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Conditions of Ultimate Boundedness of

Solutions for a Class of Nonlinear Systems

A.Yu. Aleksandrov ∗ and A.V. Platonov

Saint Petersburg State University,

198504, Universitetskij ave., 35, Petrodvorets, St. Petersburg, Russia

Received: May 12, 2007; Revised: March 13, 2008

Abstract: A class of nonlinear differential equations systems is considered.
An approach for the construction of Lyapunov’s functions for these systems
is suggested. By the use of functions constructed the conditions of ultimate
boundedness of solutions for systems investigated are obtained.

Keywords: Nonlinear systems; Lyapunov’s functions; ultimate boundedness; large

scale systems.

Mathematics Subject Classification (2000): 34D20, 93D20, 93D30.

1 Introduction

In a variety of control systems design problems it is often required not only to stabilize
given programmed motions but to ensure also boundedness for every solution of system
investigated. Of great practical interest is the case when all the solutions enter a neigh-
borhood of the origin and remain within it thereafter. Generally the time period needed
for the solution to enter this neighborhood depends on the initial values of the solution.
In this case solutions are called ultimately bounded [14].

The main approach for finding the conditions of boundedness of solutions for nonlinear
systems is the Lyapunov direct method. Using this method, numerous results on various
types of boundedness are obtained [6, 11, 12, 14, 16]. However, there are still no general
constructive approaches for the construction of Lyapunov’s functions.

In the present paper, a certain class of differential equations systems is considered.
An approach for the construction of Lyapunov’s functions for these systems is suggested.
The conditions for the existence of Lyapunov’s functions in the given form, satisfying
the assumptions of the Yoshizawa ultimate boundedness theorem [14] are investigated.
The results obtained are used for the analysis of the asymptotic behavior of solutions of
essentially nonlinear complex systems.

∗ Corresponding author: alex@vrm.apmath.spbu.ru

c© 2008 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 109



110 A.YU. ALEKSANDROV AND A.V. PLATONOV

2 Statement of the Problem

Consider the system of differential equations

ẋs = asfs(xs) +

ks∑

j=1

bsjf
α

(j)
s1

1 (x1) . . . f
α(j)

sn
n (xn), s = 1, . . . , n. (2.1)

Here as and bsj are constant coefficients, α
(j)
si are nonnegative rationals with odd denom-

inators, functions fs(xs) are defined and continuous for xs ∈ (−∞,+∞) and possess the
following properties: xsfs(xs) > 0 for xs 6= 0, fs(xs) → −∞ as xs → −∞, fs(xs) → +∞
as xs → +∞.

System (2.1) is a generalization of this one

ẋs =

n∑

j=1

bsjfj(xj), s = 1, . . . , n,

which is widely used in automatic control systems design [3, 7, 9].
In this paper we shall assume that coefficients as and bsj in (2.1) satisfy the conditions

as < 0, bsj > 0, j = 1, . . . , ks, s = 1, . . . , n. (2.2)

For instance, inequalities (2.2) are valid if (2.1) is obtained as comparison system for a
complex system [4, 13].

Consider, at first, the case where

n∑

i=1

α
(j)
si > 0, j = 1, . . . , ks, s = 1, . . . , n. (2.3)

Then system (2.1) has the zero solution.

Definition 2.1 [2] System (2.1) is called absolutely stable if the zero solution of this
system is asymptotically stable for any admissible functions f1(x1), . . . , fn(xn).

The criterion of absolute stability for (2.1) was established in [2].

Definition 2.2 [2] System (2.1) satisfies the Martynyuk–Obolenskij condition [8]
(MO-condition) if for any δ > 0 there exists solution θ̃1, . . . , θ̃n of the system

asθs +

ks∑

j=1

bsjθ
α

(j)
s1

1 . . . θ
α(j)

sn
n < 0, s = 1, . . . , n, (2.4)

such that 0 < θ̃s < δ, s = 1, . . . , n.

It was proved [2] that (2.1) is absolutely stable if and only if it satisfies the MO-
condition.

The proof of necessity of this criterion is based on the fact, that for the special choice
of admissible functions f1(x1), . . . , fn(xn) system (2.1) is Wazewskij’s one, and for it
the general criterion of asymptotic stability of autonomous Wazewskij’s systems [8] is
applicable.
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To prove the sufficiency, it was suggested [2] to construct Lyapunov’s function for
(2.1) in the form

V (x) =

n∑

s=1

λs

∫ xs

0

fµs

s (τ)dτ, (2.5)

where x = (x1, . . . , xn)∗, λs > 0 are constant coefficients, µs > 0 are rationals with
odd numerators and denominators. It was shown that (2.1) is absolutely stable if and
only if for this system there exists Lyapunov’s function in the form (2.5), satisfying the
assumptions of the Lyapunov asymptotic stability theorem.

Definition 2.3 We call (2.1) absolutely ultimately bounded if solutions of this sys-
tem are ultimately bounded for any admissible functions f1(x1), . . . , fn(xn).

The main goal of the present paper is to obtain the criterion of absolute ultimate
boundedness for (2.1). To solve this problem, let us determine the conditions under which
for system investigated there exists Lyapunov’s function in the form (2.5), satisfying the
assumptions of the Yoshizawa ultimate boundedness theorem [14].

Remark 2.1 In what follows, we do not assume the fulfilment of inequalities (2.3).

3 Conditions of Ultimate Boundedness for Wazewskij’s Systems

Let us note, just as in [2], that in the case where f1(x1), . . . , fn(xn) are nondecreasing
functions, system (2.1) is Wazewskij’s one. Therefore, we shall investigate, first, condi-
tions of ultimate boundedness of solutions for autonomous Wazewskij’s systems of the
general form.

Consider the system
ẋ = g(x), (3.1)

where x = (x1, . . . , xn)∗ and vector function g(x) is defined and continuous for all x ∈ Rn.
Assume that system (3.1) possesses the following properties:
(a) for any t0 ∈ (−∞,+∞) and any x0 ∈ Rn the initial value problem for (3.1) has

unique solution x(t, x0, t0);
(b) system (2.1) is Wazewskij’s one;
(c) there exists a number D > 0 such that in the region ‖x‖ ≥ D there is no equilib-

rium position of (3.1).
Here ‖ · ‖ is the Euclidean norm of the vector.

Remark 3.1 Condition (c) is a necessary one for the solutions of (3.1) to be ulti-
mately bounded.

Furthermore, we shall assume that nonnegative cone K+ = {x ∈ Rn : xs ≥ 0, s =
1, . . . , n} is an invariant set for (3.1).

Definition 3.1 The solutions of (3.1) are ultimately bounded in K+ if there exists
a H > 0 and if, corresponding to every Q > 0, one can choose a T > 0 such that for any
t0 ∈ (−∞,+∞) and for any x0 ∈ K+, ‖x0‖ < Q, the inequality ‖x(t, x0, t0)‖ < H holds
for all t ≥ t0 + T .

Definition 3.2 We shall say that (3.1) satisfies the M̃O-condition if for any ∆ > 0
there exists vector θ = (θ1, . . . , θn)∗, ‖θ‖ > ∆, such that θ > 0 and g(θ) < 0 (the
inequalities are componentwise).
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By the use of Lemmas 3.1 and 3.2 from [8], we get the validity of the following

Theorem 3.1 (necessary condition of ultimate boundedness) If the solutions of (3.1)

are ultimately bounded in K+, then this system satisfies the M̃O-condition.

Remark 3.2 The M̃O-condition is a necessary one for the ultimate boundedness of
solutions. However, it is not, generally, the sufficient condition.

Example 3.1 Let system (3.1) be of the form

ẋ1 = −x1 + x2
1x2,

ẋ2 = −x2.
(3.2)

This system possesses properties (a) – (c) and K+ is an invariant set for it.

Consider the inequalities

− θ1 + θ21θ2 < 0, −θ2 < 0. (3.3)

For given ∆ > 0 there exists positive vector θ̃ = (1/(2∆),∆)∗, satisfying (3.3), such that

‖θ̃‖ > ∆. Thus, for system (3.2) the M̃O-condition is fulfilled.

At the same time, (3.2) has the solution x(t) = (2et, e−t)∗. Hence, solutions of this
system are not ultimately bounded in K+.

Definition 3.3 We shall say that (3.1) satisfies the MO-condition if for any ∆ > 0
there exists vector θ = (θ1, . . . , θn)∗ such that θs > ∆, s = 1, . . . , n, and g(θ) < 0.

Using Lemma 3.3 from [8], it is easy to show the validity of the following

Theorem 3.2 (sufficient condition of ultimate boundedness) If system (3.1) satisfies
the MO-condition, then its solutions are ultimately bounded in K+.

Remark 3.3 The MO-condition is a sufficient one for the ultimate boundedness of
solutions. However, it is not, generally, the necessary condition.

Example 3.2 Let the system

ẋ1 = −x1 + x1x2,

ẋ2 = −x2

(3.4)

be given. This system satisfies all the above assumptions (properties (a)–(c) and invari-
ance of K+).

By the direct integration, one can verify that solutions of (3.4) are ultimately bounded.

On the other hand, if for a positive vector θ = (θ1, θ2)
∗ the inequalities

− θ1 + θ1θ2 < 0, −θ2 < 0,

are valid, then θ2 < 1. Hence, for (3.4) the MO-condition is not fulfilled.
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4 Construction of Lyapunov’s Functions

Now, let us investigate the problem of absolute ultimate boundedness for system (2.1).
Construct Lyapunov’s function for this system in the form (2.5), where, as before,

λs > 0 are constant coefficients and µs > 0 are rationals with odd numerators and
denominators.

Function V (x) is positive for all x 6= 0, and V (x) → +∞ as ‖x‖ → ∞. On differenti-
ating this function with respect to (2.1), one arrives at

dV

dt

∣∣∣∣
(2.1)

=
n∑

s=1

λsasf
µs+1
s (xs) +

n∑

s=1

λsf
µs

s (xs)

ks∑

j=1

bsjf
α

(j)
s1

1 (x1) . . . f
α(j)

sn
n (xn).

Hence, V (x) satisfies the assumptions of the Yoshizawa ultimate boundedness theorem
for any admissible functions f1(x1), . . . , fn(xn), if coefficients λs and exponents µs,
s = 1, . . . , n, are chosen for the function

W (y) =

n∑

s=1

λsasy
µs+1
s +

n∑

s=1

λsy
µs

s

ks∑

j=1

bsjy
α

(j)
s1

1 . . . y
α(j)

sn
n (4.1)

to be negative in a region ‖y‖ > R. Here y = (y1, . . . , yn)∗, while R > 0 is a constant.
Let us denote hs = 1/(µs + 1), s = 1, . . . , n. By the use of generally-homogeneous

functions properties [15], we get that W (y) might be negative for all ‖y‖ > R only in the
case, where following inequalities are valid:

−hs +

n∑

i=1

α
(j)
si hi ≤ 0, j = 1, . . . , ks, s = 1, . . . , n, (4.2)

Remark 4.1 If there exist positive rationals h1, . . . , hn for which all the inequalities
in (4.2) are strict, i.e.

−hs +

n∑

i=1

α
(j)
si hi < 0, j = 1, . . . , ks, s = 1, . . . , n, (4.3)

then for corresponding values of µs and for any admissible values of as, bsj and λs,
j = 1, . . . , ks, s = 1, . . . , n, one can choose a constant R > 0 such that W (y) < 0 for
‖y‖ > R.

5 Auxiliary Results

Let us determine the conditions of the existence of positive solutions for systems (4.2)
and (4.3).

Remark 5.1 It is known [4, 13], that in the case where ks = 1, s = 1, . . . , n, for the
existence of a positive solution for (4.3) it is necessary and sufficient for the matrix

A =




α
(1)
11 − 1 α

(1)
12 . . . α

(1)
1n

α
(1)
21 α

(1)
22 − 1 . . . α

(1)
2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
(1)
n1 α

(1)
n2 . . . α

(1)
nn − 1




to satisfy the Sevast’yanov–Kotelyanskij conditions.
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Lemma 5.1 If there exists a positive solution for (4.3), then for system (2.1) the
MO-condition is fulfilled.

Proof Let inequalities (4.3) be valid for positive constants h̃1, . . . , h̃n. Then for given

number ∆ > 0, one can choose τ > 0 so large that the constants θ̃s = τ h̃s , s = 1, . . . , n,
satisfy inequalities (2.4), and θ̃s > ∆ for s = 1, . . . , n. 2

Along with (4.2), consider the system

−hs +

n∑

i=1

α
(j)
si hi = c(j)s , j = 1, . . . , ks, s = 1, . . . , n,

where c
(j)
s are nonpositive constants. This system can be splitted into n subsystems

Ash = cs, s = 1, . . . , n. (5.1)

Here h = (h1, . . . , hn)∗, cs = (c
(1)
s , . . . , c

(ks)
s )∗,

A1 =



α

(1)
11 − 1 α

(1)
12 . . . α

(1)
1n

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
(k1)
11 − 1 α

(k1)
12 . . . α

(k1)
1n


 , . . . , An =



α

(1)
n1 α

(1)
n2 . . . α

(1)
nn − 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
(kn)
n1 α

(kn)
n2 . . . α

(kn)
nn − 1


.

Let us apply to (5.1) the modified Gaussian elimination procedure. On the s-th step
of this procedure each of the equations with negative coefficient of hs is used for the
elimination of hs from the (s+1)-th, etc., and n-th subsystems. This results in a new set
of subsystems with (generally) the other number of equations than in the initial system.

Lemma 5.2 System (4.2) possesses a positive solution if and only if the above mod-
ified Gaussian elimination procedure reduces system (5.1) to the form

Bsh = c̃s, s = 1, . . . , n,

where

B1 =



β

(1)
11 . . . β

(1)
1n

. . . . . . . . . . . . . .

β
(q1)
11 . . . β

(q1)
1n


 , B2 =




0 β
(1)
22 . . . β

(1)
2n

. . . . . . . . . . . . . . . . . .

0 β
(q2)
22 . . . β

(q2)
2n


 , . . . , Bn =




0 . . . 0 β
(1)
nn

. . . . . . . . . . . . . .

0 . . . 0 β
(qn)
nn


 ,

c̃1 =
(
c̃
(1)
1 , . . . , c̃

(q1)
1

)
∗

, . . . , c̃n =
(
c̃(1)n , . . . , c̃(qn)

n

)
∗

,

c̃
(j)
s ≤ 0, β

(j)
ss ≤ 0, β

(j)
si ≥ 0 for j = 1, . . . , qs, i = s + 1, . . . , n, s = 1, . . . , n, and if

β
(j)
ss = 0 for some values of indices s and j, then β

(j)
si = 0, i = s + 1, . . . , n, for all such

s and j.

Remark 5.2 In the case where β
(j)
ss < 0, j = 1, . . . , qs, s = 1, . . . , n, there exist

positive numbers h̃1, . . . , h̃n satisfying strict inequalities (4.3).

Lemma 5.3 If for (2.1) the MO-condition is fulfilled, then there exists a positive
solution for system (4.2).
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The proofs of Lemmas 5.2 and 5.3 are similar to those ones of Lemmas 4.2 and 4.3
from [2].

Remark 5.3 The proof of Lemma 5.2 contains a constructive algorithm for finding
a positive solution h̃1, . . . , h̃n for (4.2). Moreover, let us note that using this algorithm
one may choose h̃1, . . . , h̃n for the numbers µs = 1/h̃s − 1, s = 1, . . . , n, to be positive
rationals with odd numerators and denominators.

6 Conditions of Absolute Ultimate Boundedness

Consider the necessary conditions of absolute ultimate boundedness for system (2.1).

Theorem 6.1 If system (2.1) is absolutely ultimately bounded, then it satisfies the

M̃O-condition.

Proof Suppose that (2.1) is absolutely ultimately bounded. Then its solutions are
ultimately bounded for any admissible functions f1(x1), . . . , fn(xn).

Let fs(xs) = xms
s , s = 1, . . . , n, where ms are odd positive integers such that

α
(j)
si mi ≥ 1 for j = 1, . . . , ks, i, s = 1, . . . , n. For chosen admissible functions, system

(2.1) possesses all the properties from Section 3 (properties (a)–(c) and invariance ofK+).

Using Theorem 3.1, we get that (2.1) satisfies the M̃O-condition. 2

Theorem 6.2 Let there exist positive constants h̃1, . . . , h̃n, and for every s = 1, . . . , n
there exists at least one value of j ∈ {1, . . . , ks} such that

−h̃s +

n∑

i=1

α
(j)
si h̃i > 0.

Then system (2.1) is not absolutely ultimately bounded.

Proof Choose, again, functions f1(x1), . . . , fn(xn) for the obtained system to satisfy
all the assumptions from Section 3.

Consider the numbers θ̃s = τ h̃s , τ > 0, s = 1, . . . , n. For all sufficiently large values
of τ the inequalities

asθ̃s +

ks∑

j=1

bsj θ̃
α

(j)
s1

1 . . . θ̃
α(j)

sn
n > 0, s = 1, . . . , n,

are fulfilled. Applying Lemma 3.4 from [8], we get that for chosen admissible functions,
the solutions of system (2.1) are not ultimately bounded. 2

Consider, next, the sufficient conditions of absolute ultimate boundedness.

Theorem 6.3 If for system (2.1) the MO-condition is fulfilled, then it is absolutely
ultimately bounded.

Proof Let us show that for system investigated there exists Lyapunov’s function
in the form (2.5), satisfying the assumptions of the Yoshizawa ultimate boundedness
theorem.

According to Lemma 5.3, we obtain that if for (2.1) the MO-condition is fulfilled,
then one can choose positive rationals µ1, . . . , µn with odd numerators and denominators
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such that for the numbers h̃s = 1/(µs + 1), s = 1, . . . , n, inequalities (4.2) are valid. We
shall take these values of µ1, . . . , µn as exponents in Lyapunov’s function (2.5).

Let us show the existence of positive coefficients λ1, . . . , λn under which function (4.1)
is negative in a region ‖y‖ > R, where R > 0 is a constant.

Consider inequalities (4.2) for hs = h̃s, s = 1, . . . , n. It should be noted that in the
case where for some values of indices j and s the corresponding inequalities are strict,
one can construct, instead of (4.1), new function Ŵ (y) by setting bsj = 0 for all such j

and s. If there exist positive coefficients λ1, . . . , λn for which Ŵ (y) is negative definite,
then for these values of λ1, . . . , λn and for some number R > 0, the inequality W (y) < 0
holds in the region ‖y‖ > R. Therefore, we may assume, without loss of generality, that
for the numbers h̃1, . . . , h̃n all the inequalities in (4.2) turn to equalities.

The rest part of the proof is similar to that one of Theorem 5.1 from [2]. 2

Remark 6.1 Theorem 6.3 looks similar to Theorem 3.2. However, in comparison
with the conditions of ultimate boundedness of solutions for autonomous Wazewskij’s
systems obtained in Section 3, Theorem 6.3 states that the only MO-condition is a
sufficient one for the absolute ultimate boundedness of (2.1), i.e. the other assumptions
from Section 3 (properties (a)–(c) and invariance of K+) are redundant.

Corollary 6.1 Let system (4.2) has a positive solution. Then (2.1) is absolutely ulti-
mately bounded if and only if there exists at least one set of positive constants θ̃1, . . . , θ̃n,
satisfying inequalities (2.4).

Proof The necessity follows from Theorem 6.1.
To prove the sufficiency, suppose that the positive vectors h̃ = (h̃1, . . . , h̃n)∗ and

θ̃ = (θ̃1, . . . , θ̃n)∗ are solutions of systems (4.2) and (2.4) correspondingly. Then the

numbers θ̂s = τ h̃s θ̃s, τ > 0, s = 1, . . . , n, satisfy inequalities (2.4) for all sufficiently large
values of τ . Hence, the MO-condition is fulfilled for (2.1). 2

Corollary 6.2 For system (2.1) there exists Lyapunov’s function in the form (2.5),
satisfying the assumptions of the Yoshizawa ultimate boundedness theorem, if and only if
the MO-condition is fulfilled for this system.

Proof The sufficiency follows from Theorem 6.3. Let us prove the necessity.
In Section 4 it was noted that if function (2.5) satisfies the assumptions of the

Yoshizawa ultimate boundedness theorem, then system (4.2) possesses a positive solu-
tion. On the other hand, the existence of such Lyapunov’s function provides the absolute
ultimate boundedness for (2.1). Then, according to Theorem 6.1, there exists a positive
solution for system (2.4). By analogy with the proof of Corollary 6.1, we get that for
(2.1) the MO-condition is fulfilled. 2

Consider now, along with (2.1), the perturbed system

ẋs = asfs(xs) +

ks∑

j=1

bsjf
α

(j)
s1

1 (x1) . . . f
α(j)

sn
n (xn) + ψs(t, x), s = 1, . . . , n. (6.1)

Here functions ψs(t, x) are continuous for all t ∈ (−∞,+∞), x ∈ Rn, and satisfy the
inequalities |ψs(t, x)| ≤ γs + εs|fs(xs)|, where γs and εs are positive constants, s =
1, . . . , n.
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Corollary 6.3 Let for (2.1) the MO-condition be fulfilled. Then solutions of (6.1)
are uniformly ultimately bounded for sufficiently small values of ε1, . . . , εn.

