ẋ = σ(x − y),
ẏ = rx − y − xz,
ż = −bz + xy,

(10.6)

where σ, b, r are positive. The function

V (x, y, z) = y2 + z2 +
1

σ
x2

satisfies

V̇ (x(t), y(t), z(t)) = −2bz(t)2 − 2y(t)2 − 2x(t)2 + 2(r + 1)x(t)y(t).

From this we easily find that for r ≤ 1, all the solutions of system (10.6) tend to zero as
t → +∞. Therefore we consider further the case r > 1.

Using the transformation

θ = εx√
2σ

, η = ε2
√

2(y − x), ξ = ε2(z − x2

b ),

t = t1
√

σ
ε , ε = 1√

r−1
,

(10.7)

we reduce system (10.6) to the form

θ̇ = η,
η̇ = −µη − ξθ − ϕ(θ),

ξ̇ = −αξ − βθη.

(10.8)

Here

ϕ(θ) = −θ + γθ3, µ =
ε(σ + 1)√

σ
, α =

εb√
σ

, β = 2

(
2σ

b
− 1

)
, γ =

2σ

b
.

It follows easily that if the conditions

lim
t→+∞

θ(t) = lim
t→−∞

θ(t) = lim
t→+∞

η(t) =

= lim
t→−∞

η(t) = lim
t→+∞

ξ(t) = lim
t→−∞

ξ(t) = 0
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are satisfied, then

lim
t→+∞

x(t) = lim
t→−∞

x(t) = lim
t→+∞

y(t) =

= lim
t→−∞

y(t) = lim
t→+∞

z(t) = lim
t→−∞

z(t) = 0.

Thus, a homoclinic trajectory of system (10.8) corresponds to a homoclinic trajectory of
system (10.6).

Denote by θ+(t), η(t)+, ξ(t)+ a separatrix of the saddle θ = η = ξ = 0, outgoing in
the half-plane {θ > 0}. See Fig. 4.

In other words, we consider a solution of system (10.6) such that

lim
t→−∞

θ(t)+ = lim
t→−∞

η(t)+ = lim
t→−∞

ξ(t)+ = 0

and θ(t)+ > 0 for t ∈ (−∞, T ). Here T is a certain number or +∞.
Consider the smooth path b(s), σ(s), r(s) (s ∈ [0, 1]) in a space of the parameters

{b, σ, r}. It is clear that in this case the parameters α, β, γ, µ are also smooth functions
of s ∈ [0, 1].

Figure 10.4: Separatrix of the Lorenz system.

Theorem 10.2. Let β(s) > 0, ∀ s ∈ [0, 1] and for s ∈ [0, s0) suppose there exist
T (s) > τ(s) such that the relations

θ(T )+ = η(τ)+ = 0 (10.9)

θ(t)+ > 0, ∀ t < T, (10.10)

η(t)+ 6= 0, ∀ t < T, t 6= τ (10.11)

are satisfied. Suppose also that for s = s0 there does not exist the pair T (s0) > τ(s0)
such that relations (10.9)–(10.11) are satisfied. Then system (10.8) with the parameters
b(s0), σ(s0), r(s0) has the homoclinic trajectory θ(t)+, η(t)+, ξ(t)+:

lim
t→+∞

θ(t)+ = lim
t→+∞

η(t)+ = lim
t→+∞

ξ(t)+ = 0.
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To prove this theorem we need the following

Lemma 10.1. If for system (10.8) the conditions

η(τ)+ = 0, η(t)+ > 0, ∀ t ∈ (−∞, τ)

are valid, then η̇(τ)+ < 0.
Proof Suppose to the contrary that η̇(τ)+ = 0. In this case from the last two

equations of system (10.8) we obtain

η̈(τ)+ = αξ(τ)+θ(τ)+. (10.12)

From the relations η(t)+ > 0, θ(t)+ > 0, ∀ t ∈ (−∞, τ) and the last equation of system
(10.8) we obtain ξ(t)+ < 0 ∀ t ∈ (−∞, τ ]. Then (10.12) yields the inequality η̈(τ)+ < 0,
which contradicts the assumption η̇(τ)+ = 0 and the hypotheses of the lemma.