Proof Construct for system (2.1) Lyapunov’s function in the form (2.5), satisfying
the assumptions of the Yoshizawa ultimate boundedness theorem. It is easily shown
that for sufficiently large number R > 0 and for sufficiently small values of ε1, . . . , εn

the derivative of Lyapunov’s function constructed with respect to (6.1) is negative in the
region ‖x‖ > R. 2

Remark 6.2 In a similar way, the conditions of absolute ultimate boundedness can
be obtained for the case when the inequalities bsj > 0 in (2.2) are replaced by those con-

necting coefficients bsj and a basis ω1, . . . , ωn: bsjωsω
α

(j)
s1

1 . . . ω
α(j)

sn
n > 0 for j = 1, . . . , ks,

s = 1, . . . , n [9]. Here every constant ω1, . . . , ωn takes either of the values +1 or −1.

7 Systems with the Special Structure of Connections

In the previous section it was proved that for (2.1) to be absolutely ultimately bounded
it is sufficient the fulfilment of the MO-condition. Consider now some types of systems
of the form (2.1) with the special structure of connections for which the MO-condition
is not only sufficient one but also a necessary one for absolute ultimate boundedness.

Example 7.1 Consider system (2.1) with k1 = 1, . . . , kn = 1:

ẋs = asfs(xs) + bsf
αs1
1 (x1) . . . f

αsn

n (xn), s = 1, . . . , n. (7.1)

Here as < 0 and bs > 0 are constant coefficients, αsi are nonnegative rationals with odd
denominators. For (7.1) the corresponding system of inequalities (4.2) is of the form

−hs +

n∑

i=1

αsihi ≤ 0, s = 1, . . . , n. (7.2)

According to Corollary 6.1, we get that if (7.2) possesses a positive solution, then for
(7.1) to be absolutely ultimately bounded it is necessary and sufficient for this system to
satisfy the MO-condition.

On the other hand, if (7.2) has no positive solutions, and αsi > 0 for s 6= i, then there
exist positive constants h̃1, . . . , h̃n such that

−h̃s +

n∑

i=1

αsih̃i > 0, s = 1, . . . , n.

Hence (v. Theorem 6.2), system (7.1) is not absolutely ultimately bounded.
Thus, in the case where αsi > 0 for s 6= i, i, s = 1, . . . , n, system (7.1) is absolutely

ultimately bounded if and only if the MO-condition is fulfilled for this system.

Example 7.2 Let system (2.1) be of the form

ẋ1 = a1f1(x1) + b1f
α1
n (xn),

ẋi = aifi(xi) + bif
αi

i−1(xi−1), i = 2, . . . , n− 1,

ẋn = anfn(xn) + bnf
β1

1 (x1) . . . f
βn−1

n−1 (xn−1),

(7.3)
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where as < 0 and bs > 0 are constant coefficients, αj > 0 and βj ≥ 0 are rationals with
odd denominators, j = 1, . . . , n− 1, s = 1, . . . , n.

Consider inequalities (2.4), corresponding to system (7.3). We get

θ1 > −
b1
a1
θα1

n , θi > −
bi
ai

θαi

i−1, i = 2, . . . , n− 1, θn > −
bn
an

θβ1

1 . . . θ
βn−1

n−1 .

It is easily shown that (7.3) is absolutely ultimately bounded if and only if the inequality

α1β1 + α1α2β2 + · · · + α1 . . . αn−1 βn−1 ≤ 1 (7.4)

holds, and in the case where (7.4) turns to equality, the condition

(
−
b1
a1

)ξ1
(
−
b2
a2

)ξ2

. . .

(
−
bn−1

an−1

)ξn−1
(
−
bn
an

)
< 1

is fulfilled. Here ξi = βi + αi+1ξi+1, i = 1, . . . , n− 2, ξn−1 = βn−1. Hence, the absolute
ultimate boundedness of system (7.3) implies that this system satisfies theMO-condition.

Thus, for (7.3) the sufficient condition of absolute ultimate boundedness is also a
necessary one.

Example 7.3 Consider the system

ẋi = aifi(xi) + bif
αi

n (xn), i = 1, . . . , n− 1,

ẋn = anfn(xn) + bnf
β1

1 (x1) . . . f
βn−1

n−1 (xn−1).
(7.5)

Here parameters as, bs, αj and βj, j = 1, . . . , n − 1, s = 1, . . . , n, possess the same
properties as in the previous example. We get, again, that if the system investigated is
absolutely ultimately bounded, then it satisfies the MO-condition.

It can be easily shown that for the absolute ultimate boundedness of (7.5) it is nec-
essary and sufficient the validity of the inequality α1β1 +α2β2 + · · ·+αn−1βn−1 ≤ 1. If
this inequality turns to equality, then for coefficients as and bs the condition

(
−
b1
a1

)β1
(
−
b2
a2

)β2

. . .

(
−
bn−1

an−1

)βn−1
(
−
bn
an

)
< 1

should be fulfilled.

8 Systems with Additive Connections

Let system (2.1) be of the form

ẋs =

n∑

j=1

psjf
αsj

j (xj), s = 1, . . . , n, (8.1)

where αsj > 0 are rationals with odd denominators, αss = 1, and psj are constant
coefficients, pss < 0, psj ≥ 0 for j 6= s, j, s = 1, . . . , n. Thus, connections in the
equations considered are additive.

Theorem 8.1 System (8.1) is absolutely ultimately bounded if and only if it satisfies
the MO-condition.
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Proof The sufficiency follows from Theorem 6.3. Let us prove the necessity.
Suppose that (8.1) is absolutely ultimately bounded. Then (v. Theorem 6.1) the M̃O-

condition is fulfilled for this system. Therefore, there exists a sequence of positive vectors
θ̃(m) = (θ̃1m, . . . , θ̃nm)∗ such that ‖θ̃(m)‖ → ∞ as m → ∞, and for every m = 1, 2, . . .
vector θ̃(m) is a solution of the system

n∑

j=1

psjθ
αsj

j < 0, s = 1, . . . , n. (8.2)

One may assume, without loss of generality, that θ̃sm → +∞ as m → ∞ for
s = 1, . . . , k, where 1 ≤ k ≤ n, and for s > k the sequences {θ̃sm} are bounded.

If k = n, then for system (8.1) the MO-condition is fulfilled. Consider, further, the
case where k < n. The inequalities

n∑

j=1

psj θ̃
αsj

jm < 0, s = k + 1, . . . , n,

are valid for m = 1, 2, . . . . Hence, (8.1) can be splitted into the following two subsystems:

ẋs =

k∑

j=1

psjf
αsj

j (xj) +

n∑

j=k+1

psjf
αsj

j (xj), s = 1, . . . , k, (8.3)

ẋs =
n∑

j=k+1

psjf
αsj

j (xj), s = k + 1, . . . , n. (8.4)

Since (8.1) is absolutely ultimately bounded, then subsystem (8.4) possesses the same
property. For this subsystem, one can to repeat the above arguments. Continuing this
process, we get that (8.1) can be splitted into a ordered set of subsystems such that every
subsystem does not influence the subsequent ones.

The last subsystem satisfies the MO-condition. Let us show that for the set of the
last two, three, etc. subsystems the MO-condition is also fulfilled.

We shall assume, without loss of generality, that (8.1) is splitted only into the two
subsystems: (8.3) and (8.4).

System (8.4) and the system

ẋs =

k∑

j=1

psjf
αsj

j (xj), s = 1, . . . , k,

satisfy the MO-condition. Hence, for every ∆ > 0 there exist numbers θ̂1, . . . , θ̂n such
that θ̂s > ∆, s = 1, . . . , n, and

k∑

j=1

psj θ̂
αsj

j < 0, s = 1, . . . , k;

n∑

j=k+1

psj θ̂
αsj

j < 0, s = k + 1, . . . , n.

By the use of Lemma 5.3, we get that the system

−hs + αsjhj ≤ 0, j 6= s, j, s = 1, . . . , k,
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has a positive solution h̃1, . . . , h̃k. Then for the numbers θ̄j = τ h̃j θ̂j , j = 1, . . . , k, τ > 1,
following inequalities are valid:

k∑

j=1

psj θ̄
αsj

j < 0, s = 1, . . . , k,

Thus, for sufficiently large values of τ the vector (θ̄1, . . . , θ̄k, θ̂k+1, . . . , θ̂n)∗ is a solution
of system (8.2), and all the entries of this vector are greater than ∆. Hence, (8.1) satisfies
the MO-condition. 2

Remark 8.1 Theorem 8.1 states that for systems with additive connections theMO-
condition is not only sufficient one but also a necessary condition for the absolute ultimate
boundedness. On the other hand, the M̃O-condition is a necessary one for (8.1) to be
absolutely ultimately bounded. However, this condition is not a sufficient one.

Example 8.1 Let system (8.1) be of the form

ẋ1 = −f1(x1),

ẋ2 = −f2(x2) + f2
3 (x3),

ẋ3 = −f3(x3) + f2
2 (x2).

(8.5)

It is easily verified that the M̃O-condition is fulfilled for (8.5). At the same time, if
fs(xs) = xs, s = 1, 2, 3, then solutions of this system are not ultimately bounded.

9 Conditions of Ultimate Boundedness for Large Scale Systems

Let us show now that the results obtained in the present paper can be used for the
determination of conditions of ultimate boundedness of solutions for essentially nonlinear
complex systems.

Consider the system

ẋs = Fs(xs) +

ks∑

j=1

Qsj(t, x), s = 1, . . . , n, (9.1)

where xs ∈ Rms , x = (x∗1, . . . , x
∗

n)∗; the elements of the vectors Fs(xs) are continuous
homogeneous functions of the orders σs > 0; the vector functions Qsj(t, x) are continuous
for t ≥ 0, x ∈ Rm (m = m1+· · ·+mn). We will assume that in the region t ≥ 0, ‖x‖ ≥ H
(H > 0 is a constant) functions Qsj(t, x) satisfy the inequalities

‖Qsj(t, x)‖ ≤ csj ‖x1‖
β

(j)
s1 . . . ‖xn‖

β(j)
sn , csj > 0, β

(j)
si ≥ 0.

System (9.1) describes the dynamics of complex system composed of n interconnected
subsystems [4, 13]. Here xs are state vectors, the functions Fs(xs) define the interior con-
nections of subsystems while the functions Qsj(t, x) characterize the interaction between
the subsystems.

Consider the isolated subsystems

ẋs = Fs(xs), s = 1, . . . , n. (9.2)
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Let the zero solutions of subsystems (9.2) be asymptotically stable. In [1, 2, 5, 10] the
conditions are obtained under which asymptotic stability of the zero solutions of (9.2)
implies that the zero solution of (9.1) is also asymptotically stable. In the present section,
we will look for the conditions of ultimate boundedness of solutions for system (9.1).

Assume that for isolated subsystems there exist Lyapunov’s functions Vs(xs), s =
1, . . . , n, with the following properties:

(a) Vs(xs) are positive definite;

(b) Vs(xs) are continuously differentiable for all xs ∈ Rms ;

(c) Vs(xs) are positive homogeneous functions of orders γs − σs + 1;

(d) the derivatives of Vs(xs) with respect to (9.2) are negative functions.

Remark 9.1 In the case where F1(x1), . . . , Fn(xn) are continuously differentiable
functions, the existence of such Lyapunov’s functions it was proved in [17].

Remark 9.2 In the capacity of γ1, . . . , γn one may choose arbitrary numbers such
that γs > σs, s = 1, . . . , n.

By the use of the homogeneous functions properties [17], we get that functions
V1(x1), . . . , Vn(xn) satisfy the inequalities a1s‖xs‖

γs−σs+1 ≤ Vs(xs) ≤ a2s‖xs‖
γs−σs+1,

∥∥∥∥
∂Vs

∂xs

∥∥∥∥ ≤ a3s‖xs‖
γs−σs ,

(
∂Vs

∂xs

)
∗

Fs ≤ −a4s‖xs‖
γs

for all xs ∈ Rms , where a1s, a2s, a3s, a4s are positive constants, s = 1, . . . , n.
On differentiating Vs(xs) with respect to (9.1), one can deduce that the estimations

dVs

dt

∣∣∣
(9.1)

≤ −a4s‖xs‖
γs + a3s‖xs‖

γs−σs

ks∑

j=1

csj‖x1‖
β

(j)
s1 . . . ‖xn‖

β(j)
sn

are valid for t ≥ 0, ‖x‖ ≥ H , s = 1, . . . , n.
Consider the function

V (x) =

n∑

s=1

λsVs(xs),

where λ1, . . . , λn are positive coefficients. For all t ≥ 0 and ‖x‖ ≥ H we obtain

dV

dt

∣∣∣
(9.1)

≤ −

n∑

s=1

λsa4s‖xs‖
γs +

n∑

s=1

λsa3s‖xs‖
γs−σs

ks∑

j=1

csj‖x1‖
β

(j)
s1 . . . ‖xn‖

β(j)
sn .

Hence, to prove the ultimate boundedness of solutions for (9.1) it is sufficient to show
that one can choose coefficients λ1, . . . , λn for the function

W (y) = −

n∑

s=1

λsa4sy
γs

s +

n∑

s=1

λsa3sy
γs−σs

s

ks∑

j=1

csj y
β

(j)
s1

1 . . . y
β(j)

sn
n

to be negative in a region ‖y‖ > R. Here R > 0 is a constant.
Suppose that parameters γ1, . . . , γn satisfy the inequalities

−
σs

γs

+

n∑

i=1

β
(j)
si

γi

≤ 0, j = 1, . . . , ks, s = 1, . . . , n. (9.3)

In this case, by analogy with the proof of Theorem 6.3, we get the validity of the following
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Theorem 9.1 If there exist positive numbers θ̃1, . . . , θ̃n such that

−a4sθ̃
σs

s + a3s

ks∑

j=1

csj θ̃
β

(j)
s1

1 . . . θ̃
β(j)

sn
n < 0, s = 1, . . . , n, (9.4)

then solutions of (9.1) are uniformly ultimately bounded.

Remark 9.3 Coefficients a3s, a4s in (9.4) depend, in general, on the chosen values
of γ1, . . . , γn.

Remark 9.4 If for chosen values of γ1, . . . , γn all the inequalities in (9.3) are strict,
then solutions of (9.1) are uniformly ultimately bounded (the verification of the exis-
tence of the positive numbers θ̃1, . . . , θ̃n, satisfying the inequalities (9.4), in this case is
redundant).
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Abstract: This paper presents the adaptive control of chaotic systems, which
are nonlinear in parameters (NLP). A method based on Lagrangian of an ob-
jective functional is used to identify the parameters of the system. Also this
method is improved to result in better rate of convergence of the estimated
parameters. Estimation results are used to calculate the Lyapunov exponents
adaptively. Finally, the Lyapunov exponents placement method is used to as-
sign the desired Lyapunov exponents of the closed loop system. Simulation
results are provided to show the effectiveness of the results.
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1 Introduction

Chaotic systems have been widely studied by many scientists and engineers from differ-
ent viewpoints. The recent applications of chaotic systems have raised new questions
regarding chaos control [1, 2, 3]. From a practical control system design point of view,
an important issue in the analysis and control of chaotic systems can be the uncertainty
associated with the system parameters. Equally important is the time varying nature of
many system parameters. In [4, 5] an adaptive strategy is proposed for the on-line iden-
tification and control of chaotic systems. However, the method is restricted to chaotic
systems that are linear in parameters. In this paper, the adaptive control of nonlinear
in parameter chaotic systems is considered.

Parameter estimation methods for nonlinear chaotic systems, such as NARX (non-
linear autoregressive with exogenous inputs) [6], NARMAX (nonlinear autoregressive
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moving average with exogenous inputs) [7, 8] are employed for linear in parameter (LP)
systems. For NLP systems, nonlinear programming methods can be used [9, 10]. In this
paper, a proper local objective functional is defined and minimized based on the La-
grangian of an objective functional using the speed gradient (SG) method. The method
results in fast convergence and estimated parameters are unbiased [11].

To achieve faster convergence rate of the estimated parameters, the SG method is
improved. In the new improved SG (ISG) method, descent gradient method [9, 10] is
used to optimize step length matrix of SG method in each iteration, to minimize another
local objective functional.

Lyapunov exponents are commonly used for chaos identification in nonlinear dynam-
ical systems. Lyapunov exponents show the average rate of growing or shrinking of a
small volume of initial conditions. These exponents provide a quantitative measure for
the sensitivity of the nonlinear system to the change of initial conditions. Also Lyapunov
exponents demonstrate the chaotic behavior of the system [12, 13].

There are several methods for numerical calculation of Lyapunov exponents [14, 15].
Throughout this paper, we use a Jacobian approach with QR factorization to extract the
Lyapunov exponents from long term product of the local Jacobian matrices.

Lyapunov exponents placement has been used for chaotization and anti-chaotization
of a system [16]. It also could be used for the adaptive control of unknown or time
varying LP chaotic systems [4]. This paper proposes an adaptive methodology for NLP
chaotic systems.

The paper is organized as follows. Section 1 provides the introduction. In Section 2,
the SG method for identification of NLP systems is described. In Section 3, we use
descent gradient method to formulate the improved SG method. In Section 4, Lyapunov
exponents of the system are determined. In Section 5, Lyapunov exponents placement
strategy is described and is used to calculate the control input for the system. Finally,
simulation results for the chaotic Duffing and Lorenz systems are provided in Section 6.

2 Adaptive Parameter Estimation

Consider the system described by:

{
ẋ(t) = f(x(t), p(t)),

x(0) : is given,
(1)

where t > 0 is time, x ∈ Rn is state vector of the plant, p ∈ Rk is the vector of unknown
parameters and f : Rn ×Rk → R is a vector function of state variables and parameters.
Let the system estimator be described as follows:

{
˙̂x(t) = f(x̂(t), p̂(t)),

x̂(0) : is given,
(2)

where x̂ ∈ Rn is the estimated state vector, x̂ ∈ Rk is the vector of estimated parameters
and f̂ : Rn × Rk → R is a vector function of state variables and parameters. We make
the assumption that the structure of the system is clear

f(x̂(t), p̂(t)) = f̂(x̂(t), p̂(t)) =
[
f̂1(x̂(t), p̂(t)), . . . , f̂n(x̂(t), p̂(t))

]T
, (3)
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where f̂i : Rn × Rk → R, i = 1, 2, . . . , n. The objective can be formulated as

lim
t→∞

|p̂(t) − p(t)| = 0. (4)

Define a positive scalar functional J1(x, x̂). We choose J1(x, x̂) in a way that when
J1(x, x̂) is minimized, (4) is achieved. The total rate of change is given by the substantial
derivatives of the J1(x, x̂)

dJ1

dt
=

∂J1

∂t
+ f̂(x̂(t), p̂(t))∇J1, (5)

where ∇ =

(
∂

∂x̂1
,

∂

∂x̂2
, . . . ,

∂

∂x̂n

)T

is the gradient operator in the estimated state

space. Now, let
∂p̂

∂t
= −G∇p̂

dJ1

dt
, (6)

where G > 0 is the step length matrix. By defining,

J1(x, x̂) =
w1

2
(x̂1 − x1)

2 + · · · +
wn

2
(x̂n − xn)2 =

n∑

i=1

wi

2
(ei)

2, (7)

where ei = x̂i − xi are the state errors, we have

dJ1

dt
=

n∑

i=1

wiei

(
dei

dt
+ f̂(x̂(t), p̂(t))

)
. (8)

As
dei

dt
=

dxi

dt
−

dx̂i

dt
= f̂(x̂(t), p̂(t)) − f(x(t), p(t)) (9)

equation (8) reduces to

dJ1

dt
=

n∑

i=1

wiei

(
2f̂(x̂(t), p̂(t)) − f(x(t), p(t))

)
. (10)

Using equations (6) and (10) and because of ∇p̂ {fi(x(t), p(t))}, we get

∂p̂

dt
= −G∇p̂

dJ1

dt
= −2G∇p̂

{
n∑

i=1

wieif̂i(x̂(t), p̂(t))

}
. (11)

This provides the updating law for estimated parameters in the identified system.

3 Improvement of the SG Method

In this part we adaptively select step length matrix, G, in a way to minimize a new local
objective functional J2. For this purpose we use descent gradient method

dgij

dt
= −α

dJ2

dgij

, (12)
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where G = |gij |, i, j = 1, 2, . . . , k and α > 0. Consider the following objective functional
candidate

J2(x, x̂) =
v1

2
(x̂1 − x1)

2 + · · · +
vn

2
(x̂n − xn)2 =

n∑

i=1

vi

2
(ei)

2, (13)

where ei = x̂i − xi are the state errors, we will have

dJ2

dgij

=
∂J2

∂x̂

∂x̂

∂p̂

∂p̂

dgij

. (14)

By using (13) we have

∂J2

∂x̂
= [v1e1, v2e2, . . . , vnen]n×1. (15)

For calculation of
∂x̂

∂p̂
we use (2)

∂ ˙̂x

∂p̂
=

∂

∂p̂

dx̂

dt
=

d

dt

∂x̂

∂p̂
=

∂f̂

∂x̂

∂x̂

∂p̂
+

∂f̂

∂p̂
, (16)

where x̂ = [x̂1, x̂2, . . . , x̂n] and it is assumed that

∂

∂p̂

dx̂

dt
=

d

dt

∂x̂

∂p̂
(17)

and the sufficient conditions for the validity of this equality are given in [23], page 279.

We have that x̂(t) = f(t, p̂) is continuous.
∂x̂

∂t
,

∂x̂

∂p̂
and

∂

∂p̂

∂x̂

∂t
exist and they are

piece-wise continuous. Hence, equation (17) is valid. By using (3), (16) we get

d

dt

(
∂x̂

∂p̂

)

n×k

=
d

dt




∂x̂1

∂p̂1
. . .

∂x̂1

∂p̂k
...

. . .
...

∂x̂n

∂p̂1
. . .

∂x̂n

∂p̂k




=




n∑

i=1

(
∂f̂1

∂x̂i

∂x̂i

∂p̂1

)
+

∂f̂1

∂p̂1
. . .

n∑

i=1

(
∂f̂1

∂x̂i

∂x̂i

∂p̂k

)
+

∂f̂1

∂p̂k

...
. . .

...
n∑

i=1

(
∂f̂n

∂x̂i

∂x̂i

∂p̂1

)
+

∂f̂n

∂p̂1
. . .

n∑

i=1

(
∂f̂n

∂x̂i

∂x̂i

∂p̂k

)
+

∂f̂n

∂p̂k




,

(18)

where x̂ ∈ Rn is the estimated state vector, p̂(t) ∈ Rk is the vector of estimated param-
eters.

For calculation of
∂p̂

∂gij

we use (6)

∂p̂

dt
= −G∇p̂

dJ1

dt
= −Gfp̂(x̂(t), p̂(t), gij , t), (19)
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where fp̂(x̂(t), p̂(t), gij , t) =
[
f1

p̂ (x̂(t), p̂(t), gij , t), . . . , fk
p̂ (x̂(t), p̂(t), gij , t)

]T
and we have

∂ ˙̂p

∂gij

=
∂

∂gij

dp̂

dt
=

d

dt

∂p̂

∂gij

=
∂fp̂

∂p̂

∂p̂

∂gij

+
∂fp̂

∂gij

, p̂ = [p̂1, p̂2, . . . , p̂k] . (20)

Using (20) gives

d

dt

(
∂p̂

∂ĝij

)

k×k2

=
d

dt




∂p̂1

∂ĝ11

∂p̂1

∂ĝ12
. . . ∂p̂1

∂ĝkk

∂p̂2

∂ĝ11

. . .
...

...
∂p̂k

∂ĝ11
. . . ∂p̂k

∂ĝkk




=




k∑
i=1

(
∂f̂1

p̂

∂p̂i

∂p̂i

∂ĝ11

)
+

∂f̂1
p̂

∂ĝ11

k∑
i=1

(
∂f̂1

p̂

∂p̂i

∂p̂i

∂ĝ12

)
+

∂f̂1
p̂

∂ĝ12
. . .

k∑
i=1

(
∂f̂1

p̂

∂p̂i

∂p̂i

∂ĝkk

)
+

∂f̂1
p̂

∂ĝkk

k∑
i=1

(
∂f̂2

p̂

∂p̂i

∂p̂i

∂ĝ11

)
+

∂f̂2
p̂

∂ĝ11

. . .
...

...
k∑

i=1

(
∂f̂k

p̂

∂p̂i

∂p̂i

∂ĝ11

)
+

∂f̂k
p̂

∂ĝ11
. . .

k∑
i=1

(
∂f̂k

p̂

∂p̂i

∂p̂i

∂ĝkk

)
+

∂f̂k
p̂

∂ĝkk




(21)

By using (15), (18), (21) in (14), using (12), and by using appreciate numerical
methods we can adaptively calculate G in each iteration. With the calculated G and
(6) we can estimate system parameters. For assigning the initial value of step length
matrix, G(0), we could use genetic algorithms. In (12) α > 0 is arbitrary. But we can
use a suitable 1-dimensional nonlinear programming method [17, 20], in each iteration,
to calculate α.

4 Adaptive Calculation of Lyapunov Exponents

A Jacobian approach is used to calculate the Lyapunov exponents. Let the discrete time
system be described by

x(k) = f(x(k − 1)), k = 0, 1, . . . , (22)

where x(k) ∈ Rn is the state vector and f(.) is a continuously differentiable smooth
function. Linearization of the system gives

xk = J(k − 1)x(k − 1), J(k − 1) =

(
∂f

∂x

)∣∣∣∣
k−1

∈ Rn×n. (23)

Lyapunov exponents are defined as follows [14].

Definition 4.1 Let Y k = Jk−1Jk−2 . . . J0, then the following symmetric positive
definite matrix

∧ = lim
t→∞

(
(Y k)T · Y k

)( 1
2k )

(24)

exists and the logarithms of its eigenvalues are called Lyapunov exponents.
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To compute the Lyapunov exponents a QR factorization is used to decompose the
Jocobian matrix as J = QR, where Q is an orthonormal matrix and R is upper triangular
with positive diagonal elements. Then, using (23) Lyapunov exponents become

λi = lim
t→∞

1

k
ln(Ri

k . . . Ri
0) = lim

t→∞

1

k

k∑

i=1

ln(Ri
k), (25)

where Ri
k is the i-th diagonal element of R in k-th step. We can rewrite equation (24)

into following recursive form

λi =
tn−1

tn
λi

k−1 +
1

tn
Ln(Ri

k). (26)

5 Controller Design Methodology

In this section, an adaptive controller based on Lyapunov exponents placement is pro-
posed. Calculating the Lyapunov exponents of the open loop system (λol), if there exists
at least one positive Lyapunov exponent, then the system is chaotic. For suppressing
chaotic behavior of system, we choose some suitable negative Lyapunov exponents for
closed loop system (λcl). Then the control input (uk) is applied to the open loop system,
equation (22) {

x(k) = f(x(k − 1)) + uk,

x(0) is given,
(27)

where uk is calculated from an adaptive state feedback law [16]

uk = Bkxk. (28)

Let λol and λcl be the Jacobians of the open loop and closed loop systems, respectively.
Then

Jcl = Jol + Bk. (29)

To assign the Lyapunov exponents of the closed loop system in the desired locations,
feedback matrix Bk, is calculated from following equation

Bk = −Jcl(k) +




eλ1
cl . . . 0

. . . . . . . . . . . . . . .
0 . . . eλn

cl


 . (30)

The Lyapunov exponent of the closed loop system will be the desired ones and since
they are negative the system will suppress chaos.

If the control action is large and we want a smaller control input for suppressing chaos,
we can apply control action when we are in a neighborhood of the desired (equilibrium)
point.

6 Simulation Results

In this section, simulation results are used to show the main points of the paper. The
first example is the NLP chaotic Duffing system. The second example is the Lorenz
chaotic system which is LP and the proposed method, with fixed step length matrix, is
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compared with the previous Lyapunov exponent identification strategy based on recursive
least squares estimation. The third example compares proposed method with fixed step
length matrix and adaptive step length matrix to show the effectiveness of the improved
method.

Example 6.1 State equations of the forced Duffing’s oscillator are

{
ẋ1 = x2,

ẋ2 = −p1x1 − p2x
3
1 − px2 + q cos(wt),

(31)

where p1, p2, p, q and w are the parameters of the NLP system. And x1, x2 are the states
of the system. This equation arises in models of the forced vibration of buckled beams
and in electrical circuits [17, 18, 19, 20]. For p = 0.168, p1 = −0.5, p2 = 0.5, q = 0.21,
w = 1 system is chaotic. Figure 6.1 is the Lyapunov exponents of this uncontrolled
system. One of the exponents is positive then the system is chaotic.

Figure 6.1: Lyapunov exponents of the open loop Duffing system.

Selected sampling period is 0.004 second and the desired closed loop Lyapunov ex-
ponents are λ1

cl = −0.5, λ2
cl = −0.6. Figure 6.2 shows the estimated parameters that

converge to the real values. Figure 6.3 shows the states of the system where in the 30-th
second, the control signal is applied to the system. Figure 6.3 shows the chaotic behavior
of the open loop system. Chaotic System has aperiodic noise-like behavior.

Figure 6.4 shows the closed loop Lyapunov exponents that converge to the desired
values. Prior to 30-th second Lyapunov exponents are for the open loop system and after
that they converge to the desired values (−0.5,−0.6). It is important to know that the
control input implemented when system is chaotic. Figure 6.5 shows the control input.
Figure 6.6 shows the states of the closed loop system that becomes a stable limit cycle.

Example 6.2 In this example, the proposed method is applied to the Lorenz system
and the results are compared with the RLS method. State space equations of the system
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Figure 6.2: Estimated parameters.

Figure 6.3: States of the Duffing system.

are 



ẋ = σ(y − x),

ẏ = rx − y − zx,

ż = yx − bz,

(32)

where parameters are r = 27, σ = 10 and b = 8/3. This equation arises in models of
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Figure 6.4: Closed loop system Lyapunov exponents.

Figure 6.5: Control input.

Figure 6.6: States of closed loop Duffing system.
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the turbulent motion in convection systems [21, 22, 12]. The equilibrium points of this
system are (±

√
b(r − 1), ±

√
b(r − 1), r − 1) and (0, 0, 0). Figure 6.7 shows estimated

parameters with RLS method. And Figure 6.8 shows the estimated parameters with the
proposed method.

Figure 6.7: Estimated parameters of the system by RLS method.

Figure 6.8: Estimated parameters of system by the proposed method.

It is obvious that the estimation performance of the proposed method is superior to
the RLS based approach in faster convergence and unbiased estimates.

Example 6.3 In this example we want to show the effectiveness of the improved SG
method. We have used the following G(0), which is resulted from genetic algorithms.
Figure 6.9 is resulted from the simulation of equation (6).
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Figure 6.9: Estimated parameters of system by the proposed method.

Figure 6.10: Estimated parameters of system by the Improved SG method.
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Figure 6.10 is resulted from simulation of (6) and (12). Comparison of the figures
intuitively clears that the Improved SG Method has faster convergence rate.




48.5 0 5.5711
0 434.25 4815

1.2119 0.7902 48.1986


 .

7 Conclusions

This paper provides an estimation method for on-line identification of the Lyapunov
exponents of nonlinear in parameters chaotic systems. This method is based on the
minimization of two objective functionals. For faster convergence rate of the parame-
ters, the new improved SG (ISG) method is developed. Also, the parameter estimation
and Lyapunov exponent placement methods are combined for adaptive control of NLP
chaotic systems. Simulation results are provided for adaptive control of Duffing’s Os-
cillator. Also, a comparison with the RLS method in LP systems is given to show the
superior performance of the proposed method. Finally, we showed the effectiveness of
the improved SG Method in identification of the parameters of the Lorenz system.
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Nomenclature

~a, a = Generic vector and its magnitude
B = Universal transformation matrix for cubic B-splines
ds = Path section length
d2 (.)

dt2
= Time derivatives with respect to the inertial frame

δ (.)

δs
= Partial derivative with respect to s

~γ = Cubic B-splines parameter
J = Cost functional
K = Matrix containing the vector positions of the cubic B-splines control points
LV LH = Local vertical local horizontal coordinate system
µ = Earth gravitational constant
NL = Number of levels in dynamic programming tree
NC = Number of values for control discretization
n̂ = Path normal unit vector
~ωLV LH = Angular velocity in LVLH
~r = Position vector
r = Dyadic of position vector ~r
~rc = Chaser position vector in the inertial frame
~rt = Target position vector in the inertial frame
~rrel = Chaser-target relative position vector
~r∗ = [rx, ry, 0]T

ρ = Local curvature of path
s = Curvilinear abscissa
t = Time
τ̂ = Path tangent unit vector
~u = Acceleration control vector
x, y, z = Components of ~rrel in LVLH
1 = Unitarian dyadic
(.)0 , (.)f = Value at initial and final time
˙(.), (̈.) = Time derivatives in LVLH

(.)x (.)y (.)z = Components along x, y, z axis of LVLH

1 Introduction

Many researches have been performed on modeling [1]–[8] and optimizing [9] the maneu-
vers for Spacecraft Rendezvous and Docking, but real-time implementation of the optimal
control is still a difficult task. In [10] and [11] the maneuvers for passing from an initially
stable relative motion to a final stable state are optimized. In these works there is no
possibility of considering generic initial conditions for the relative position and velocity
of the chaser vehicle with respect to the target. In [9] the optimization is performed in
two stages: the first part of the trajectory is optimized without any restriction on the
chaser vehicle position, the last phase of docking is along a fixed direction.

All of the above references prove the effectiveness of their respective approaches
by using numerical simulations. None of them perform hardware experimentation on
real-time computing. Furthermore, the current docking missions, such as the Space
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Shuttle-International Space Station (ISS) mating, and the planned Automated Transfer
Vehicle-ISS supply service, do not include any closed-loop optimization for the rendezvous
trajectories.

The objective of our research is threefold: first, we want to be able to impose a certain
path in order to guarantee a priori the safety of the maneuver, second, we want to track
the set path with minimum propellant consumption, third, we want our solution to be
suitable for real time implementation.

The proposed strategy is a direct optimization method similar to the one used in [12]
and [13] for the control of robotic manipulators and in [14] for the control of aircraft. The
basic idea is to parameterize the trajectory in a way that allows for independent choice
of path and velocity profile. In order to obtain such feature, we use here the curvilinear
abscissa as in [12] and [13].

Dynamic Programming [15] is used as the optimization method. This approach has
been proved to be suitable for real-time implementation, especially when a sub-optimal
solution is searched through a step-by-step optimization of the trajectory [16, 17].

Our contribution is focused on real-time autonomous control during the very last
phases of satellites docking procedure.

The paper is organized as follows: Section 2 formally states the problem. Subsection
2.1 describes the dynamic model and the inversion of the dynamics. Section 3 presents
the path parameterization via cubic B-splines. Section 4 is dedicated to the developed
optimization algorithm. Section 5 reports some significant results obtained via numerical
simulations. Section 6 illustrates the real-time test which has been performed to prove
the capability of running in real-time. Finally, Section 7 concludes the paper.

2 Problem Statement

The aim of the present work is to quickly design an optimal control sequence which drives
the chaser vehicle towards the target on a specified path ~rrel = ~r (s). Without loss of
generality, the boundary conditions are assumed to be ~rrel(t0) = ~r0, ~rrel(tf ) = ~0.

The following minimum-propellant cost function is considered for the optimal control
problem:

J =

∫ tf

t0

|~u|2dt. (1)

2.1 Dynamic model and dynamics inversion

We use the well known Hill-Clohessy-Wiltshire equations in order to model the system
dynamics. We consider the x axis of the LVLH coordinate system centered on the target
directed along the radial line, the y axis directed along the orbital velocity, and the z
axis consequently directed to complete the right frame.

The HCW equations can be written in vector form as:

~̈rrel + 2~ωLV LH × ~̇rrel − ω2
LV LH~r∗rel =

µ

r5
t

(
3rt − r2

t 1
)
· ~rrel + ~u. (2)

As stated above, the proposed optimization approach is based on the search for a
suboptimal policy to drive the chaser vehicle along a specified path. The specified path
is parameterized in terms of the curvilinear abscissa as follows [13]:

~rrel = ~r (s) = [x (s) , y (s) , z (s)]. (3)
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Differentiation with respect to time and substitution of this relation into (2) gives:

δ2~r

δs2
ṡ2 +

δ~r

δs
s̈ + 2~ωLV LH ×

δ~r

δs
ṡ − ω2

LV LH~r∗ =
µ

r5
t

(
3rt − r2

t 1
)
· ~r + ~u. (4)

The tangential acceleration profile s̈ to be tracked by the chaser spacecraft is considered
as the free parameter for the optimization. Once the tangential acceleration profile is
obtained, the actual controls (accelerations along the three axis) are then determined by
inverting the dynamics equation. In particular, by starting from (4), it results:

~u = −
µ

r5
t

(
3rt − r2

t 1
)
· ~r +

δ2~r

δs2
ṡ2 +

δ~r

δs
s̈ + 2~ωLV LH ×

δ~r

δs
ṡ − ω2

LV LH~r∗. (5)

Since we work in terms of acceleration along the path, it is not practical to impose
directly constraints on the controls by using (5).

3 Geometric Representation of the Path

We use cubic B-spline curves to represent the trajectory ~rrel = ~r (s). B-splines have
the advantage of narrowly propagating the local changes [18]. Given n control points,
a first and second order continuous curve which fits them is univocally determined by a
composition of n − 1 B-splines. As the positions of the control points change, the curve
shape changes consequently. Each spline is defined by four control points and has the
parametric representation:

~r (~γ) = ~γBK, (6)

where ~r (~γ) is the position vector of a generic point of the spline, ~γ is the parameter
vector, defined as:

~γ =
[

γ3 γ2 γ 1
]
, 0 ≤ γ ≤ 1, (7)

K contains the vector positions of the control points:

K =
[

~r0 ~r1 ~r2 ~r3

]T
(8)

and B is the universal transformation matrix, obtained by imposing continuity, which
contains the same numerical values for every B-spline ([18]):

B =
1

6




−1 3 −3 1
3 6 3 0
−3 0 3 0
1 4 1 0


 . (9)

Accordingly, the partial derivatives of the path with respect to the arc length, needed in
Eq. (4) and Eq. (5), are given by:

δ~r

δs
=

δ~r
δγ∣∣∣ δ~r
δγ

∣∣∣
,

δ2~r

δs2
=

δ2~r
δγ2

∣∣∣ δ~r
δγ

∣∣∣
2 −

δ~r

δγ

δ~r
δγ

· δ2~r
δγ2

∣∣∣ δ~r
δγ

∣∣∣
4 , (10)

where
δ~r

δγ
=

[
3γ2 2γ 1 0

]
BK,

δ2r̃

δγ2
=

[
6γ 2 0 0

]
BK. (11)
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Since the B splines, by definition, do not pass through the end points, two additional
artificial control points are added at the extremes of the curve.

In order to convert the value of the global arc length along the path s to the corre-
sponding value of the parameter along the local spline γ it is sufficient to numerically
find the zero of the following function:

h (γ) = s −


s0current spline

+

γ∫

0

ds

dγ
dγ


 , (12)

where

ds

dγ
=

√(
dx (γ)

dγ

)2

+

(
dy (γ)

dγ

)2

+

(
dz (γ)

dγ

)2

. (13)

4 Optimization Approach by Dynamic Programming

Dynamic programming [15] is very useful in problems where one needs to take subse-
quent decisions. The word “dynamic” states that the decisions are sequentially taken.
Sequenced problems can be solved according to the Bellman’s principle of optimality:

Definition 4.1 An optimal strategy has the property that, no matter the initial
state and decision, the future decision’s set has to constitute an optimal strategy with
respect to the state reached according to the decisions taken until that moment.

Dynamic programming takes the decisions one by one. At every step the optimal
policy for the future is found, independently of the past decisions. The cost function is
divided in the sum of elementary costs, one for each segment of the trajectory. In the
present work we adopt a similar approach to the one of [16].

The curvilinear acceleration on the specified curve is taken as the parameter for the
optimization. By limiting to one the number of variables the algorithm has to work with,
the issue of “curse of dimensionality” [16] is greatly mitigated. Once the optimal s̈ profile
is determined, the controls are calculated according to (5). On a certain segment of the
entire path, where the acceleration s̈ is kept constant, we know that the section length
ds needs a time interval t to be run:

t = −
ṡ0

s̈
±

√(
ṡ0

s̈

)2

+
2ds

s̈(
s (t) = s0 + ṡ0t + s̈

t2

2
ds = ṡ0t + s̈

t2

2
→ t2 +

2ṡ0

s̈
t −

2ds

s̈
= 0

)
.

(14)

The complete path is divided into segments of length ds, the controls and time requested
to run each segment are calculated and finally the integral 1 is evaluated. In particular,
the algorithm tests different possibilities, in terms of possible sequence of levels of s̈,
by using the tree approach described below. Feasibility of the sequences is tested by
imposing the satisfaction of the following constraints:

{
s(tf ) = sf = trajectory length,
ṡ(tf ) = 0 = final velocity.

(15)
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The tree of possible policies is a graph structure, with no cycles, in which every node
generates different branches, every one connected to a subsequent node, called son-node.
A son can generate other sons. Every node, but the root, has only one entering branch
which belongs to the parental node. The root does not have any father. Starting from
the initial condition, the tree of possible trajectories is built in an incremental way,
by exploring the reachable states in order to find the optimal path. Every step adds
new branches (so new nodes) to the tree, only if they are acceptable: in particular, only
positive velocities are admitted. Therefore, nodes with zero velocity and zero acceleration
are not taken into account. Moreover, the cases when equation (14) does not have real
solutions are discarded, since this implies that the current section cannot be run with
the current value of s̈. A cost value is associated to every node. The cost is calculated
through a trapezoidal integration formula of the control magnitude. The algorithm goes
on till the stopping condition is reached. At this point it is necessary to run the tree
backwards in order to find the optimal policy, i.e. the one which brings to the final node
at minimum cost.

The algorithm outline follows (see also Figure 4.1):

1. Start from the initial condition s0, ṡ0 (ROOT).

2. Apply one of the NC possible value of s̈ until the trajectory segment ds is completed.

3. Repeat step 2 for each possible value of acceleration: one generation is then ob-
tained.

4. Calculate the cost function for each node of the present generation.

5. Starting from every son, repeat step 2 and 3 and obtain the second generation.

6. Iterate step 2, 3 and 4 until the final desired condition sf , ṡf is reached.

7. Recognize the minimum cost node of the last generation. In Figure 4.1 the numbers
at the top report, as an example, the total cost associated with every node.

8. Individuate the optimal policy, by starting from the optimal son of the last gener-
ation and run the tree backward.

From the software point of view each son-node is represented by a 7 elements array:

1. Value of the curvilinear abscissa s (this value is the same for every node of the
same generation).

2. Value of the velocity along the path ṡ.

3. Value of the acceleration along the path s̈ (“control”).

4. Time to reach the node from the previous one.

5. Cost associated to the last branch.

6. Total time (from beginning of the path) to run until that point.

7. Index (identifier of the father).
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Figure 4.1: Tree of possible policies.

By keeping memory of the father for every node it is possible to quickly run the tree
backwards once the final condition is reached in order to find the best s̈ profile. The
number of generations NL (that is, the number of segments in which the path is divided)
and the number NC of admissible acceleration values s̈ can be selected by the user.