Lemma 10.2. Let β(s) > 0, ∀ s ∈ [0, 1]. Suppose that for system (10.8), relations
(10.9), (10.10) and the inequalities

η(t)+ > 0, ∀ t ∈ (−∞, τ)
η(t)+ ≤ 0, ∀ t ∈ (τ, T )

(10.13)

are valid. Then inequality (10.11) is also valid.
Proof Assuming the contrary, we see that there exists ρ ∈ (τ, T ) such that the

relations
η(ρ)+ = η̇(ρ)+ = 0,
η̈(ρ)+ = αθ(ρ)+ξ(ρ)+ < 0,
η(t)+ < 0, ∀ t ∈ (ρ, T ),

are satisfied. Then from conditions (10.9), (10.10) and from the fact that the trajectories
θ(t) = η(t) = 0, ξ(t) = ξ(0) exp(−αt) belong to a stable manifold of the saddle θ =
η = ξ = 0 we obtain the crossing of the separatrix θ(t)+, η(t)+, ξ(t)+ and this stable
manifold. Therefore the separatrix belongs completely to the stable manifold of the
saddle. In addition, the condition θ(t)+ > 0, ∀ t ≥ ρ holds. The latter is in the contrast
to condition (10.9). This contradiction proves Lemma 10.2.

It is possible to give the following geometric interpretation of the proof of Lemma 10.2
in the phase space with coordinates θ, η, ξ. “Under” the set {θ > 0, η = 0, ξ ≤ 1 − γθ2}
is situated the piece of stable two-dimensional manifold of the saddle θ = η = ξ = 0.
This does not allow the trajectories with the initial data from this set to attain the plane
{θ = 0} if they remain in the quadrant {θ ≥ 0, η ≤ 0}.

Consider the polynomial
p3 + ap2 + bp + c, (10.14)

where a, b, c are positive.

Lemma 10.3. Either all zeros of (10.14) have negative real parts, or two zeros of
(10.14) have nonzero imaginary parts.

Proof It is well known [62] that all zeros of (10.14) have negative real parts if
and only if ab > 0. For ab = c, polynomial (10.14) has two pure imaginary zeros.

Suppose now that for the certain a, b, c such that ab < c, polynomial (10.14) has real
zeros only. From the positiveness of coefficients it follows that these zeros are negative.
The latter yields ab > c, which contradicts the assumption.
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Proof of Theorem 10.2. We shall show that to the values of the parameters
b(s0), σ(s0), r(s0) there corresponds a homoclinic trajectory.

First note that for these parameters for the certain τ the relations

η(t)+ > 0, ∀ t < τ, η(t)+ ≤ 0, ∀ t ≥ τ
θ(t)+ > 0, ∀ t ∈ (−∞, +∞),

(10.15)

hold. Actually, if there exist T2 > T1 > τ such that

θ(t)+ > 0, ∀ t ∈ (−∞, T2); θ(T2)
+ = 0, η(T1)

+ > 0
η(t)+ > 0, ∀ t < τ ; η(τ)+ = 0, η̇(τ)+ < 0,

then for the values s < s0 and for the values s sufficiently close to s0 the inequality
η(T1)

+ > 0 holds true. This is in the contrast to the definition of s0. If there exist
T1 > τ such that

η(T1)
+ > 0, η(t)+ > 0, ∀ t < τ

η(τ)+ = 0, η̇(τ)+ < 0, θ(t)+ > 0, ∀ t ∈ (−∞, +∞)

then for s < s0, which is sufficiently closed to s0, the inequality η(T1)
+ > 0 holds true,

which is in contrast to the definition of s0. If there exist T > τ such that

θ(t)+ > 0, ∀ t < T, θ(T )+ = 0, η(t)+ > 0, ∀ t < τ
η(t)+ ≤ 0, ∀ t ∈ [τ, T ],

then by Lemma 10.2 inequality (10.11) holds. Therefore for s = s0 relations (10.9)–
(10.11) are valid, which is in the contrast to the hypotheses of the theorem. This con-
tradiction proves inequality (10.15).