The required memory and computation time increase very quickly with the number
of levels, as the maximum number of nodes to be evaluated is NNL

C .
The tree exploration is the most time consuming portion of the algorithm. A prun-

ing approach is implemented in order to increase the computation efficiency. The new
nodes of a generation are analyzed while building the tree and pruned if the remaining
length of trajectory to be run is not sufficient to brake down with the minimum available
acceleration in order to reach the final point with zero velocity.

5 Simulation Results

Two sample simulation cases are here presented in order to show the main features of
the proposed approach.

5.1 Simulation test case 1

The first simulation shows the behavior of the proposed algorithm in the computation of
a quasi-optimal docking maneuver as a function of the number of path segments (number
of generations or levels, of the dynamic programming algorithm). The parameters of the
maneuver are reported in Table 5.1. A cubic path (y = (y0

/
x3

0
)x) is taken as reference.

The same constrained path has been correctly obtained for any number of levels, as
the nature of the algorithm implies. This result is reported in Figure 5.1.
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Parameter Units Value
Height above the Earth surface km 480

Maximum (minimum) tangential acceleration s̈max (−s̈min) m
s2 5 · 10−4

Initial velocity ṡ0
m
s

0.2
Initial position (x0, y0, z0) m (300, 400, 0)

Number of path segments NL - 5
Number of possible tangential acceleration values NC - 3

Table 5.1: Numerical values for cubic manoeuvre.

Figure 5.1: Cubic path tracked by the chaser.

Figure 5.2 shows the fuel consumption and time required for the manoeuvre, Figure
5.3 shows the CPU time (on a Pentium IV machine). The independent variable is the
number of levels.

It is apparent in Figure 5.2 that increasing the number of levels means a larger tree
to build and explore, i.e. higher CPU resources. Figure 5.3 is worth some comment
on the goal of the proposed technique. The proposed approach gives a sub-optimal
solution. In particular, by dividing the trajectory in a finite number of segments, and
imposing a limited set of values for the command acceleration, we are clearly introducing
considerable discretization into the problem. Therefore the solution is heavily dependent
on the number of levels. For the presented simulation case and for several other tests
we have run, it results that the algorithm gives the best result for a number of levels
between 4 and 6, as indicated in Figure 5.2 (a). The CPU time is also reasonable within
that range. Figure 5.4 reports the controls profile for three different numbers of levels.

5.2 Simulation test case 2

The second simulation (see Table 5.2) considers the final straight line maneuver (along
the y direction) bringing a chaser spacecraft to dock with its target, as previously studied
in [9]. We show here how the tree strategy is able to generate similar results to [9], but in
a quicker way. Furthermore, initial and final conditions are exactly satisfied. The initial
conditions here adopted are the intermediate conditions (breakpoint between two stages)
reported in [9]:
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Figure 5.2: a) Fuel vs. levels; b) Time for manoeuvre vs. levels.

Figure 5.3: CPU time vs. n. of levels.
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Figure 5.4: Controls vs. Time, increasing NL

Figure 5.5: Straight line trajectory.
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Figure 5.6: a) Controls vs. time; b) Acceleration vs. time.

Figure 5.7: Velocity vs. time.
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Parameter Units Value
Height above the Earth surface km 480

Maximum (minimum) acceleration s̈max (−s̈min) m
s2 5 · 10−4

Initial velocity ṡ0
m
s

0.2
Initial position (x0, y0, z0) m (0, 300, 0)

Number of levels NL - 5
Number of possible tangential acceleration values NC - 3

Table 5.2: Numerical values for straight line maneuver.

Figure 5.5 shows that the trajectory is perfectly tracked. The controls, acceleration
and velocity profile are reported on Figure 5.6 and Figure 5.7. The time required to

complete the docking is 1800 s, with a total cost of 1.566 · 10-4
m2

s3
, while in [9] the

corresponding values are: 1885 s, 1.538 ·10−4 m2

s3
. Discrepancies in cost and time are due

to the fact that in [9] the final boundary conditions, are not exactly matched, whereas
we are here maneuvering between two specified and accurately achieved positions and
velocities.

6 Real-Time Validation

For the above reported simulations, the optimization algorithm was coded in Matlab-
Simulink.

Furthermore, validation of the capability of our proposed approach to run in real
time has been experimentally obtained. In particular, a desktop computer, running the
Mathworks-XPC target operative system, has been used as target hardware by down-
loading the compiled version of the optimization software.

Figure 6.1 shows the Simulink model. It is composed by two main Embedded Func-
tions. The Planner generates a sequence of nodes following the near-optimal s̈ profile.
This sequence is feed forwarded to the dynamic inversion function (called “control gener-
ation”). On a Pentium II 800 Mhz machine, the algorithm run in real time at a sample
frequency of 5 Hz.

7 Conclusion

The present work uses a direct approach for real time sub-optimal control of spacecraft
rendezvous and docking along a constrained path. The Hill–Clohessy–Wiltshire equa-
tions are used as basis for a dynamic inversion computation and the path is parameterized
through cubic B-splines having the curvilinear abscissa as parameter. Dynamic program-
ming operating on the curvilinear acceleration is proposed as optimization method in or-
der to find the fuel optimal policy to drive the chaser spacecraft to the target spacecraft.
The reliability of the algorithm has been assessed for different number of levels in the
dynamic programming tree, and the results have been compared to an example reported
in recent literature. Real time implementation of the optimization algorithm has been
tested on a Pentium II machine with a sample time up to 0.2 seconds.
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Figure 6.1: Simulink model for real time testing.

Further developments include modifying the path by moving the splines control points
in order to optimize it, and adding control bounds. Further experiments are going to be
performed on an hardware-in-the-loop laboratory test-bed [19].
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1 Introduction

Control and synchronization of chaotic dynamical systems have received a great deal
of interest among scientists from various fields [5, 13]. These two ideas were first pro-
posed in 1990 [22, 24]. The idea of controlling chaos consists on stabilizing one of the
unstable periodic orbits within the strange attractor of the chaotic dynamics, and the
task was fulfilled by perturbing an accessible parameter around its nominal value. The
idea of synchronizing chaotic systems refers to a process wherein two or many chaotic
systems starting from different initial conditions adjust a given property of their motion
to a common behaviour. Since then, many possible applications of chaos control and
synchronization methods have been discussed by computer simulation and realized in
laboratory condition [3, 8, 12, 14, 17, 19, 20, 21, 26, 28].

The Ott–Grebogi–Yorke method, known as OGY method, is a feedback control
method, which uses the chaos in system to stabilize an unstable periodic orbit. The
main idea of the method is to adjust the parameter perturbations for relatively small
time in order to stabilize the desired unstable periodic orbit (UPO) and obtain an at-
tracting time-periodic motion. This control technique is practical from an experimental
standpoint because it requires no analytical model of the system. It just requires deter-
mining the fixed point and the stable and unstable directions. However, the success of

∗ Corresponding author: aboukabou@gmail.com
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the original OGY theory is limited by the fact that, it applies only to systems where the
manifolds are constructed directly by using the Jacobian eigenvalues and eigenvectors.
In most of dynamical systems, the dynamics is not confined to a lower-dimensional at-
tractor. Chaos control in higher dimensional systems is technically difficult because it
may be impossible to construct the stable and unstable directions.

The aim of this letter is to apply both control and synchronization to some chaotic
dynamical systems. This is done by extending the OGY chaos control method. As a
potential application of the proposed control strategy, we used it to study the synchro-
nization of some high order chaotic systems.

The principles of control and synchronization of autonomous chaotic systems are given
in Section 2. In Section 3 we apply control and synchronization to Lorenz dynamical
system and numerical simulations are used to show this process. In Section 4 synchro-
nization and control are applied to Chen chaotic system. Section 5 is devoted to the
control and synchronization of Chua system. We conclude in Section 6.

2 Control and Synchronization Principles

Consider the two nonlinear systems

Ẋ1 = f(X1, p), (1)

Ẋ2 = g(X1, X2), (2)

where f : RN ×R → RN , g : RN ×RN → RN are continuous, X1, X2 ∈ RN are the state
variables and p ∈ R is a parameter control.

The system given by equation (1) will be called the drive system and the system given
by equation (2) will be called the response system.

2.1 Chaos control principle

The chaos control algorithm that we introduce in the following uses, in a large sense,
the Poincaré section properties. Since chaos is the superposition of a number of periodic
motions, it is represented in the Poincaré section by a number of fixed points, called
the system chaotic attractor. The chaos control algorithm developed here relies on the
knowledge of the chaotic attractor and its response to small perturbations of the system.
It is based on the analysis of the Poincaré section to determine how the system approaches
the desired orbit or fixed point. The analysis is carried out in three steps:

1. Among the unstable periodic orbits (UPO) of the attractor, choose the one that
represents the desired performances.

2. Determine the influence of control parameter on the chosen UPO. For this, we vary
the control parameter around the value for which we want to control the system
and each time to generate the associated Poincaré section.

3. Determine the variation that should be applied to the control parameter in order
to force the system to rejoin the desired UPO or fixed point.

After information about this Poincaré section has been gathered, the system is kept
to remain on the desired orbit by perturbing the appropriate parameter. Similar to the
original OGY control method, we wish to make only small controlling perturbations to
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the system. We do not envision creating new orbits with different properties from the
already existing orbits.

The basic idea of our control algorithm is as follows. Given a periodic orbit repre-
sented by a fixed points at the Poincaré section, we wait for the system trajectory to
come close to the control region (which will be defined later) of the desired UPO to bring
the system trajectory near the control region. When the system state is in the control
region, we will try to use a small parametric perturbation to control the unstable direc-
tions of the chaotic state variables x. In other words, we attempt to bring the deviation
δx = x − xf to lie on the linearized stable direction. where xf represents the unstable
fixed point obtained by the Poincaré section.

The control law (3) below is directly derived from the Poincaré section and will be
applied to the drive system as follows:

δp =
∂p

∂xf

(x − xf ), (3)

where ∂p
∂xf

determines the influence of small parametric variation on fixed points varia-

tion.
This perturbation control law acts instantaneously on the system. However, in real

cases, the future system state of a chaotic system depends on the current parametric
variation as well as the previous parametric variations, so the system must take sometime
to react to the correction. It seems more sensitive, from a practical point of view,
to introduce some delay between the computation of the control law and the effective
modification of the control parameter. This is realized by adding to the computed law a
term depending on the previous value of the control parameter weighted with a parameter
γ, which is determined by trial and error.

Thus, equation (3) becomes:

δpnew =
∂p

∂xf

(x − xf ) + γδpold. (4)

However, in terms of the quality of control performance, once the control is activated,
the controlled system must be maintained at its new trajectory along its evolution. This
stability criterion is assured by a good choice of γ for each chaotic system to be controlled.

We expect that, under forward applications of the control law (4), points in the local
neighbourhood of the fixed point will eventually fall into the local neighbourhood and
then be controlled.

2.2 Chaos synchronization principle

Let X1(t, X1(0)) and X2(t, X2(0)) be solutions to the drive system (1) and to the response
system (2) respectively.

In this framework, complete synchronization is defined as the identity between the
trajectories of the response system X2 and of one replica X ′

2 of it Ẋ ′

2 = g(X1, X
′

2) for
the same chaotic driving system X1.

If the solutions X1(t, X1(0)) and X2(t, X2(0)) satisfy

lim
t→∞

‖X1(t, X1(0)) − X2(t, X2(0))‖ = 0. (5)

Then, the drive system and the response system are said synchronized. In other words,
the response system forgets its initial conditions, though evolving on a chaotic attractor.
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In [24, 25], authors established that this kind of synchronization can be achieved and
provide that all the Lyapunov exponents of the response system under the action of the
driver (the conditional Lyapunov exponents) are negative. This implies that the response
system is asymptotically stable.

3 Control and Synchronization of Lorenz System

The Lorenz system is a differential system with a chaotic behaviour for some values of
parameters, described by: 




ẋ = σ(y − x),
ẏ = (r − z)x − y,
ż = xy − bz.

(6)

The parameters setting for the Lorenz system to display chaos are: σ = 10, b = 8/3 and
r = 28.

(a) (b)

Figure 3.1: Lorenz chaotic attractor. (a) Time response. (b) Phase plane.

The drive system is given by:





ẋ1 = σ(y1 − x1),
ẏ1 = ((r + δr) − z1)x1 − y1,
ż1 = x1y1 − bz1.

(7)

Here r is used as the control parameter with δr is the perturbing parameter control.
To apply the chaos control algorithm to the drive system, we have to determine the

Poincaré section. This section is described by one dimensional map and corresponds to
the set of points where attractor is at its maximum. That is z = max(z1).

Figure 3.2 shows the plots given the maxima of z(n + 1) against those of z(n). The
fixed points are then obtained at the intersection of these plots with the straight line
z(n + 1) = z(n).

The value of the third state variable of the fixed point is determined as zf = 39.82.
To determine parametric influence of the small parametric variation on fixed-points

variation, we generate a Poincaré section at r = 28.2 as shown in Figure 3.3.
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Figure 3.2: Successive maxima map of state variable z1.

Figure 3.3: Superposition of two successive maxima map of state variable z1.
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In this case, we find z′f = 40.09.

The drive system is under chaos control law (3) of the form:

δrnew =
∂r

∂zf

(z1 − zf) + γδrold

=
28.2 − 28

40.09− 39.82
(z1 − zf ) + γδrold. (8)

Our control method needs to determine the stabilizer parameter γ in the feedback control.
This parameter must be small, so it is chosen from the interval [0.01, 0.5].

The drive system is under control of the form:

δrnew = 0.74(z1 − 39.82) + 0.2δrold. (9)

This control law is activated only when the state variables x and z are located in the
neighbourhood of the appropriates fixed points xf and zf respectively. The condition is
defined by:

(x1 − xf )2 + (z1 − zf)2 < 1 (10)

with xf = 14.89.

The result of the control of the drive system is depicted in Figure 3.4.

(a) (b)

Figure 3.4: Control of the Lorenz chaotic driver. (a) Time response. (b) Phase plane.

To stabilize the chaos on its real unstable periodic orbit, one can see that control gen-
erate a pulse train, each pulse is activated automatically so that, at a sufficient amplitude,
determined by the Poincaré section at each travelling from the fixed point, eventually the
system orbit converges to the desired unstable periodic orbit. We also tested our chaos
control strategy with different initial conditions and it was found to be robust.

Once controlled drive system is obtained, we construct a response system which ex-
hibits a generalized kind of synchronization motion with the driver based on the Pecora
and Caroll concept, by making a simple nonlinear transformation among the response
variable x2.
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Figure 3.5: Synchronization of the Lorenz drive-response systems.

Figure 3.6: Time response of the error variables.
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Thus, the response system will be given by:





ẋ2 = σ(y1 − x2),
ẏ2 = (r − z2)x2 − y2,
ż2 = x2y2 − bz2.

(11)

Notice that (11) consists of a copy of (7) without control (δr = 0) and in the synchro-
nization Pecora and Carroll concept, y1 is the drive signal.

Introducing the error variables e1 = x1 −x2, e2 = y1 − y2 and e3 = z1− z2, we obtain
the error dynamics 




ė1 = −σe1,
ė2 = re1 − e2 − z1x1 + z2x2 + δrx1,
ė3 = −be3 + x1y1 − x2y2.

(12)

From (12), we should choose the synchronization subsystem such that an equilibrium
state can be achieved. To find the equilibrium state, we set the three equations equals
to zero, that is:





ė1 = −σe1 = 0,
ė2 = −e2 + re1 − z1x1 + z2x2 + δrx1 = 0,
ė3 = −be3 + x1y1 − x2y2 = 0,

⇒





−σe1 = 0,
−e2 + re1 − z1x1 + z2x2 + x1z2 − x1z2 + δrx1 = 0,
−be3 + x1y1 + x1y2 − x1y2 − x2y2 = 0,

⇒





−σe1 = 0,
−e2 + re1 − x1e3 − z2e1 + δrx1 = 0,
−be3 − x1e2 − y2e1 = 0,

⇒





−σe1 = 0,
−e2 + (r − z2)e1 + (δr − e3)x1 = 0,
−be3 − x1e2 − y2e1 = 0.

(13)

Because the parameters σ, b, r and the state variables x1, y2, z2 are different from zero and
δr → 0, it follows that the error states (e1, e2, e3) asymptotically converges to (0, 0, 0). In
other words, the response system (11) asymptotically synchronizes with the drive system
(7) no matter how they are initialized.

The initial values of the drive system are (x1(0), y1(0), z1(0)) = (−5, 0, 5) and the
initial values of the response system are (x2(0), y2(0), z2(0)) = (3, 6, 15).

Synchronization law is applied for t > 15 and the drive-response systems are in a
perfect synchronized state. The results of the simulation are shown in Figures 3.5 and
3.6.

4 Control and Synchronization of Chen System

Recently, Chen found another chaotic attractor, also in a simple three-dimensional au-
tonomous system, which nevertheless is not topologically equivalent to the Lorenz’s [6]:





ẋ = a(y − x),
ẏ = (c − a − z)x + cy,
ż = xy − bz.

(14)
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System (14) has chaotic behaviour at the parameters values c = 35, a = 28 and b = 3. This
system has the same complexity as the Lorenz equation – they are both three-dimensional
autonomous with only two quadratic terms. The chaotic behaviour of the system is shown
in Figure 4.1.

(a) (b)

Figure 4.1: Chen chaotic attractor. (a) Time response. (b) Phase plane.

For Chen chaotic attractor, the drive system is defined as follows:





ẋ1 = a(y1 − x1),
ẏ1 = ((c + δc) − a − z1)x1 + cy1,
ż1 = x1y1 − bz1.

(15)

Here c is used as the control parameter.
Figure 4.2 shows the Poincaré section realized on the third state variable for different

values of parameter c.
At c = 28, the value of the third state variable of the fixed point is determined as

zf = 27.29 and at c = 28.2, z′f = 27.75.
The control law is defined by

δcnew =
∂c

∂zf

(z1 − zf) + γδcold

=
28.2 − 28

27.75− 27.29
(z1 − zf ) + γδcold. (16)

Then we obtain
δcnew = 0.43(z1 − 27.29) + 0.1δcold. (17)

This control law is activated only when:

(x1 − xf )2 + (z1 − zf)2 < 1 (18)

with xf = 14.89.
The result of the control is shown in Figure 4.3. Figure 4.3(b) depicts the orbit of

the controlled Chen’s chaotic system in the phase space. From Figure 3(a), one can see
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Figure 4.2: Return map of state variable z1.

(a) (b)

Figure 4.3: Control of the Chen chaotic driver. (a) Time response. (b) Phase plane.
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Figure 4.4: Synchronization of the Chen drive-response systems.

Figure 4.5: Time response of the error variables.
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that, to stabilize chaos, the method works by applying instantaneous periodic kicks to
the system variables and eventually the system orbits converge to the desired UPO.

We construct a Pecora-Caroll drive–response configuration with a drive signal y1

introduced in the y2 dynamics of the response system given by:




ẋ2 = a(y2 − x2),
ẏ2 = (c − a − z2)x2 + cy1,
ż2 = x2y2 − bz2.

(19)

The dynamic of the error variables will be given by:




ė1 = −a(e1 − e2),
ė2 = (c − a)e1 − z1x1 + z2x2 + δcx1,
ė3 = −be3 + x1y1 − x2y2.

(20)

Demanding that all of the equations of system (20) are zero, we get the following:




ė1 = −a(e1 − e2) = 0,
ė2 = (c − a)e1 − z1x1 + z2x2 + δcx1 = 0,
ė3 = −be3 + x1y1 − x2y2 = 0,

⇒





e1 = e2,
(c − a − z2)e1 + (δc − e3)x1 = 0,
−be3 − x1e2 − y2e1 = 0,

⇒





e1 = 0,
e2 = 0,
e3 = 0.

(21)

The initial values of the drive system are (x1(0), y1(0), z1(0)) = (−3, 2, 20) and the initial
values of the response system are (x2(0), y2(0), z2(0)) = (5,−2, 10). In this case, synchro-
nization was applied before applying the control law and simulation results are given in
Figures 4.4 and 4.5.

5 Control and Synchronization of Chua System

The Chua circuit is a nonlinear circuit with chaotic behaviour for some values of param-
eters. The normalized equations representing the circuit are:





ẋ = α(y − x − h(x)),
ẏ = x − y + z,
ż = −βy,

(22)

where

h(x) = m1x +
m0 − m1

2
(|x + 1| − |x − 1|) (23)

represents the nonlinear element of the circuit.
When α = 10, β = 14.87, m0 = −1.27, m1 = −0.68, Chua attractor is chaotic and has

a plot as shown in Figure 5.1.
The drive system is given by:





ẋ1 = (α + δα)(y1 − x1 − h(x1)),
ẏ1 = x1 − y1 + z1,
ż1 = −βy1.

(24)
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(a) (b)

Figure 5.1: Chua’s circuit. (a) Time response. (b) Phase plane.

Figure 5.2: Return map of state variable x1.
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In Chua’s circuit, we chose the Poincaré section by plotting the current maxima x(n+1)
against the previous maxima x(n).

The first state of the fixed point is determined by xf = 2.70. At α = 10.2, in this
case, x′

f = 3.31.
The deduced control law is

δαnew =
∂α

∂xf

(x1 − xf ) + γδαold

=
10.2 − 10

3.31 − 2.70
(xn − xf ) + γδαold. (25)

Then we obtain
δαnew = 0.32(xn − xf ) + 0.1δαold. (26)

The activation region of the control is defined by:

(xn − xf )2 + (yn − yf )2 < 1, (27)

where yf = 0.27. In the Chua system, the response system is chosen as follows:





ẋ2 = α(y2 − x2 − h(x2)),
ẏ2 = x1 − y2 + z2,
ż2 = −βy2.

(28)

Consequently, the error variables will be defined by:





ė1 = α(e1 − e2 − h(x1) + h(x2)) + δα(y1 − x1 − h(x1)),
ė2 = −e2 + e3,
ė3 = −βe2.

(29)

To find the equilibrium state of (29), we rewrite as follows:





α(e1 − e2 − h(x1) + h(x2)) + δα(y1 − x1 − h(x1)) = 0,
−e2 + e3 = 0,
−βe2 = 0,

⇒





e1 = 0,
e2 = 0,
e3 = 0.

(30)

Starting from the initial values (x1(0), y1(0), z1(0)) = (−0.1,−0.1,−0.1) of the drive
system and from (x2(0), y2(0), z2(0)) = (0.1, 0.1, 0.1) of the response system, controlled
drive system (24), synchronization of the response system (28) with the controlled drive
system and time response of the error variables (29) are shown together in Figure 5.3(a),
(b) and (c) respectively.

6 Conclusion

This letter demonstrates that control and synchronization can be achieved in autonomous
chaotic systems by different ways. The response system is synchronized with the drive
system even if synchronization is activated before, after or simultaneously with the control
law.
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(a)

(b) (c)

Figure 5.3: Control and synchronization of the Chua system. (a) Time response of the drive
and response systems. (b) Phase plane of the controlled trajectory. (c) Time response of the
error variables.
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[6] Chen, G. and Lü, J. A new chaotic attractor coined. Int. J. Bifurcation & Chaos 12(3)
(2002) 659–661.

[7] Chen, M.-Y., Han, Z.-Z. and Shang, Y. General synchronization of Genesio-Tesi systems.
Int. J. Bifurcation & Chaos 14(1) (2004) 347–354.

[8] Cruz, C. and Nijmeijer, H. Synchronization through filtering. Int. J. Bifurcation & Chaos

10(4) (2000) 763–775.
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Abstract: In this paper we give an overview of some aspects of chaotic dy-
namics in hybrid systems, which comprise different types of behaviour. Hybrid
systems may exhibit discontinuous dependence on initial conditions leading to
new dynamical phenomena. We indicate how methods from topological dy-
namics and ergodic theory may be used to study hybrid systems, and review
existing bifurcation theory for one-dimensional non-smooth maps, including the
spontaneous formation of robust chaotic attractors. We present case studies of
chaotic dynamics in a switched arrival system and in a system with periodic
forcing.
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1 Introduction

A hybrid system is a dynamic system which comprises different types of behaviour.
Classic examples of hybrid dynamical systems in the literature are impacting mechan-
ical systems, for which the behaviour consists of continuous evolution interspersed by
instantaneous jumps in the velocity, and dc-dc power converters, in which the behaviour
depends on the state of a diode and a switch. Hybrid control systems occur when a
continuous system is controlled using discrete sensors and actuators, such as thermostats
and switched heating/cooling devices. Hybrid dynamics may also occur due to satura-
tion effects on components of a system, and in idealized models of hysteresis. Finally,
we mention that hybrid systems can be derived as singular limits of systems operating
in multiple time-scales; indeed we may consider almost all hybrid systems to arise in this
way.

From a mathematical point of view, hybrid systems typically exhibit non-smoothness
or discontinuities in the dynamics, and these properties induce new dynamical phenomena
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which are not present in non-hybrid (i.e. smooth) systems. Most notably, hybrid systems
can exhibit robust chaotic attractors, which have been conjectured not to exist for smooth
systems.

This article is designed to give an introduction to hybrid systems for a specialist
in dynamical systems theory, and an introduction to chaotic dynamics for an expert
in hybrid systems. We cover modelling formalisms and solution concepts for hybrid
systems, and discuss three of the main branches of chaotic dynamical systems theory,
namely symbolic dynamics, ergodic theory and bifurcation theory. We assume that the
reader is familiar with basic concepts of dynamical systems theory, including topological
dynamics, ergodic theory and elementary smooth bifurcation theory. This material can
be found in many of the excellent and accessible textbooks on dynamical systems, such
as [24, 27, 42, 21]. The field of hybrid systems is not as mature, and many of the
fundamental theoretical concepts have not yet been developed. The only introductory
general textbook on hybrid systems currently available is [47], and the book [32] contains
qualitative analysis of some classes of hybrid system.

The article is organised as follows. In Section 2, we give an overview of chaotic
hybrid systems and introduce some representative examples. In Section 3, we give a brief
introduction to hybrid systems theory. In Section 4 we discuss statistical and symbolic
techniques for studying hybrid systems. In Section 5, we discuss bifurcation theory for
hybrid systems. In Section 6 we present some case studies showcasing chaotic dynamics.
Finally, we give some concluding remarks in Section 7.

2 Overview

We now give an informal overview of hybrid systems and chaotic dynamics, and give
some motivational examples from the literature.

2.1 Hybrid systems

What exactly do we mean by a hybrid system? For our purposes, the following informal
definition is appropriate:

a hybrid system is a dynamic system for which the evolution has a different form or
structure in different parts of the state space.

Examples of hybrid system include piecewise-affine maps, differential equations with dis-
continuous right-hand sides, and systems in which the evolution jumps between multiple
modes. The meaning of “different form or structure” is deliberately vague, and may de-
pend on the tools we use to study the system. For example, a continuous piecewise-affine
map may be considered “hybrid” when studying bifurcations, since bifurcation theory
deals with the differential category, but from the point of view of topological or statistical
properties it is just a single continuous function.

Within the class of all hybrid systems, we may identify discrete-time, continuous-time
and hybrid-time systems.

Discrete-time hybrid systems are typically the easiest to study, and in applications
usually arise as simplifications of continuous- or hybrid-time systems, such as the stro-
boscopic map of a periodically-forced oscillator or the hitting map of an impact system.
Important classes of discrete-time systems in the literature include piecewise-affine maps,
in which the dynamics is affine, xn+1 = Aixn + bi on each element Pi of a polyhedral
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partition of the state space. These systems can be studied by their symbolic dynamics
in terms of the state-space partition, or by looking at border collision bifurcations which
occur when periodic points cross the partition element boundaries, and may result in
spontaneous transitions to chaos.

A continuous-time hybrid system is described by a differential equation or differential
inclusion in which the right-hand side is non-smooth or discontinuous. If the right-hand
side is continuous and piecewise-smooth, then it is locally Lipschitz, so local existence and
uniqueness of solutions are immediate. The hybrid nature comes up when attempting to
find efficient numerical methods to integrate such systems, since crossings of the switching
boundary must be detected, and when considering bifurcations, since corner-collisions in
the dynamics may lead to border collision bifurcations in time-discretisations. If the right-
hand side is discontinuous, then the system can be reformulated as a differential inclusion
using the Filippov solution concept [18]. Uniqueness of solutions is not guaranteed, and
we shall see that this may result in discontinuous dependence on initial conditions due to
corner-collisions and grazing phenomena, though as we shall see later, a grazing impact
in a mechanical system does not induce discontinuous spacial dependence.

A hybrid-time system has both discrete-time and continuous-time dynamics. Hybrid-
time systems naturally occur when continuous systems are controlled by actuators with
a finite number of states, such as an electronic switch or a three-level induction motor,
or using sensors which can only detect a finite number of states, such as a thermostat.
Instantaneous transitions in the state occur when a discrete event is activated, causing
a change in the mode of the system. Between discrete events the system evolves contin-
uously. Although a discrete event causes a discontinuity in the system state, if an orbit
crosses a guard set transversely, then nearby orbits undergo the same discrete event at
nearly the same time, and no lasting discontinuities in the spacial dependence occur.
However, a tangency of the system evolution with the activation set of a discrete event
does introduce discontinuous spacial dependence, as does a situation when two discrete
transitions are simultaneously activated.

The non-smooth or discontinuous dependence on initial conditions which can occur in
hybrid systems is the main phenomenological difference between hybrid and non-hybrid
systems. This often causes difficulties—invariant measures need not exist, topological
methods either fail outright or need to be modified, and new bifurcations are seen to
occur. However, these features also allow the possibility of robust chaos, by which we
mean the presence of a chaotic attractor over an open set in parameter space; behaviour
which is not seen in non-hybrid systems. Since non-smooth and discontinuous dependence
on initial conditions are the key of hybrid systems, we shall pay considerable attention
to determining the discontinuities and singularities of the evolution.

Discontinuous dependence on initial conditions can cause fundamental difficulties in
applying existing techniques of dynamical systems theory, which were originally devel-
oped for systems without discontinuities. However, many methods can be modified to
apply to either upper-semicontinuous or lower-semicontinuous systems. Hence a regu-
larisation step is required to bring the system into a form which is amenable to analysis.
As part of this regularisation, either existence or uniqueness of solutions is typically lost.

2.2 Chaos in hybrid systems

There are many definitions of “chaos” in the literature. We shall adopt the terminology
that a system is chaotic if it has positive topological entropy. Chaotic behaviour may
be transient, which means that the positive entropy is supported on a repelling set, or
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attracting, which means that the positive entropy is supported on a minimal attractor, i.e.
an attractor with a dense orbit and hence no proper sub-attractors. From an applications
point of view, transient chaotic behaviour is often unimportant; it is the dynamics on
the attractors which is important. However, in practice it is impossible to distinguish
between a very-high period limit cycle and a chaotic attractor.

It is often fairly easy to prove the existence of chaotic dynamics using techniques based
on topological index theories, either the Lefschetz-Nielsen theory [6] for periodic points
and the Conley index theory [34] for more general invariant sets. For interval maps,
the ordering of points of a periodic orbit can be used to prove the existence of chaos,
and for two-dimensional homeomorphisms, there is a rich theory based around periodic
and homoclinic orbits. These tools are relevant for hybrid systems since they require
only (local) continuity of the system evolution, and can be used directly for non-smooth
hybrid systems, and with some modifications to piecewise-continuous systems. However,
the main disadvantage of these methods is that they cannot distinguish between chaotic
transients and a chaotic attractor.

The most important quantitative measure of chaos in a dynamical system is the topo-
logical entropy. It is known [51] that the topological entropy is upper-semicontinuous
for the class of C∞-smooth systems. It is also know that topological entropy is lower-
semicontinuous for C0 maps in one dimension, but not for C∞ maps in d ≥ 2 dimen-
sions [35]. This means that for non-hybrid (i.e. smooth) systems, chaos cannot be
spontaneously created, and for low-dimensional systems, chaos cannot be spontaneously
destroyed.

In differentiable systems, it is extremely difficult to rigorously prove the existence
of a minimal attractor with “high” topological entropy; the unimodal map [3] and the
Lorenz system [46] are notable exceptions. Let us consider the simplest smooth chaotic
family, namely the unimodal family xn+1 = fa(xn) := 1 − ax2

n. It is well-known that if
fa has a periodic orbit of period m which is not a power of two, then f has a chaotic set
with positive topological entropy. In [3] it was shown that for a positive measure set of
parameters, there exists a minimal chaotic attractor. For other parameter values, almost
all points lie in the basin of a stable periodic orbit, though this orbit may have a very
high period, and numerically appear to be “chaotic”. However, the proof of this result is
highly delicate, and it has been conjectured that there does not exist an open and dense
set of smooth C2 maps of the interval with a minimal chaotic attractor.

The situation for hybrid systems is quite different. For the non-smooth equivalent of
the unimodal family, namely the family of tent maps xn+1 := ǫ − a|xn|, it is possible to
spontaneously create chaos, in the form of chaotic attractors with non-vanishing topo-
logical entropy which are robust with respect to perturbation. From this point of view
alone, hybrid systems are important for the study of chaotic dynamics.

The intuitive explanation for this difference between non-hybrid and hybrid systems is
that to generate chaos, we need “stretching” and “folding” in the map. In one dimension,
the existence of a critical point c is needed for the “folding” property, but since f ′(c) = 0,
this orbit is highly attracting, and it is difficult to get enough stretching away from the
critical point to compensate.

2.3 Examples of chaotic hybrid systems

We now present some examples of hybrid systems which have been extensively studied
in the literature.
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Electronic circuits are one of the most well-studied experimental examples of chaotic
systems. Perhaps the most well-studied example is Chua’s circuit [11, 10], which contains
a nonlinear resistor with piecewise-linear characteristic. Another interesting example is
a circuit with a hysteresis element [36, 43]. The books [48, 45] contain an overview on
chaotic dynamics in electronic circuits.

From a practical perspective, the most relevant examples are the boost and buck
dc-dc power converters, as shown in Figure 2.1. The boost power converter is used to
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E

L I

E C R
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Figure 2.1: (a) Boost dc-dc power converter. (b) Buck dc-dc power converter

step-up a voltage E, and the buck power converter to step-down a voltage. The equations
of motion for the boost converter are

S Open, I ≥ 0 or V ≤ E :
dV

dt
=

I

C
−

V

RC
, L

dI

dt
= E − V ;

S Open, I = 0 and V < E :
dV

dt
= −

V

RC
; (1)

S Closed :
dV

dt
= −

V

RC
, L

dI

dt
= E.

When the switch is closed, the diode isolated the inductor from the capacitor. The
capacitor supplies energy to the load resistance, while the power supply supplies energy
to the inductor. When the switch is open, the energy in the inductor is transferred
to the capacitor. However, the diode prevents the current through the inductor falling
below zero; if the current reaches zero, then no energy is supplied to the circuit until the
voltage at the capacitor drops below that of the power supply. The system is controlled
by opening and closing the switch in response to the voltage V . Some possible switching
strategies are

Duty cycle: S = Closed for t/T mod 1 ≤ α.

Ramp switching: S = Closed for V ≥ VR, where VR = VL + (VU − VL)(t/T mod 1).

Hysteresis: S → Open if V ≤ VL; S → Closed if V ≥ VU .

Chaotic behaviour in power converters has been extensively discussed in the literature [2,
17, 25].

Another important source of examples of chaotic hybrid systems arise in mechan-
ics, especially the mechanics of impacting systems or systems with stick-slip behaviour
caused by friction. The book [30] contains an overview of the dynamics of non-smooth
mechanical systems.

A simple impact oscillator with chaotic dynamics [7] is given by the equations

ẍ + ζẋ + x = cos(ωt), x < d;

ẋ 7→ −λẋ, x = d.

We let the phase φ be given by φ = t mod T . Note that despite the discontinuity in the
velocity at an impact, the time evolution has continuous dependence on initial conditions
since the velocity reset is the identity for ẋ = 0.
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Figure 2.2: A simple mechanical impact oscillator.

A grazing bifurcation occurs at a parameter value for which a periodic motion of the
body oscillator has an impact with zero relative velocity. The grazing bifurcation was
independently discovered by Peterka [41], Whiston [50, 49] and Nordmark [37]. There
have been many subsequent analyzes, including [9, 19, 28, 52, 16].

One way of studying grazing phenomena is to consider the impact map. If (v, φ) are
the velocity and phase of an impact, then (v′, φ′) are the velocity and phase of the next
impact. The advantage of the impact map are that it is fairly easy to compute, and is
derived naturally from the system. However, the impact map has the disadvantage of
being discontinuous at the preimage of the grazing surface, whereas the time evolution of
the system is continuous. For this reason, it may be preferable to study the stroboscopic
(time T ) map. A normal-form analysis shows that the grazing impact gives rise to a
square-root singularity in the return map, which gives rise to many bifurcation scenarios,
including period-adding and spontaneous transitions to chaos.

3 Basic Hybrid Systems Theory

In this section, we give a brief introduction to hybrid-time systems, including appropri-
ate solution spaces, frameworks for system modelling and definition, and semantics of
solution. Frequently, the appropriate definitions depend on the class of system being
studied, or the properties of interest; here we give definitions which are appropriate for
the study of chaotic dynamics.

3.1 Solution spaces for hybrid-time evolution

The evolution of a hybrid-time system consists of both continuous-time evolution and
discrete transitions. Hence the state x(t) of the system is a discontinuous function of time.
We adopt the convention of taking cadlag (continue à droit, limit à gauche) functions,
as shown in Figure 3.1, and let tn be the time of the nth discrete transition.

t

x

Figure 3.1: A cadlag solution of a hybrid-time system.

The cadlag representation of solutions is sufficient for hybrid-time systems with at
most one discrete-event at any time instance. For hybrid-time systems which admit the
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possibility of two or more events at any time instant, the cadlag representation is not
appropriate as the intermediate points are lost. Instead, we represent solutions on a
hybrid time domain [1, 23, 12], which also records the number of discrete events which
have occurred.

For continuous-time systems, an appropriate topology on solution spaces is the
compact-open topology, with basic open sets

U(ξ,K,ǫ) = {x : R → X | ∀t ∈ K, d(x(t), ξ(t)) < ǫ}. (2)

In other words, solutions are close if they are uniformly close on compact sets.
Taking the uniform distance between solutions leads for trajectories which are close,

but have slightly different event times, being considered far apart. For if

x1(t) =

{
0 if t < t1,

1 if t ≥ t1;
x2(t) =

{
δ if t < t2,

1 + δ if t ≥ t2;
(3)

with t1 < t2 < t1 + ǫ, then the uniform distance between the solutions at time t with
t1 < t < t2 is equal to 1 + δ, so d(x1, x2) = 1. This is usually inappropriate, since the
distance between solutions is large even if the initial conditions are close and there are
no irregularities in the behaviour.

t

x

t̂

x

t

Figure 3.2: (a) Two solutions which are close in the hybrid Skorohod topology despite being
far apart at time t̂. (b) Two solutions which are far apart in the hybrid Skorohod topology
despite the interval on which they are not close being small.

A better topology on solutions is the compact-open Skorohod topology [5], originally
developed for stochastic processes. The Skorohod topology allows small reparameterisa-
tions of the time domain. An equivalent topology is the graph topology, which is simply
the Fell topology on the solution graphs. The basic open sets are:

U(ξ,K,δ,ǫ) = {x : R
+ → X | ∀τ ∈ K, ∃t ∈ (τ − δ, τ + δ) d(x(t), ξ(τ)) < ǫ}. (4)

An equivalent metric description of the topology can also be formulated.
A solution x(t) of a hybrid system is Zeno if infinitely many discrete events occur in

finite time T . This means that limn→∞ tn < ∞, where tn is the time of the nth discrete
transition. Zeno behaviour in a hybrid-time model is often exhibited as chattering in the
real-life system.

3.2 Modelling frameworks for hybrid systems

A commonly used framework for describing hybrid-time systems is the hybrid automaton
framework. Informally, a hybrid automaton is based on an underlying discrete-event
system, with discrete modes connected by discrete events. Within each discrete mode,
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the continuous state evolves under a flow until the guard set corresponding to a discrete
event is reached. A discrete transition the occurs, and the discrete mode and continuous
state are instantaneously updated according to a reset map.

The hybrid automaton framework is usually very convenient for modelling, but con-
tains details which are superfluous for describing the dynamics. A simpler modelling
framework is that of impulse differential inclusions, introduced in [1].

Definition 3.1 An impulse differential inclusion is a tuple H = (X, D, F, G, R)
where

• The state space X is a differential manifold;

• D ⊂ X is the domain or invariant ;

• ẋ ∈ F (x) is a differential inclusion defining the flow or dynamic Φ : X × R ⇉ X ;

• G ⊂ X is the guard set or activation;

• R : X ⇉ X is the reset relation.

Here, we use the notation X ⇉ Y to denote a multiple-valued map from X to Y .
A solution of an impulse differential inclusion is a cadlag function x : R

+ → X with
finitely or infinitely many discontinuities which occur at times t1, t2, . . . such that

1. between event times, we have x(t) ∈ D and x(t) is absolutely continuous with
ẋ(t) ∈ F (x(t)) almost everywhere.

2. at event times times, we have x−(ti) ∈ G and x(ti) ∈ R(x−(ti)).

where x−(ti) := limtրti
x(t).

Notice that if x(t) ∈ D◦∩G, then both continuous evolution and a discrete transition
are possible, hence the evolution is multivalued or indeterminate. As we shall see in
the next section, the solutions of an arbitrary impulse differential inclusion may have
irregularities which need to be tamed, giving rise to different solution concepts.

Henceforth we make the following simplifying assumptions on our hybrid systems
with respect to the general framework of Definition 3.1:

• The guard set G is a subset of the boundary of the domain D.

• The continuous dynamics is given by a locally Lipschitz differential equation ẋ =
f(x).

• The guard set G is partitioned into subsets Gi such that the reset map ri := r|Gi

is single-valued and continuous.

In the hybrid automaton framework, the sets Gi correspond to activation sets for different
discrete events.

Given a hybrid time system, we can define the return map which takes an initial point
to the point We alternatively define the hitting map as the set of points which can be
reached by a discrete transition followed by continuous evolution into a guard set.

3.3 Solution concepts

Many techniques of dynamical systems rely on the solutions having continuous or smooth
dependence on initial conditions. As previously mentioned, the evolution of a hybrid
system may not have continuous dependence on initial conditions. Further, this property
is lost in hybrid systems in the following situations, which are depicted in Figure 3.3
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• A solution of the differential equation ẋ = f(x) crosses ∂D at a point not in G. At
this time, no further evolution is possible and the system is said to be blocking.

• A solution of the differential equation touches ∂D at a point of G but does not
leave D. At this time, both a discrete transition and further continuous evolution
may be allowed.

• A solution of the differential equation reaches a point at which the reset map r is
discontinuous. At this point, continuous dependence on initial conditions is lost.

However, it is often sufficient to have semicontinuous dependence on initial conditions,
giving rise to two different semantics of evolution.

(a) (b)

Figure 3.3: (a) Discontinuity of solutions due to multiply-enabled transitions (corner collision).
(b) Discontinuity of solutions due to tangency with the guard set.