From (10.15) it follows that only one of the equilibria can be the ω-limit set of
the trajectory θ(t)+, η(t)+, ξ(t)+ for s = s0. We shall show that the equilibrium θ =
1/
√

γ, η = ξ = 0 cannot be the ω-limit point of the considered trajectory.
Having performed the linearization in the neighborhood of this equilibrium, we obtain

the characteristic polynomial

p3 + (α + µ)p2 + (αµ + 2/γ)p + 2α.

Suppose, for s = s0 the separatrix θ(t)+, η(t)+, ξ(t)+ has in its ω-limit set the point
θ = 1/

√
γ, η = ξ = 0. By Lemma 10.3 and from a continuous dependence of the semi-

trajectories {θ(t)+, η(t)+, ξ(t)+| t ∈ (−∞, t0)} on the parameter s we obtain that for the
values s sufficiently close to s0, the separatrices θ(t)+, η(t)+, ξ(t)+ either tend to the
equilibrium θ = 1/

√
γ, η = ξ = 0 as t → +∞ or oscillate on the certain time interval

with the sign reversal of the coordinate η. Both possibilities are in contrast to properties
(10.9)–(10.11).

Thus, for system (10.8) with the parameters b(s0), σ(s0), r(s0) the trajectory
θ(t)+, η(t)+, ξ(t)+ tends to zero equilibrium as t → +∞. �

Remark 10.1. It is well known that the semitrajectory

{θ(t)+, η(t)+, ξ(t)+ | t ∈ (−∞, t0)}

depends continuously on the parameter s. Here t0 is a certain fixed number. Then Lemma
10.1 implies that if for system (10.8) with the parameters b(s1), σ(s1), r(s1) relations
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(10.9)–(10.11) are satisfied, then these relations are also satisfied for b(s), σ(s), r(s). Here
s ∈ (s1 − δ, s1 + δ) where δ is sufficiently small. �

Theorem 10.2 and Remark 10.1 result in the following

Theorem 10.3. Let be β(s) > 0, ∀ s ∈ [0, 1]. Suppose, for system (10.8) with the
parameters b(0), σ(0).r(0) there exist T > τ such that relations (10.9)–(10.11) are valid.
Suppose also that for system (10.8) with the parameters b(1), σ(1), r(1) the inequality

θ(t)+ > 0, ∀ t ∈ (−∞, +∞)

holds. Then there exists s0 ∈ [0, 1] such that system (10.8) with the parameters
b(s0), σ(s0), r(s0) has the homoclinic trajectory θ(t)+, η(t)+, ξ(t)+.

We shall show that if
3σ − 2b > 1, (10.16)

then for sufficiently large r the relations (10.9)–(10.11) are valid. Consider the system

Q
dQ

dθ
= −µQ − Pθ − ϕ(θ),

Q
dP

dθ
= −αP − βQθ,

(10.17)

which is equivalent to (10.8) in the sets {θ ≥ 0, η > 0} and {θ ≥ 0, η < 0}. Here P
and Q are the solutions of system (10.17). It is clear that P and Q are functions of
θ : P (θ), Q(θ).

We perform the asymptotic integration of the solutions of system (10.17) with the
small parameter ε, which corresponds to the separatrix θ(t)+, η(t)+, ξ(t)+. For this
purpose we transform (10.17) as follows:

1

2

d

dθ
(Q(θ))2 = −µQ(θ) − P (θ)θ − ϕ(θ),

dP (θ)

dθ
= −α

P (θ)

Q(θ)
− βθ.