For upper semantics, we assume that at a tangency with the guard set, then both
a discrete transition and continuous evolution are possible. Further, if the continuous
evolution reaches a point in Gi ∩ Gj , then both resets ri and rj are possible. Hence
the system evolution is multivalued or nondeterministic, but under these semantics, the
limit of a sequence of solutions is also a solution, and the solution set varies upper-
semicontinuously with the system parameters [22]. Further, it is possible to effectively
compute over-approximations to the set of points which can be reached from a given
initial set [13, 20].

For lower semantics, we assume that at a tangency with the guard set, at a discon-
tinuity point of the reset map, then no further evolution is possible. Hence solutions
which exist for all time only exist on the set of initial conditions from which further
evolution does not reach a discontinuity point. Under fairly mild conditions on the reset
map, finite-time evolution is defined on an open set of initial conditions, and solutions
vary continuously on this set. This property is useful for topological techniques based on
index theory. Under the same conditions, infinite-time evolution is defined on a Gδ set
of initial conditions, which is dense by the Baire category theorem.

3.4 Dependence on initial conditions in continuous time

We have seen that for hybrid-time systems, discontinuous dependence on initial condi-
tions occurs at tangencies with the guard set and on the boundary of activation sets
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for different discrete events. However, discontinuities in the evolution may also occur in
continuous-time hybrid systems.

Given a differential equation ẋ = f(x) with discontinuous right-hand side, or a dif-
ferential inclusion ẋ ∈ F (x), the Filippov regularisation of F is the function

F̂ (x) =
⋂

ǫ→0

convF (Nǫ(x)). (5)

The Filippov regularisation of F is an upper-semicontinuous multivalued function with
closed, convex values.

Theorem 3.1 If F : R
n → R

n is an upper-semicontinuous multivalued function with
compact, convex values, then for every x0 ∈ R

n there exists an absolutely continuous
function x : [0, T ) → X such that x(0) = x0 and ẋ(t) ∈ F (x(t)) a.e.

Additionally, the set of solutions is a closed set in the compact-open topology, and the
set of points reachable from a given x0 at time t > 0 is closed.

Hence Filippov solution concept gives existence of solutions for arbitrary differential
equations, possibly at the expense of introducing nondeterminism.

Filippov solutions are useful when a discontinuity set of the right-hand side is attract-
ing from both sides, since one obtains sliding orbits. Using an explicit hybrid model, one
would obtain Zeno or chattering behaviour, as the solution would constantly switch from
one mode to the other.

In some circumstances, the set of Filippov solutions may be larger than one would
obtain using a hybrid-time model with explicit mode switching. Consider the generic

(a) (b)

Figure 3.4: (a) Grazing at a sliding mode causes instability. (b) Discontinuity on a sliding
mode.

situations shown in Figure 3.4. In (a), orbits which reach the sliding surface have the
same future behaviour, and leave the sliding surface by the indicated trajectory. In
(b) orbits which reach the sliding surface from below cross it immediately, except for
the indicated orbit. Using the classical Filippov solution concept, the grazing orbit may
slide along the discontinuity surface, even though this is unstable, and leave the switching
hypersurface at any time. The evolution is nondeterministic, and any point and continues
nondeterministically into the shaded region. Using a mode-switching solution concept,
the grazing orbit either switches immediately into the upper region, or continues in the
lower region. Which solution is more appropriate depends on the system being modelled.
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In a system in which the discontinuity of the right-hand side is an approximation to a
fast-varying function, then the Fillipov solution concept is appropriate, since it captures
approximations to the solution of the original system. If the discontinuity of the right-
hand side is due to a state-dependent switching, then a mode-switching solution concept
is more appropriate, since the system is either in one mode or the other.

Whichever solution concept is used in (b), the solution varies discontinuously with ini-
tial condition. In contrast, the solution in (a) varies continuously with initial conditions.
This is because one side of the switching hypersurface is attracting.

Theorem 3.2 Let ẋ = f(x) be a system with discontinuous right-hand side, and let
M be a codimension-1 switching boundary. Suppose that at every point of M , at least
one side is strictly attracting. Then the evolution across M is continuous, and for every
initial point there exists a unique Filippov solution.

A special case of grazing behaviour occurs in impact oscillators.

Definition 3.2 An impact oscillator is a dynamical system such that that is ẋ = f(x)
for g(x) ≥ 0, and x′ = r(x) if g(x) = 0 and f(x) · ∇g(x) < 0. where g : M− → M+ is
such that g(x) → x as x → M0, where M0 = {x ∈ X | g(x) = 0 and f(x) · ∇g(x) = 0},
M− = {x ∈ X | g(x) = 0 and f(x) · ∇g(x) < 0} and M+ = {x ∈ X | g(x) = 0 and f(x) ·
∇g(x) > 0}.

Theorem 3.3 Let (f, g, r) define an impact oscillator. Then under the identification
x ∼ r(x) on M− × M+, the evolution is continuous.

A similar situation to that shown in Figure 3.4 occurs at corner collisions, as shown
in Figure 3.5.

(a) (b)

Figure 3.5: (a) A corner collision causing non-smoothness. (b) A corner collision causing
discontinuity in the evolution.

We may obtain continuous (but non-smooth) evolution, or may obtain discontinuities
in the evolution, the exact nature of which depends on whether we use Filippov seman-
tics or switching semantics. The following result gives conditions under which a corner
collision does not induce discontinuities in the system evolution.

Theorem 3.4 Let ẋ = f(x) be a system with discontinuous right-hand side, let g :
X → R

2 be such that ∇gi(x) 6= 0 if gi(x) = 0. Let X− = {x | g(x) < 0} and X+ =
{g1(x) > 0 ∨ g2(x) > 0}. Let MC = {g(x) = 0} Suppose that f(x) · ∇g1(x) > 0 and
f(x) · ∇g2(x) < 0 for all x ∈ XC. Then evolution is continuous in a neighbourhood of
XC.
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Proof In a neighbourhood of XC , the time spent in X0 is continuous, and tends to
0 as x → XC . Hence Φt(x) = Φ+

t3
◦ Φ−

t2
◦ Φ+

t1
(x) with t1, t2, t3 continuous functions of x

and t2 → 0 as x → XC .

4 Symbolic Dynamics and Invariant Measures

Symbolic dynamics is potentially a powerful tool to study hybrid systems, since these
have a naturally-defined partition of the state space into the discrete modes. Since
symbolic dynamics is most naturally defined for discrete-time systems, in this section,
we assume that we are considering a discrete-time hybrid system, possibly originating as
a time-discretisation of a continuous- or hybrid-time system.

Given a finite collection of sets {Rs ⊂ X : s ∈ S}, which need not be disjoint or cover
X , we say that a sequence (s0, s1, s2, . . .) is an itinerary for an orbit (x0, x1, x2, . . .) of a
discrete-time system f if xk ∈ Rsk

for all k. The closure of the set of allowed itineraries
of a system f is called the shift space of f , denoted Σf . The shift space of f is invariant
under the shift map σ : SN → SN defined by σ(s0, s1, s2, . . .) = (s1, s2, . . .). The main
aim of symbolic dynamics is to compute the set of itineraries and/or the shift space.

If the Rs are mutually disjoint compact sets, then every point has at most one
itinerary, and if f is continuous, then the set of itineraries itself is closed. Further,
if we define Rs0,s1,...,sk

= {x ∈ X | f i(x) ∈ Ri ∀i = 0, . . . , k}, then (s0, s1, s2, . . .) is an
itinerary for f if, and only if, every Rsj ,...,sk

is nonempty. Hence it is possible to com-
pute over-approximations to Σf by starting with the entire space SN and removing all
sequences which contain a forbidden word, that is, a word (sj , . . . , sk) with Rsj ,...,sk

= ∅.

In many applications, the sets Rs are not disjoint, but form a topological partition of
X , which means that X =

⋃
s∈S R◦

s and R◦

s1
∩R◦

s2
= ∅ if s1 6= s2. In this case, we obtain

different shift spaces depending on whether the sets Rs to be open or closed. However,
if the sets Rs are closed, we often obtain too many itineraries, since for example, a fixed
point p ∈ ∂Rs ∩ ∂Rs′ would have any sequence with si ∈ {s, s′} as an itinerary, so it is
usually preferable to consider itineraries with respect to R◦

s and take the closure in SN

to obtain the shift space. If ~x is an orbit, then we say ~s is a limit itinerary for ~x if there
exist orbits ~xi with itineraries ~si such that ~xi → ~x and ~si → ~s

If f has the property that the preimage of an open and dense set is dense, then⋂
∞

i=0 f−i(R◦), where R◦ =
⋃
{R◦

s | s ∈ S} is a Gδ set, and hence is dense by the Baire
Category Theorem. Therefore, for a dense set of points, the itinerary exists and is unique.

Computing under-approximations to the shift space is usually much more difficult
than computing over-approximations. This is because although we can deduce that sN

is not an itinerary of f if Rs ∩ f−1(Rs) = ∅, we cannot deduce that sN is an itinerary
of f even if Rs,s 6= ∅, since we may have Rs,s,s = ∅. The most important methods
for proving that an itinerary exists are based Lefschetz and Nielsen fixed-point theory,
and the Conley index theory, all of which can be used to prove the existence of periodic
itineraries sn+i = si.

In one dimension, it is easier to compute infinitely many periodic orbits using cov-
ering relations. If I, J are intervals, we say that I f -covers J if f(I) ⊃ J . Using the
intermediate value theorem, we can show that if I0, I1, I2, . . . is a sequence of intervals
and Ik covers Ik+1 for all k, then there exists a point x such that fk(x) ∈ Ik for all k.
Further, if In+k = Ik for all k, then x can be chosen such that fn(x) = x.
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4.1 Piecewise-continuous systems

Let f : X → X a single-valued, piecewise-continuous function. Let P = {Ps | s ∈ S} be a
locally-finite topological partition of X such that f is continuous when restricted to each
P ◦

s , and that f |P◦

s
extends over each Ps to a continuous function fs. Let ∂P =

⋃
{∂P |

P ∈ P} and P◦ =
⋃
{P ◦ | P ∈ P} Define f̄ : X ⇉ X by f̄(x) =

⋃
{fs(x) | x ∈ Ps}, and

assume that f̄(x) ⊃ f(x) (notice that f̄(x) = f(x) unless f is discontinuous at x. We
may also define f◦ by f◦ := f |⋃

{P◦

s |s∈S}
.

The function f̄ is a finite-valued upper-semicontinuous over-approximation to f ob-
tained by taking all accumulation points of the graph of f . By upper-semicontinuous, we
mean f̄−1(A) is closed whenever A is closed. Consequently, the set of itineraries of f̄ is
an over-approximation to the set of itineraries of f .

The function f◦ is a single-valued partially-defined lower-semicontinuous under-
approximation to f obtained by discarding all values of f at discontinuity points. By
lower-semicontinuous, we mean that (f◦)

−1
(U) is open whenever U is open. taking all

accumulation points of the graph of f . By upper-semicontinuous, we mean f̄−1(A) is
closed whenever A is closed.

4.2 Computing over-approximations to the shift space

If f is not continuous, computing over-approximations of the set of itineraries is more
complicated. For if f(Rs) ∩ Rs′ = ∅ but f(Rs) ∩ Rs′ 6= ∅, it may be extremely difficult
to show that the word (s, s′) is forbidden. However, if we take the upper-semicontinuous
over-approximation of f , then we can compute itineraries in a similar way to the contin-
uous case, though a little care is needed over the definitions.

We define

Rs0,s1,...,sk
= {x ∈ X | ∃x0, x1, . . . , xk such that x = x0, xi ∈ Pi and xi ∈ f(xi−1)}. (6)

We can compute the sets Rs0,s1,...,sk
by the recurrence relation

Rs0,s1,...,sk
= Rs0 ∩ f−1(Rs1,...,sk

). (7)

We can then define a finite-type shift on S by taking disallowed words

{s0, s1, . . . , sk | Rs0,...,sk
= ∅}. (8)

By disallowing successively more words, we can construct a sequence of finite type shifts
converging to Σf .

Theorem 4.1 (s0, s1, . . .) ∈ Σf ⇐⇒ ∀k, Xs0,s1,...,sk
6= ∅.

For many hybrid systems, the state space X is disconnected, with the components
{Xq | q ∈ Q} corresponding to the discrete modes of the system. In this case, by
taking the upper-semicontinuous over-approximation f̄ to f , we can compute over-
approximations to the set of allowed sequences of discrete events. An example is given
in Section 6.

4.3 Computing under-approximations to the shift map

We can compute lower approximations to the shift space by attempting to compute
periodic orbits. We recall the Lefschetz fixed point index, which for each triple (f, X, U)



182 P. COLLINS

Figure 4.1: A piecewise-continuous interval map.

where f : X → X is a continuous map and U ⊂ X is an open set such that fix f∩∂U = ∅,
assigns an index ind(f, X, U) ∈ Z such that if ind(f, X, U) 6= ∅, then f has a fixed point
in U . Further, the index is local, which means that it depends only on the values of f
on U .

If we define P ◦

s0,s1,...,sk−1
analogously to in Section 4.2, then fk is continuous on

P ◦

s0,s1,...,sk−1
and indeed extends to a continuous function fs0,s1,...,sk−1

:= fsk−1
◦· · ·◦fs1 ◦

fs0 on Ps0,s1,...,sk−1
. Hence for any open set U in X such that U ⊂ Ps0,s1,...,sk−1

, we can
define the fixed-point index of fs0,s1,...,sk−1

over U . Then if ind(fs0,s1,...,sk−1
, P0, U) 6= ∅,

then f has a periodic orbit with itinerary s0, s1, . . . , sk−1, s0, s1, . . ..

Just as for continuous functions, the methods presented here can only be used to
deduce the existence of finitely many periodic orbits. However, since the functions
fs0,s1,...,sk−1

are continuous on Ps0,s1,...,sk−1
, we can in principal use advanced topological

methods to approximate the dynamics. Again, the one-dimensional case is much easier.
Using the regularisation of f , we can show that if fsi

(Psi
) ⊃ Psi+1 for all i, then there

exists an orbit (x0, x1, x2, . . .) with xi ∈ Psi
for all i.

4.4 Ergodic theory and statistical behaviour

We now try to give a probabilistic description of a hybrid system by finding an invariant
probability measure for its return map. If f : X → X is a single-valued map, a measure µ
on X is invariant under f if µ(f−1(A)) = µ(A) for all measurable sets A. Any continuous
map on a compact metric space has an invariant probability measure.

It is known that for piecewise-expanding maps of the interval, there exists an
absolutely-continuous invariant measure [29]. A major generalization of this result is
that certain piecewise monotone-convex mappings also have an absolutely continuous
invariant measure [4]. In higher dimensions the situation is considerably more compli-
cated, though for a generic class of piecewise-expanding maps, there do exist absolutely-
continuous invariant measures [14, 15].

The following example shows that discontinuous maps of the interval need not have
an invariant probability measure.
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Example 4.1 Let

f(x) =





−1 − x if − 2 ≤ x ≤ −1;

x/2 − 1 if − 1 < x < 0;

x/2 + 1 if 0 ≤ x ≤ 1;

1 − x if 1 < x ≤ 2,

as shown in Figure 4.1. Then every orbit starting in [−2, 2] converges to the sequence
(0+, 1+, 0−,−1−, 0+, . . .) but the sequence (0, 1, 0,−1, 0, . . .) cannot be an orbit of and
single-valued map.

The difficulty in the above example is that the the natural “invariant” measure would
assign nonzero weight to the discontinuity point. In cases where an absolutely-continuous
invariant measure exists, the discontinuity points have measure zero and therefore cause
no difficulties.

To obtain an invariant measure for general piecewise-continuous maps, we can lift the
map to the product of the state space and the symbol space.

Let f be piecewise-continuous, with fs := f |Ps
continuous on each element Ps of a

topological partition P , and such that fs extends continuously over P s. Let Σf be the
shift space of f with respect to the partition elements P ◦

s .
For each itinerary ~s, let X~s be the set of points with itinerary or limit itinerary ~s, and

define X̂ :=
⋃

~s∈Σf
{X~s × ~s} with the inherited product topology. Then X̂ is compact if

X is compact, and f lifts to a continuous function f̂ : X̂ → X̂.
There must therefore always exist an invariant measure µ̂ for f̂ . Further, define

µ(A) := µ̂(π−1(A)), where π(x, ~q) = x. We call µ a shift-invariant measure for f . If
µ̂(∂P) = 0, then µ is an invariant measure for f .

We therefore have the following simple theorem.

Theorem 4.2 If f is piecewise-continuous, then f has a shift-invariant measure.

5 Bifurcation Theory for Non-smooth Maps

In this section we describe the most important border-collision bifurcations for one-
dimensional piecewise-smooth maps. The analysis of these bifurcations is considerably
simpler than the analysis of bifurcations in three-dimensional flows, but provides insight
into the higher-dimensional cases. In particular, the nonsingular border-collision bifur-
cations provide a model for corner-collision bifurcations in continuous- and hybrid-time
systems, and the border-collision bifurcations with a square-root singularity provide a
model for grazing bifurcations. and use these to study corner-collision and grazing bifur-
cations in continuous- and hybrid-time systems. In both cases, we consider the continuous
and discontinuous cases separately.

For more detailed exposition of bifurcations in non-smooth systems, see the book [53].

5.1 Continuous border-collision bifurcations

The border-collision bifurcation can occur in systems with continuous evolution, such as
piecewise-affine maps. Border-collision bifurcations were observed in [26, 44, 31, 39, 38];
here we follow the exposition in [40].
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x x

f (x) f (x)

Figure 5.1: A border collision bifurcation for a non-smooth map.

Let fǫ : R → R be a continuous piecewise smooth map with parameter ǫ whose
derivative is discontinuous at 0, as shown in Figure 5.1. The simplest example of a border-
collision bifurcation occurs when fǫ(0) = 0. Assume further that fǫ is differentiable in ǫ
and c = dfǫ(0)/dǫ > 0 at ǫ = 0. We let a = limxր0 f ′

0(x) and b = − limxց0 f ′

0(x), and
assume 0 < a < 1 < b.

Now for ǫ > 0 small, we have fǫ(0) = cǫ+O(ǫ2) > 0, and f2
ǫ (0) = c(1−b)ǫ−O(ǫ)2 < 0.

Further, if xǫ = ξǫ + O(ǫ2) for ξ ≤ 0, then fǫ(x) = (c + aξ)ǫ + O(ǫ2) > x. Taking
Iǫ = [f2

ǫ (0), fǫ(0)], we see that fǫ(Iǫ) ⊂ Iǫ. Hence for ǫ > 0 small, the dynamics is
contained in an interval of size O(ǫ) about 0. The linearization of fǫ(x) about x = 0 is
therefore a good approximation to fǫ in Iǫ.

It can be rigorously shown that linearising at x = 0 yields a normal form of the
bifurcation as an affine map

Fa,b,ǫ(x) =

{
ǫ + ax if x ≤ 0;

ǫ − bx if x ≥ 0,
with 0 < a < 1 and b > 0. (9)

as shown in Figure 5.2. For simplicity, we henceforth only consider the map (9). linearized

D

ε+ax

ε−bx

Figure 5.2: Near a border collision bifurcation and for a piecewise-affine map.

If ǫ < 0, then xp := ǫ/(1 − a) ≤ 0 is a fixed point, and since Fa,b,ǫ(x) ≤ ǫ for all x, all
orbits converge to xp. If ǫ = 0, then 0 is a fixed point, which is stable if b < 1 and
one-sided unstable if b > 1. If ǫ > 0 and 0 < b < 1 then x0 = ǫ/(1 + b) is a stable fixed
point.
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Note that f(0) = 1 and f(1) = 1 − b < 0, and that if x < 0, then x < f(x) < 1.
Hence all orbits eventually enter the interval [0, 1].

The interesting case is ǫ > 0 and b > 1.
Note that by the coordinate transformation x 7→ x/ǫ, we can scale ǫ to equal 1;

we define Fa,b := Fa,b,ǫ. Taking c = 0, the critical point, we see that Fa,b(0) = 1,
F 2

a,b(0) = 1 − b < 0, and F 3
a,b(0) = 1 + a − ab. Let I0 = [1 − b, 0] and I1 = [0, 1].

Clearly Fa,b(I1) = I0 ∪ I1. Then if 1 < b < 1 + 1/a, we have Fa,b(1 − b) = 1 + a − ab >
1 + a − (1 + a) = 0, so f(I0) ⊂ I1. Then for all x ∈ [1 − b, 1], we have (f2)′(x) is either
−ab or b2, so if b > 1/a, then |(f2)′(x)| > 1.

We have therefore shown that

1. Fa,b([1 − b, 1]) ⊂ [1 − b, 1], and

2. |(F 2
a,b)

′(x)| > 1 for all x ∈ [1 − b, 1].

3. [1 − b, 1] =
⋂

∞

n=0 Fn
a,b(U) for all bounded U ⊃ [1 − b, 1].

Hence [1 − b, 1] is a minimal chaotic attractor for Fa,b; in particular, Fa,b has no stable
periodic orbits and strictly positive topological entropy.

Since this situation occurs for any ǫ > 0 regardless of the value of ǫ, we have a
bifurcation to a robust chaotic attractor. Note that the entropy of the attractor is
bounded away from zero, but the size of the attractor is ǫb.

Following [40] we see that the map Fa,b has positive entropy and may have a chaotic
attractor. Similar windows exist in which the system has a chaotic attractor with k
pieces, separated by periodic orbits.

Note that for smooth interval maps, the entropy varies continuously with the param-
eters. Here, the entropy jumps discontinuously at the border-collision bifurcation. By
considering the change in a and b, we can rigorously prove the existence of a chaotic
attractor with high entropy in a generic two-parameter family of maps. Since fǫ is
unimodal, the symbolic dynamics is determined by the kneading theory [33].

5.2 Singular border-collision bifurcation

In an impact oscillator, grazing the impact set causes a square root singularity in the
evolution. If this occurs on a periodic orbit, we have a grazing bifurcation. A normal
form for the grazing bifurcation is given by

f(x) =

{
ǫ + ax if x ≤ 0;

ǫ − b
√

x if x ≥ 0,
(10)

as shown in Figure 5.3. Note that unlike the affine border collision, we cannot scale away
the bifurcation parameter ǫ without affecting the form of the square root term:

F (y) =

{
1 + ay if y ≤ 0;

1 − (b/
√

ǫ)
√

y if y ≥ 0,
(11)

where y = x/ǫ. We therefore prefer to work with the original form (10).
We again look for conditions under which there exists a chaotic attractor. It is easy

to see that the interval [−b
√

ǫ + ǫ, ǫ] is globally attracting. There is a single fixed point
p = (1 + 2ǫ −

√
1 + 4ǫ)/2ǫ, so p ∼ ǫ2 for small ǫ. We also have have f ′(ǫ) = −1/2

√
ǫ.
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ε+ax

ε−
√

x

Figure 5.3: A border collision bifurcation for a map with a square-root singularity.

Now, if −
√

ǫ < x < 0, then fn(x) is first greater than 0 for n ∼ log(c−x), so if we let
n(x) be the minimum n such that Fn(x)(x) > 0, then (fn(x))′(x) ≥ 1/(c + x) for some
constant c depending only on a. Hence for ǫ sufficiently small, there must be a chaotic
attractor of f for x ∈ [−

√
ǫ+ǫ, ǫ]. This is a one-piece attractor if 0 < 1−a+a/

√
ǫ < q ∼ ǫ,

which is impossible for small ǫ. Indeed, as ǫ → 0, the critical point spends increasingly
long in [ǫ−

√
ǫ, 0], and the kneading theory shows that the topological entropy approaches

log 2.

5.3 Discontinuous border-collision bifurcation

We now consider a discontinuous border-collision bifurcation of a stable fixed-point.

f(x) =

{
ax + ǫ if x ≤ 0;

bx − c if x ≥ 0,
(12)

as shown in Figure 5.4.
Assume a < 1, and aNb > 1 for some least integer N ≥ 0. Assume further that ǫ <

1/b. Then f(0−) = ǫ, f(ǫ) = bǫ−1 < 0, and f(bǫ−1) > bǫ−1. If f i(x) < 0 for 0 ≤ i < n,
then a closed form for fn(x) is fn(x) = anx+ǫ(1−an)/(1−a). Since x ≥ bǫ−1, we have
fn(x) ≥ anbǫ−an+ǫ(1−an)/(1−a), so fn(x) > 0 ⇐⇒ ǫ(anb(1−a)+1−an) > an(1−a).

bx−1

ax+ ε

Figure 5.4: A border collision bifurcation for a discontinuous affine map.
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We again look for conditions under which there exists a chaotic attractor. It is easy to
see that the interval [bǫ−1, ǫ] is globally attracting. However, since expansion only occurs
on the interval [0, ǫ], and this interval maps to [−1, bǫ − 1], for small ǫ, the contraction
for x < 0 outweighs the expansion for x > 0. Hence, the the bifurcation, the fixed point
first jumps to a periodic orbit, and this periodic orbit may then split up into a chaotic
attractor as ǫ increases. Hence spontaneous chaos does not occur at this bifurcation.

5.4 Discontinuous singular border-collision bifurcation

We now consider a discontinuous border-collision bifurcation of a stable fixed-point with
a square-root singularity.

f(x) =

{
ax + ǫ if x ≤ 0;

b
√

x − c if x ≥ 0,
(13)

as shown in Figure 5.5.

ax+ ε

b
√

x−1

Figure 5.5: A border collision bifurcation for a map with a discontinuity.

Let d = 0, the discontinuity point, and suppose 0 < a, ǫ < 1 Then f(0−) = ǫ,
f(ǫ) =

√
ǫ − 1 < 0, and f ′(x) > 1/2

√
ǫ for x > 0. Similarly to the case studied in

Section 5.3, a point x < 0 becomes positive if

fn(x) = anx + ǫ(1 − an)/(1 − a) (14)

which takes at most n = log(1 − x(1 − a)/ǫ)/ log(1/a) steps. Since x > −1, we find
n ∼ − log ǫ for fixed a. Hence the derivative of the return map is (an)/2

√
ǫ ∼

√
ǫ for

small ǫ, and so the singularity in the derivative is not sufficient to compensate for the
discontinuity, and the bifurcation causes high-period periodic orbits which may later
break-up to give a chaotic attractor.

6 Case Studies

6.1 Switched queueing/arrival systems

The following switched arrival system was first considered in [8], and later in the book [32].
Tanks Ti, i = 1, 2, 3 containing volume xi of fluid with constant outflows ρ1, ρ2 and

ρ3 can be filled by a single pipe with inflow ρin = ρout := ρ1 + ρ2 + ρ3. There are three
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ρ

ρ

Figure 6.1: A switched arrival system.

modes qi corresponding to filling tank Ti. Since the total volume is preserved, we have
x1 + x2 + x3 = xtot.

A simple switching law is to switch to filling tank Ti whenever xi = 0. The dynamics
of the system is shown in Figure 6.2. If the system begins in mode qi with xi = 0, then
the system switches to mode qj over mode qk if tank Tj empties first, which occurs if
xj/ρj < xk/ρk. Hence the return map f is defined on the sets Ii := {(x, qi) | xi = 0}.
Under the return map we have f(I1) ⊃ I2∪I3, f(I2) ⊃ I3∪I1 and f(I3) ⊃ I1∪I2. Hence
any sequence of mode switches is possible.

x1

x2

x1

x2

x1

x2

q3q1 q2

Figure 6.2: A simple switching law with Zeno behaviour.

Since the system on average spends time ρi/ρ filling tank i, an invariant measure for
the flow is given by 2ρiλ/ρ, where λ is Lesbesgue measure. An invariant measure for the
return map f is given by a measure which is uniform on each Ii, with

µ(Ii) =
1

2

ρi(ρ − ρi)

ρ1ρ2 + ρ2ρ3 + ρ3ρ1
.

Using this, we can deduce that the average switching time is

Tav =
1

4

ρ1 + ρ2 + ρ3

ρ1ρ2 + ρ2ρ3 + ρ3ρ1
=

1

2

ρ

ρ2 − ρ2
1 + ρ2

2 + ρ2
3

.
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If all inflows are equal, this yields 3/4ρ, and if one inflow is twice the other two, this yields
4/5ρ. Compare this with a regular cyclic switching strategy with an average switching
time of 1/3ρ.

A major problem with this switching law is that if two tanks are both close to being
empty, then we switch rapidly between them, and if two tanks become empty at exactly
the same time, then the system deadlocks due to Zeno behaviour. We therefore seek a
switching law with a lower average number of switches.

x1

x2

x1

x2

x1

x2

q3q1 q2

Figure 6.3: A switching law without Zeno behaviour.

A modified switching law is to switch preferentially from tank T1 to tank T2, from T2

to T3, and from T3 to T1. We accomplish this by switching from mode qi to mode qi+1 if
xi+1 drops below a non-zero threshold ξi+1. This succeeds in avoiding Zeno behaviour,
since if x1 and x2 are both low in mode q3, the system switches to mode q1 before x1

reaches 0, and then immediately to mode q2 if x2 is small. The system then remains
away from mode q3 until both x1 and x2 have recovered.

To obtain a return map f in the form of a self map on the sets Ii defined above, we
take the state after switching to mode qi and flow backwards until xi = 0. The resulting
map is shown in Figure 6.4. Notice that we do not now have f(I1) ⊃ I3, as it is not
possible to switch from mode q1 to mode q2 with a value of x1 greater than xtot − ξ2. As
a result, the symbolic dynamics will not include all transition sequences, but sequences
with a large number of repetitions of two modes will be cut (see Figure 6.3).

x3

x2

I2

x1

x2

I3

I1 ξ2 I1

Figure 6.4: The return map from interval I1 in mode q1 for threshold-controlled preferred
switching compared with switching when empty (light).

6.2 Control systems with periodic forcing

We finally consider a simple example of a control system with periodic forcing, where
the control objective is to keep some value within a certain bound.
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ẋ = k(a + b sinωt − x) + u, (15)

where u is some input. Taking period T = 2π/ω and φ = t mod T , we obtain an
autonomous system with two degrees of freedom.

We assume x is some quantity which we need to control below some safe threshold
xmax by means of an safety system described by the input u, which can take values
uoff = 0 and uon < 0. Without any control i.e. u = 0, there is a unique globally
asymptotically stable periodic orbit,

x = a +
b

1 + ω2/k2
sin(ωt − α) where α = tan−1(ω/k). (16)

We consider a number of switching strategies, which illustrate the various bifurcation
scenarios mentioned in Section 5.

First, consider the switching law:

s ; on if x ≥ xmax and φ < φL; s ; off if φ ≥ φU . (17)

The control is turned on if x becomes too high, but the phase is less than a critical value;
the rationale being that if the phase is above the critical value, then the maximum value
of x will only be slightly higher than xmax. The system is turned off at a fixed time
φU . As shown in Figure 6.5, this leads to a discontinuous corner collision if ẋ > 0 and
(x, φ) = (xmax, φL), and a discontinuous grazing if ẋ = 0 and φ < φL when x = xmax.
The bifurcations indicated in Section 5 occur if the corner collision or grazing occur on
the periodic orbit.

x

t

x

t

OFF

ON

φL φU

xmax

Figure 6.5: (a,b) Discontinuous corner collision and discontinuous grazing in a switched control
system. (c) Continuous grazing. (d) Hysteresis switching.

An alternative control law is given by

s ; on if x ≥ xmax; s ; off if x < a + b sinωt. (18)

The control is turned on when x ≥ xmax, and is turned off when the external forcing
a + b sin ωt is sufficiently low that x would decrease without the input u. This leads to
a continuous grazing bifurcation scenario, as depicted in Figure 6.5(c), since we always
have ẋ = 0 immediately after the control is turned off.

Hysteresis switching is a commonly used technique to control a variable within bounds
and avoid overly fast switching. The control law is given by

s ; on if x ≥ xmax; s ; off if x < xoff. (19)
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Assuming −uon is sufficiently large, the system turns before the end of forcing period at
time T . This gives rise to a discontinuous square-root singularity.

Another possible control law is a switching law with fixed hold,

s ; on if x ≥ xmax; s ; off after time τ. (20)

This always gives rise to a stable periodic orbit, since the switching does not introduce
stretching between nearby orbits.

7 Conclusions

In this article, we have considered chaotic dynamics in low-dimensional hybrid systems.
We have seen that the key feature of such systems is discontinuous or non-differentiable
spacial dependence, which allows for the formation of robust chaotic attractors. We
have seen that discontinuous hybrid systems can be regularized to give shift-invariant
measures, and that it is possible to effectively compute approximations to the symbolic
dynamics. We have also considered bifurcations in non-smooth systems arising from
corner collisions and grazing, and shown that these features can spontaneously generate
chaos. Finally, we have illustrated these features using examples from hybrid control
systems.
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[28] Kunze, M. and Küpper, T. Qualitative bifurcation analysis of a non-smooth friction-
oscillator model. Z. Angew. Math. Phys. 48(1) (1997) 87–101.

[29] Lasota, A. and Yorke, James A. On the existence of invariant measures for piecewise
monotonic transformations. Trans. Amer. Math. Soc. 186 (1974) 481–488.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(2) (2008) 169–194 193

[30] Leine, R.I. and Nijmeijer, H. Dynamics and bifurcations of non-smooth mechanical systems,
vol. 18 of Lecture Notes in Applied and Computational Mechanics. Springer-Verlag, Berlin,
2004.
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Abstract: This paper is concerned with the passive control problem of neutral
systems with time-varying delays. Time-varying delays are assumed to appear
in both the state and the control input. A state feedback passive controller and
an output feedback passive controller for neutral systems with time-varying
delays in state and control input are presented. Through modifying algebraic
Riccati equation, we can construct controllers which depend on the maximum
value of the time derivative of time-varying delays. A numerical example is
also given to illustrate the effectiveness of the proposed design method.
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1 Introduction

The theory of neutral delay-differential systems, which contain delays both in its state and
in the derivatives of its states, is of both theoretical and practical interest. For example,
functional differential equations of neutral type are the natural models of fluctuations of
voltage and current in problems arising in transmission lines [1]. Also, the neutral systems
often appear in the study of automatic control, population dynamics, and vibrating
masses attached to an elastic bar. Recently, considerable attention has first been focused
on the stability analysis of various neutral differential systems [2-10]. And there are
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authors pay attention to the oscillation of parabolic equations of neutral type [11-13]
and H∞ control of neutral type [14].

The passivity theory intimately related to the circuit analysis methods [15,16] has
received a lot of attention from the control community since the 70s (see [17-23], to cite
only a few). On the other hand, many efforts have been devoted to the study of output
feedback control of uncertain systems [24-26]. However, to the best of our knowledge, few
authors pay attentions to study the output feedback passive control of neutral systems
with time-varying delays.

In this paper, we shall discuss the passive control problem of neutral systems with
time-varying delays. A state feedback passive controller and an output feedback passive
controller which render the closed-loop system to be quadratic stable and passive for
neutral systems with time-varying delays in state and control input are presented.

The layout of this paper is as follows. In Section 2, the problem to be studied is
stated and some preliminaries are presented. The asymptotical stability and passivity of
neutral system condition is derived in Section 3. A state feedback passive controller and
an output feedback passive controller for neutral systems with time-varying delays in
state and control input are proposed in Section 4 and Section 5, respectively. In Section
6, a numerical example is given to demonstrate the effectiveness of the theoretical results.
And finally, conclusions are drawn in Section 7.

Notation and fact. In the sequel, we denote AT and A−1 the transpose and the
inverse of any square matrix A. We use A > 0 (A < 0) to denote a positive- (negative-)
definite matrix A; and I is used to denote the n × n identity matrix. L2[0,∞] is the
space of integrable function vector over [0,∞]. Rn denotes the n-dimensional Euclidean
space. The symbol “⋆” within a matrix represents the symmetric term of the matrix.

Fact 1 (Schur complement). Given constant matrices Ω1, Ω2, Ω3, where Ω1 = ΩT
1

and 0 < Ω2 = ΩT
2 , then Ω1 + ΩT

3 Ω−1
2 Ω3 < 0 if and only if

(
Ω1 ΩT

3

Ω3 −Ω2

)
< 0 or

(
−Ω2 Ω3

ΩT
3 Ω1

)
< 0.

2 System Description and Preliminaries

In this paper, we consider a class of neutral functional differential equation (NFDE)
described as follows:





ẋ(t) = A0x(t) + A1x(t − τ1(t)) + A2ẋ(t − τ2(t)) + B1w(t) + B2u(t − τ3(t)),
z(t) = C1x(t) + D1u(t) + D11w(t),
y(t) = C2x(t) + D2w(t),
x(t) = φ(t), t ≥ 0.

(1)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the control input with u(t) = 0 for t < 0;
y(t) ∈ Rq is the output measurement; w(t) ∈ Rp is the square-integrable disturbance
input; z(t) ∈ Rp is the controlled output; φ(t) are continuous functions defined on
(−∞, 0]. A0, A1, A2, B1, B2, C1, C2, D1, D2, D11 are given constant matrices with
appropriate dimensions and τ1(t), τ2(t) and τ3(t) are arbitrary differentiable function
satisfying

{
0 ≤ τ1(t) < ∞, 0 ≤ τ2(t) < ∞, 0 ≤ τ3(t) < ∞,
τ̇1(t) ≤ σ1 < 1, τ̇2(t) ≤ σ2 < 1, τ̇3(t) ≤ σ3 < 1.

(2)
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Our problem is to establish the passive control for the system (1) to determine the
conditions. First, we introduce the following definition of passivity.

Definition 2.1 The dynamical system (1) is called passive if
∫

∞

0

wT (t)z(t)dt > β, ∀w ∈ L2[0,∞), (3)

where β is some constant which depends on the initial condition of the system. In
addition, the system is said to be strictly passive (SP) if it is passive and D11 +DT

11 > 0.

3 Asymptotical Stability and Passivity of Neutral System

Now, we consider a class of neutral system with time-varying delays described by:




ẋ(t) = A0x(t) + A1x(t − τ1(t)) + A2ẋ(t − τ2(t)) + A3x(t − τ3(t)) + B1w(t),
z(t) = C1x(t) + D11w(t),
y(t) = C2x(t) + D2w(t),
x(t) = φ(t), t ≥ 0.

(4)

Our first result establishes the passive control of the time-varying delay system (4).

Theorem 3.1 Consider a state-delay neutral system (4), if there exist positive defi-
nite matrices P and Q which satisfy the following algebraic Riccati inequality (ARI):

AT
0 P + PA0 + 2Q + (1 − σ1)

−1PA1Q
−1AT

1 P + (1 − σ2)
−1PA2Q

−1AT
2 P

+(1 − σ3)
−1PA3Q

−1AT
3 P + (PB1 − CT

1 )(D11 + DT
11)

−1(BT
1 P − C1) + M < 0, (5)

where

M = AT
0 QA0 + AT

0 QA1 + AT
0 QA2 + AT

0 QA3 + AT
0 QB1

+AT
1 QA0 + AT

1 QA1 + AT
1 QA2 + AT

1 QA3 + AT
1 QB1

+AT
2 QA0 + AT

2 QA1 + AT
2 QA2 + AT

2 QA3 + AT
2 QB1

+AT
3 QA0 + AT

3 QA1 + AT
3 QA2 + AT

3 QA3 + AT
3 QB1

+BT
1 QA0 + BT

1 QA1 + BT
1 QA2 + BT

1 QA3 + BT
1 QB1,

or equivalently satisfying the linear matrix inequality (LMI):



AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

PA3 PB1 − CT
1 AT

0

0 0 AT
1

0 0 AT
2

−(1 − σ3)Q 0 AT
3

⋆ −(D11 + DT
11) BT

1

⋆ ⋆ −Q−1




< 0. (6)

Then the systems (4) is asymptotically stable and passive for all time-varying state delays
τ1(t), τ2(t) and τ3(t).
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Proof Define a Lyapunov functional V(x(t)) as follows:

V (x(t)) = xT (t)Px(t) +

∫ t

t−τ1(t)

xT (s)Qx(s)ds

+

∫ t

t−τ2(t)

ẋT (s)Qẋ(s)ds +

∫ t

t−τ3(t)

xT (s)Qx(s)ds. (7)

Calculating the derivative of the Lyapunov functional V(x(t)) along the solution of (4),
it follows that

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)P ẋ(t)

+xT (t)Qx(t) − (1 − τ̇1(t))x
T (t − τ1(t))Qx(t − τ1(t))

+ẋT (t)Qẋ(t) − (1 − τ̇2(t))ẋ
T (t − τ2(t))Qẋ(t − τ2(t))

+xT (t)Qx(t) − (1 − τ̇3(t))x
T (t − τ3(t))Qx(t − τ3(t))

≤ ẋT (t)Px(t) + xT (t)P ẋ(t)

+2xT (t)Qx(t) − (1 − σ1)x
T (t − τ1(t))Qx(t − τ1(t))

+ẋT (t)Qẋ(t) − (1 − σ2)ẋ
T (t − τ2(t))Qẋ(t − τ2(t))

−(1 − τ̇3(t))x
T (t − τ3(t))Qx(t − τ3(t))

= xT (t)
(
AT

0 P + PA0 + 2Q
)
x(t)

+2xT (t)PA1x(t − τ1(t)) + 2xT (t)PA2ẋ(t − τ2(t))

+2xT (t)PA3x(t − τ3(t)) + 2xT (t)PB1w(t)

−(1 − σ1)x
T (t − τ1(t))Qx(t − τ1(t))

+ẋT (t)Qẋ(t) − (1 − σ2)ẋ
T (t − τ2(t))Qẋ(t − τ2(t))

−(1 − σ3)x
T (t − τ3(t))Qx(t − τ3(t)).

So we can obtain that

V̇ (x(t)) − 2zT (t)w(t) = xT (t)(AT
0 P + PA0 + 2Q)x(t)

+2xT (t)PA1x(t − τ1(t)) + 2xT (t)PA2ẋ(t − τ2(t))

+2xT (t)PA3x(t − τ3(t)) + 2xT (t)(PB1 − CT
1 )w(t)

−wT (t)(D11 + DT
11)w(t) + ẋT (t)Qẋ(t)

−(1 − σ1)x
T (t − τ1(t))Qx(t − τ1(t))

−(1 − σ2)ẋ
T (t − τ2(t))Qẋ(t − τ2(t))

−(1 − σ3)x
T (t − τ3(t))Qx(t − τ3(t))

= ηT (t)Ωη(t), (8)

where

η(t) =
[
x(t) x(t − τ1(t)) ẋ(t − τ2(t)) x(t − τ3(t)) w(t)

]T

,

Ω =




AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆
⋆ ⋆ ⋆
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PA3 PB1 − CT
1

0 0
0 0

−(1 − σ3)Q 0
⋆ −(D11 + DT

11)




+




A0

AT
1

AT
2

AT
3

BT
1




Q
(

A0 A1 A2 A3 B1

)
.