Here α and µ are small parameters. In the first approximation the solutions considered
can be represented in the form

Q1(θ)
2 = θ2 − θ4

2 − 2µ
∫ θ

0 θ
√

1 − θ2

2 dθ−

−2αβ
∫ θ

0
θ

(
1 −

√
1 − θ2

2

)
dθ,

Q1(θ) ≥ 0, P1(θ) = −
(

β
2

)
θ2 + αβ

(
1 −

√
1 − θ2

2

)
,

Q2(θ)
2 = θ2 − θ4

2 − 2µ
∫√

2

θ θ
√

1 − θ2

2 dθ − 4
3µ+

+2αβ
∫√

2

θ θ

(
1 +

√
1 − θ2

2

)
dθ − 2

3αβ

Q2(θ) ≤ 0, P2(θ) = −
(

β
2

)
θ2 + αβ

(
1 +

√
1 − θ2

2

)
.

This implies that if inequality (10.16) is satisfied, then for the certain T > τ relations
(10.9)–(10.11) are valid. In addition we have

ξ(T )+ = P2(0) = 2αβ,

η(T )+ = Q2(0) = −
√

8(αβ − µ)/3 = −
√

8ε(3σ − 2b − 1)/3
√

σ.
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Thus, if inequality (10.16) is satisfied, then for sufficiently large r relations (10.9)–(10.11)
are valid . �

We now obtain conditions such that relations (10.9)–(10.11) do not hold and

θ(t)+ > 0, ∀ t ∈ (−∞, +∞). (10.18)

Consider first the case β < 0. Here for the function

V (θ, η, ξ) = η2 − 1

β
ξ2 +

∫ θ

0

ϕ(θ)dθ

we have

V̇ (θ(t), η(t), ξ(t)) = −2

(
µη(t)2 − α

β
ξ(t)2

)
. (10.19)

Thus, for β < 0 the function V is the Lyapunov function for system (10.8). From the
conditions (10.19) and β < 0 we obtain

V (θ(t)+, η(t)+, ξ(t)+) < V (θ(−∞)+, η(−∞)+, ξ(−∞)+) = V (0, 0, 0) = 0,
∀ t ∈ (−∞, +∞).

This implies (10.18). In this case the separatrix θ(t)+, η(t)+, ξ(t)+ does not tend to zero
as t → +∞. For β = 0 we have ξ(t)+ ≡ 0 and from the first two equations of system
(10.8) we obtain at once (10.18). In this case the separatrix θ(t)+, η(t)+, ξ(t)+ does not
tend to zero as t → +∞. �

Consider the case

β =
2

b
(2σ − b) > 0.

In this case by using the change of variables

η = σ(x − y), Q = z − x2/(2σ),

we can reduce system (10.6) to the form

ẋ = η,

η̇ = −(σ + 1)η + σ{(r − 1) − Q − x2

2σ }x,

Q̇ = −bQ + (1 − b
2σ )x2.

(10.20)

Consider the separatrix x(t)+, η(t)+, Q(t)+ of zero saddle equilibrium such that

lim
t→−∞

x(t)+ = lim
t→−∞

η(t)+ = lim
t→−∞

Q(t)+ = 0,

x(t)+ > 0, ∀ t ∈ (−∞, T ).
(10.21)

Find the estimates of this separatrix.

Lemma 10.3. The estimate

Q(t)+ ≥ 0, ∀ t ∈ (−∞, +∞) (10.22)

is valid.
Proof From the inequality 2σ > b and from the last equation of (10.20) we have

Q̇(t) ≥ −bQ(t).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(1) (2008) 49–96 91

This implies that
Q(t) ≥ exp(−bt)Q(0).

Therefore (10.22) holds.

Lemma 10.4. From condition (10.21) follows the inequality

η(t)+ ≤ Lx(t)+, ∀ t ∈ (−∞, T ), (10.23)

where

L = −σ + 1

2
+

√
(σ + 1)2

4
+ σ(r − 1).

Proof Relation (10.22) and the first two equations of system (10.20) give

η(t)+ ≤ η̃(t)+, ∀ t ∈ (−∞, T ). (10.24)

Here η̃(t)+, x̃(t)+ is the separatrix of zero saddle of the system

ẋ = η,
η̇ = −(σ + 1)η + σ(r − 1)x.

Obviously, η̃(t)+ = Lx̃(t)+. The lemma follows from (10.24).

Lemma 10.5. From condition (10.21) follows the estimate

Q(t)+ ≥ a(x(t)+)2, ∀ t ∈ (−∞, T ), (10.25)

where

a =
(2σ − b)

(2σ(2L + b))
.

Proof Estimate (10.23) gives the differential inequality

(
Q(t)+ − a(x(t)+)2

)•
+ b(Q(t)+ − a(x(t)+)2) ≥

≥
[
(1 − b

2σ ) − 2aL − ab
]
(x(t)+)2 = 0.

This implies (10.25).
Consider now the Lyapunov-type function introduced in [63]:

V (x, η, Q) = η2 + σx2

(
x2

4σ
+ Q − (r − 1)

)
+ (σ + 1)xη. (10.26)

It can easily be checked that for the solutions x(t), η(t), Q(t) of system (10.20) we have

V̇ (x(t), η(t), Q(t)) = −(σ + 1)V (x(t), η(t), Q(t))+

+ 3
4

(
σ − 2b+1

3

)
x(t)4 − bσQ(t)x(t)2.

(10.27)

Lemma 10.6. Let the inequality

3σ − (2b + 1) <
2b(2σ − b)

2L + b
(10.28)
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be valid. Then condition (10.21) results in the estimate

V̇ (x(t)+, η(t)+, Q(t)+) + (σ + 1)V (x(t)+, η(t)+, Q(t)+) < 0,
∀ t ∈ (−∞, T ).

(10.29)

Proof From (10.28) and (10.25) we have

3

4

(
σ +

2b + 1

3

)
(x(t)+)4 − bσQ(t)(x(t)+)2 < 0, ∀ t ∈ (−∞, T ).

Then (10.27) yields estimate (10.29). Note that relation (10.29) results in the inequality

V (x(T )+, η(T )+, Q(T )+) < 0.

It is easy to see that
V (0, η, Q) ≥ 0, ∀η ∈ R1, ∀Q ∈ R1.

Therefore, if (10.28) is satisfied, then (10.29) is satisfied for all T ∈ R
1.

Thus, we can formulate
Theorem 10.4 [63]. If inequality (10.28) holds, then so does (10.18) and the sepa-

ratrix x(t)+, η(t)+, Q(t)+ does not tend to zero as t → +∞.
This implies
Theorem 10.5. If

2b + 1 ≥ 3σ,

then for any r > 1 the homoclinic trajectory of system (10.6) does not exist.

Theorem 10.6. If
2b + 1 < 3σ,

then for the values r > 1 and sufficiently close to 1 the conditions (10.9)–(10.11) are not
valid.

Theorems 10.3, 10.5, 10.6 imply the following

Theorem 10.7. Given b and σ fixed, for the existence of r ∈ (1, +∞), corresponding
to the homoclinic trajectory of the saddle x = y = z = 0, it is necessary and sufficient
that

2b + 1 < 3σ. (10.30)

The sufficiency of condition (10.30) was first proved in [64, 65]. It was proved by
another method (the shooting method [66]–[68]) in [69]. The papers [68, 69] involve the
notes, added in the proof, about a priority of the assertion from [64].

In the papers [64, 65] the conjecture was asserted that (10.30) is a necessary condition
for the existence of a homoclinic trajectory. This conjecture is proved in [69] on the basis
of constructing the Lyapunov-type function (10.26).

We remark that the consideration of the smooth paths, in the space of parameters of
nonlinear dynamic systems, on which there exist the points of homoclinic bifurcation, is
a fruitful direction in the development of the analytic theory of global bifurcations.

We formulate now one more assertion of the same type, obtained for the Lorenz
system in the paper [55].

Theorem. Let be σ = 10, r = 28. Then there exists b ∈ (0, +∞) such that (10.6)
has a homoclinic trajectory.
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