From Schur complement, it easily follows that (5) and (6) hold. Hence,

V̇ (x(t)) ≤ 2zT (t)w(t). (9)

Integrating (9) from t0 to t1, we have

∫ t1

t0

zT (t)w(t)dt >
1

2

[
V (x(t1)) − V (x(t0))

]
.

Since V (x(t)) > 0 for x 6= 0 and V (x(t)) = 0 for x = 0 , it follows that as t0 = 0 and
t1 → ∞ that the system (4) with w = 0 is asymptotically stable and passive. 2

Remark 3.1 In this section, we provide a method of solving the synthesis problem for
neutral systems with time-varying delays. In Section 4 and Section 5, a state feedback
passive controller and an output feedback passive controller for neutral systems with
time-varying delays in state and control input are proposed.

4 State-Feedback Passive Controller

On the basis of Theorem 1, we now want to construct the state feedback controller

u(t) = Kx(t), (10)

such that the input-state-delay neutral system (1) is asymptotically stable and passive.
Then the transformed systems become




ẋ(t) = A0x(t) + A1x(t − τ1(t)) + A2ẋ(t − τ2(t)) + B1w(t) + B2Kx(t − τ3(t)),
z(t) = (C1 + D1K)x(t) + D11w(t),
y(t) = C2x(t) + D2w(t),
x(t) = φ(t), t ≥ 0.

(11)

Theorem 4.1 Consider a state-delay neutral system (11), if there exist positive def-
inite matrices P which satisfy the following inequality:




AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

PB2K PB1 − (C1 + D1K)T AT
0

0 0 AT
1

0 0 AT
2

−(1 − σ3)Q 0 AT
3

⋆ −(D11 + DT
11) BT

1

⋆ ⋆ −Q−1




< 0, (12)
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and
D1K = BT

1 P − C1, (13)

then the system (11) is passive by the state-feedback passive controller (10).

Proof The closed form of (11) is similar to (4). Therefore, by Theorem 3.1, given
positive definite matrix Q, if there exits positive definite symmetric matrix P which
satisfies the following inequality




AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

PB2K PB1 − (C1 + D1K)T AT
0

0 0 AT
1

0 0 AT
2

−(1 − σ3)Q 0 AT
3

⋆ −(D11 + DT
11) BT

1

⋆ ⋆ −Q−1




< 0. (14)

Since there are two unknown matrices P, K to be solved in (14), we can let the matrices
P, K in (14) satisfy the following two conditions at the same time




AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

PB2K PB1 AT
0

0 0 AT
1

0 0 AT
2

−(1 − σ3)Q 0 KT BT
2

⋆ −(D11 + DT
11) BT

1

⋆ ⋆ −Q−1




< 0, (15)

−PB1(D11 + DT
11)

−1(C1 + D1K) − (C1 + D1K)T )(D11 + DT
11)

−1BT
1 P

+(C1 + D1K)T (D11 + DT
11)

−1(C1 + D1K) < 0. (16)

Then the controller (10) can make system (11) be asymptotically stable and passive.
From (16), we observe that if we choose

D1K = BT
1 P − C1, (17)

then the inequality (16) is satisfied. In order to satisfied (15), we let

AT
0 P + PA0 + 2Q + (1 − σ1)

−1PA1Q
−1AT

1 P + (1 − σ2)
−1PA2Q

−1AT
2 P
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+(1 − σ3)
−1PA3Q

−1AT
3 P + (PB1 − CT

1 )(D11 + DT
11)

−1(BT
1 P − C1) + M = −Q. (18)

Therefore, we can say that the P in (15) is the solution satisfying the following modified
algebraic Riccati equation shown as follows:

AT
0 P + PA0 + 3Q + (1 − σ1)

−1PA1Q
−1AT

1 P + (1 − σ2)
−1PA2Q

−1AT
2 P

+(1 − σ3)
−1PA3Q

−1AT
3 P + (PB1 − CT

1 )(D11 + DT
11)

−1(BT
1 P − C1) + M = 0. (19)

The existence of solution K in (17) can be seen in the following:

(i) If D1 is square matrix and det(D1) 6= 0, the unique solution K = D−1
1 (BT

1 P −C1)
is presented.

(ii) Suppose the size of D1 is n × m (n > m) and rank[D1 BT
1 P − C1] = r. Then

if r = m, the unique solution K in (17) exists; if r < m, there are many solutions; if
r > m and det(DT

1 D1) 6= 0, a least square approximation solution of K in (17) is shown
as follows:

K = (DT
1 D1)

−1DT
1 (BT

1 P − C1). (20)

2

5 Output Feedback Passive Controller

When state variable are not available for the feedback, it is necessary to construct a
output feedback passive controller. If the state in (1) is not available, we propose the
following dynamic output feedback controller in order to stabilize system (1):

{
η̇(t) = Gη(t) + Ly(t),
u(t) = Kη(t), η(0) = 0,

(21)

where η(t) ∈ Rn is the controller state vector, and G, L, K are gain matrices with ap-
propriate dimensions to be determined later. Applying this controller (21) to system (1)
results in the closed-loop system

{
ẋ(t) = A0x(t) + A1x(t − τ1(t)) + A2ẋ(t − τ2(t)) + A3x(t − τ3(t)) + B1w(t),

z(t) = C1x(t) + D11w(t),
(22)

where

x(t) =

(
x(t)
η(t)

)
, A0 =

(
A0 0
LC2 G

)
, A1 =

(
A1 0
0 0

)
,

A2 =

(
A2 0
0 0

)
, A3 =

(
0 B2K
0 0

)
, B1 =

(
B1

LD2

)
, C1 =

(
C1 D1K

)
.
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Theorem 5.1 For a given symmetric positive Q, if there exist positive definite ma-
trices P and gain matrices G, L, K such that the following linear matrix inequality (LMI):




AT
0 P + PA0 + 2Q CT

2 LT PA1 0 PA2 0
LC2 GT + G + 2Q 0 0 0 0
⋆ ⋆ (σ1 − 1)Q 0 0 0
⋆ ⋆ ⋆ (σ1 − 1)Q 0 0
⋆ ⋆ ⋆ ⋆ (σ2 − 1)Q 0
⋆ ⋆ ⋆ ⋆ ⋆ (σ2 − 1)Q
⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0 PB2K PB1 − CT AT
0 CT

2 LT

0 0 LD2 − KT DT
1 0 GT

0 0 0 AT
1 0

0 0 0 0 0
0 0 0 AT

2 0
0 0 0 0 0

(σ3 − 1)Q 0 0 0 0
⋆ (σ3 − 1)Q 0 KT BT

2 0
⋆ ⋆ −(D11 + DT

11) BT
1 DT

2 LT

⋆ ⋆ ⋆ −Q−1 0
⋆ ⋆ ⋆ 0 −Q−1




< 0, (23)

then the time-varying input-state-delay neutral system (1) is passive by the output feed-
back passive controller (21).

Proof Define positive symmetric matrices P > 0 and Q > 0 by

P =

(
P 0
0 I

)
, Q =

(
Q 0
0 Q

)
.

Similar to the proof of Theorem 1, we can easily get that if the following LMI




A
T

0 P + PA0 + 2Q PA1 PA2 PA3 PB1 − C
T

1 A
T

0

⋆ (σ1 − 1)Q 0 0 0 A
T

1

⋆ ⋆ (σ2 − 1)Q 0 0 A
T

2

⋆ ⋆ ⋆ (σ3 − 1)Q 0 A
T

3

⋆ ⋆ ⋆ ⋆ −D11 − DT
11 B

T

1

⋆ ⋆ ⋆ ⋆ ⋆ −Q
−1




< 0,

(24)
holds, then the time-varying input-state-delay neutral system (1) is passive by the output
feedback passive controller (21).

Now, substitute the expressions of A0, A1, A2, A3, B1, C1, P , Q into (24), it easily
follows that (23) holds. This completes the proof. 2
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6 An Illustrative Example

In this section, the expanded theoretical results are illustrated through a numerical
example. Consider the differential system of neutral type (1) under supposing

A0 =

(
0 1
−1 −2

)
, A1 =

(
0 0

0.2 0.1

)
, A2 =

(
0 0

0.3 0.2

)
, B1 =

(
0

0.1

)
,

B2 =

(
0
1

)
, C1 =

(
1 1

)
, C2 =

(
1 1

)
, D1 = 1, D2 = 1, D11 = 1,

τ1(t) = 2.0 + 0.3 sin(t), τ2(t) = 3.5 + 0.4 cos(t), τ3(t) = 4.0 + 0.2 sin(t).

Hence we have σ1 = 0.3, σ2 = 0.4, σ3 = 0.2. In order to solve the solution simply, we

select Q =

(
0.2 0
0 0.2

)
. So using MATLAB LMI Toolbox we solve the condition (12)

and (13) and obtain that

K =
(
−0.9427 −0.8289

)
, P =

(
1.4530 0.5734
0.5734 1.7115

)
> 0.

Hence, the system (1) is passive by the state-feedback passive controller (10).

7 Conclusions

In this paper, the passivity analysis and passive controllers’ designs for the neutral sys-
tems with time-varying delays in state and control input are investigated by the Lyapunov
functional method. The results are presented in terms of LMIs or Riccati equation, which
can be solved easily by using the effective interior-point algorithm [24]. A numerical ex-
ample is worked through to illustrate the effectiveness of results.
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Abstract: Here a mission to Neptune for the mid-term 2008–2020 is pro-
posed. A direct transfer to Neptune is considered and also Venus, Earth,
Jupiter and Saturn gravity assists are used for the trip to Neptune. Several mis-
sion options are analyzed, such as: Earth–Neptune, Earth–Jupiter–Neptune,
Earth–Saturn–Neptune, Earth–Jupiter–Saturn–Neptune, Earth–Venus–Earth–
Jupiter–Neptune, Earth–Venus–Earth–Jupiter–Saturn–Neptune. All the trans-
fers are optimized in terms of the ∆V. The goal of this study is to compare the
mission options in order to find a good compromise between the ∆V and time
of flight to Neptune.

Keywords: Neptune’s system; swing-by; interplanetary mission.

Mathematics Subject Classification (2000): 70F99, 70M20, 78M50.

1 Introduction

On August 20, 1977, the Voyager 2 was launched towards the exploration of our solar sys-
tem. On August 25, 1989, it passed by Neptune. The gravity assist is a proven technique
in interplanetary exploration, as exemplified by the missions Voyager, Galileo, Cassini
etc. NASA’s Solar System Exploration (Hammel et al. [1]) theme listed a Neptune
mission as one of its top priorities for the mid-term (2008–2013). The interplanetary tra-
jectory of the spacecraft is represented by a series of segments of undisturbed Keplerian
motion in the gravispheres of relevant celestial bodies, while on the boundaries of these
segments, the trajectory passes from the gravisphere into the heliosphere and vice versa.
Studies of the interplanetary flight with gravity assist maneuvers are known to deal with
cases where the spacecraft, on its way from one celestial body to another, approaches
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206 C.R.H. SOLÓRZANO, A.A. SUKHANOV AND A.F.B.A. PRADO

a third attracting body which causes a significant change in the spacecraft trajectory.
Ordinarily, this planetary maneuver provides a non-propulsive change in the spacecraft’s
heliocentric energy which can reduce the amount of propellant needed to complete an
interplanetary mission (Labunsky et al. [2]). The heliocentric energy may be increased
or decreased, depending upon the geometric details of the encounters (turn of velocity
vector over the sphere of influence of the planet). Several interplanetary’s missions used
this tecnique. For example Sukhanov [3] proposed a mission to Sun using gravity assist
of the inner planets.

2 The Mission Options

Earth and Venus are the inner planets that have a gravity field large enough to be used.
Jupiter and Saturn show optimum opportunities for flights to Neptune using the energy
gained during the close approach. However, to approach Neptune closely, the spacecraft
should have low excess velocity to reduce the braking cost. The optimal launches dates in
the time interval 2008–2020 are considered. The following transfer schemes are analyzed:

• Direct Earth to Neptune (EN) transfer.

• Earth - Jupiter - Neptune (EJN) transfer.

• Earth - Saturn - Neptune (ESN) transfer.

• Earth - Jupiter - Saturn - Neptune (EJSN) transfer.

• Earth - Venus - Earth - Jupiter - Neptune (EVEJN) transfer.

• Earth - Venus - Earth - Jupiter - Saturn - Neptune (EVEJSN) transfer.

Transfer Scheme Launch Date
ExcessVelocity

V∞(km/s)
MinimumTotal

∆V (km/s)
EN 13.04.2012 9.436 8.992
EJN 14.01.2018 11.728 6.506
ESN 13.02.2017 12.955 7.775
EJSN 18.11.2015 15.757 6.719

EVEJN 24.08.2016 14.578 6.646
EVEJSN 09.06.2015 17.275 7.206

Table 2.1: Optimal transfer schemes for flight time of 12 years.

As it is seen from the Table 2.1, the minimum total ∆V is 6.506 km/s for the scheme
EJN , with a flyby altitude of 0.2x103 km (Earth) and 1.2x103 km (Neptune). The excess
velocity near Neptune is 11.728 km/s. Other scheme with low ∆V (minimum total) is
EVEJN, however the excess velocity near Neptune is higher than in the EJN option.

Figures 2.1-2.2 shows the configuration for the transfer scheme EJN and EVEJN.
Table 2.2 shows the optimal launch date for several transfers. The minimum total ∆V
is 5.441 km/s for the scheme EVEJSN and the total flight duration is 23.69 years, with
flyby altitude of 0.2x103 km (Earth) and 1.2x103 km (Neptune). The excess velocity
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near Neptune is 5.083 km/s, however the EVEJN scheme have minor excess velocity
near Neptune (3.748 km/s) for the optimal transfer time of 29.95 years.

Figure 2.3 shows the planetary configuration and the transfer trajectory for the
scheme EVEJSN. It is a typical 2015 Earth–Venus–Earth–Jupiter–Saturn–Neptune flight
path projected on the plane of the ecliptic. It is possible that all the trajectories after
Neptune (depending on the targeting conditions selected) have energy enough to escape
from the solar system.

Figure 2.4 shows several transfer schemes from Earth to Neptune. Looking the curves
of minimum total ∆V as function of the time of the transfer, the EJN, EJSN EVEJN,
and EVEJSN schemes are most acceptables if the transfer duration is limited by the time
of 12 years.

Figure 2.1: Planetary configuration and transfer trajectory for 2018 Earth–Jupiter–Neptune.

Transfer Scheme Optimal Launch Date
ExcessVelocity

V∞(km/s)
MinimumTotal

∆V (km/s)
EN 09.04.2009 6.258 8.691
EJN 13.01.2018 7.050 6.367
ESN 17.01.2014 7.468 7.273
EJSN 26.11.2015 4.124 6.428

EVEJN 28.05.2013 3.748 5.642
EVEJSN 30.05.2015 5.083 5.441

Table 2.2: Optimal launch date for several transfers.

The EVEJSN scheme has several minimum total ∆V equal to the EJN, EJSN, EVEJN
schemes. For a time of transfer larger than 14 years, the EVEJSN scheme is optimal, in
terms of minimum total ∆V . Figure 2.5 shows the excess velocity near Neptune. The
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Figure 2.2: Planetary configuration and transfer trajectory for 2016 Earth–Venus–Earth–
Jupiter–Neptune.

Figure 2.3: Planetary configuration and transfer trajectory for 2015 Earth–Venus–Earth–
Jupiter–Saturn–Neptune.
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Figure 2.4: Total ∆V vs. time of flight for the spacecraft.

Figure 2.5: V∞ vs. time of flight of the spacecraft.
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Figure 2.6: Optimal launch date for several transfer schemes.

EVEJSN scheme is optimal in terms of minimum total ∆V , however excess velocity near
Neptune is very high in this scheme. The EJN and EVEJN schemes are more efficients
for low excess velocity near Neptune and for minimum of ∆V .

Figure 2.6 shows the minimum total ∆V as a function of the optimal launch date for
several transfer schemes in the time interval 2008–2020. The results are shown in Table
2.2. The gravity assists maneuvers with Jupiter and Saturn has enormous potential to
reduce the total ∆V for trajectories to Neptune, however for the time interval considered
Mars and Uranus are not in good positions.

Remember that it is also possible to use Earth gravity assists and Venus flybys as
another way to increase the heliocentric energy of the trajectory to reach Jupiter. Besides
the synodic period between Earth and Venus is 1.6 years, and the synodic period between
Earth and Jupiter is 1.09 years.

For an initial Venus flyby (EVEJN, EVEJSN), we considered that the minimum flyby
altitude at Venus is 0.3× 103km. When the launch ∆V decreases, the V∞ at Venus also
decreases.

Considering an initial Jupiter flyby, look that when the spacecraft have a flyby altitude
at Jupiter of 4.22 × 105km (EJN scheme and time of flight of 12 years), the launch ∆V
decreases, but the excess velocity in Jupiter increases.

For an Earth–Neptune direct transfer, when the launch ∆V decreases, the V∞ at
Neptune also decreases. This is the result of low energy launch, however, this is suffi-
cient for arrival at Neptune. For the Earth–Jupiter–Neptune scheme, the transfer angle
E-J undergoes to a decrease in the time interval considered. This is possible for the
planetary configuration and for the initial conditions, however Jupiter is capable of the
largest transfer angles for a given excess velocity due to its great mass. Following an
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initial Jupiter flyby (Earth-Jupiter-Saturn-Neptune), the transfer angle is too high and
it decreases in the time interval considered. The others transfer angles are quasi-constant
(J-N, J-S, S-N).

The launch ∆V for the Earth–Saturn–Neptune option also decreases, and the transfer
angle E-S also decreases. This angle have the largest value for the excess velocity. The
Saturn–Neptune angle is quasi-constant. For the Earth–Venus–Earth–Jupiter–Neptune
and Earth–Venus–Earth–Jupiter–Saturn–Neptune schemes, the transfer angle E-V de-
creases, however the others transfer angles are quasi-constant. The transfer angle of V-E
is high. The exploration of our outer solar system can also be increased by taking ad-
vantage of asteroid flyby opportunities, when the spacecraft passes through the asteroid
belt. To incorporate an asteroid flyby, we first need to optimize a trajectory to Neptune
with planetary flybys and then search for asteroids that pass close to this trajectory, to
finally reoptimize the trajectory including one or more asteroid flybys.

3 Conclusions

In this paper, two important parameters, namely the minimum total ∆V and the ex-
cess velocity near Neptune V∞ were obtained as functions of the launch date and flight
duration. These two parameters determine the fuel consumption to launch from LEO,
midcourse and to brake the spacecraft near Neptune, respectively. However, the braking
near Neptune, in principle, can be performed using an aerobraking maneuver, so the
launch ∆V was considered the most important parameter. Remember that in this paper
an active braking was not used. The EJN scheme provides minimum total ∆V for the
transfer duration with less than 14 years. This scheme also gives relatively low V∞. For
longer transfers the EVEJSN scheme is optimal in terms of minimum total ∆V, however
V∞ is high in this scheme. The EJN and EVEJSN schemes are most acceptables. If the
transfer duration is limited by the time of 14 years or less, the EJN scheme is preferable
in all respects. The EVEJSN scheme is getting preferable for transfers longer than 14
years.
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Abstract: In this note, an attempt is made to generalize the Sturm’s com-
parison theorem. Let t1 and t2 be two consecutive zeros of a solution y of an
implicit equation

g1(y
′′(t)) + r(t)g2(y(t)) = 0

and x be a solution of

f1(x
′′(t)) + q(t)f2(x(t)) = 0.

Under certain conditions stated on the given functions f1, f2, g1, g2, q and r, we
show that x has a zero between t1 and t2. Sturm’s comparison theorem turns
out to be a consequence of the established result.

Keywords: Implicit differential equations; comparison theory.
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1 Introduction

Sturm’s comparison theorem plays an important role in the theory of oscillations. In this
note an attempt is made to generalize the Sturm’s comparison theorem. Let f1, f2, g1

and g2 ∈ C(ℜ,ℜ) and q, r ∈ C(ℜ+,ℜ) be given functions. Let x and y be solutions of
the implicit second order equations

f1(x
′′(t)) + q(t)f2(x(t)) = 0, (1.1)

g1(y
′′(t)) + r(t)g2(y(t)) = 0. (1.2)

In this note, we assume the existence of solutions x and y of (1.1) and (1.2) on J = [0, α],
α > 0. Under certain conditions on f1, f2, g1, g2, q and r, we establish that between any
two consecutive zeros t1, t2 of y, there is a zero of x, where [t1, t2] ⊆ J . Hypotheses along
with the main result are stated in Section 2. Section 3 is devoted to a few consequences
and examples of this result.
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2 Main Result

This section deals with the main result. Let f1, f2, g1 and g2 ∈ C(ℜ,ℜ) and q, r ∈
C(ℜ+,ℜ). We need the following hypotheses for further study

H1 : min
06=u∈ℜ

g1(u)

u
≥ max

06=u∈ℜ

f1(u)

u
,

H2 : min
06=u∈ℜ

f2(u)

u
≥ max

06=u∈ℜ

g2(u)

u
,

H3 : uf1(u) > 0, ug2(u) > 0, ∀ 0 6= u ∈ ℜ.

Theorem 2.1 Let x and y be nontrivial solutions of (2.1) and (2.2) respectively.

f1(x
′′(t)) + q(t)f2(x(t)) = 0. (2.1)

g1(y
′′(t)) + r(t)g2(y(t)) = 0. (2.2)

Assume that the hypotheses H1 −H3 hold. Let t1, t2 be consecutive zeros of y and q(t) >
r(t) > 0 for t ∈ I = (t1, t2). Then, x vanishes at least once on I.

Proof By hypothesis, y(t1) = 0 = y(t2) and y(t) 6= 0, ∀ t ∈ I. Suppose x(t) 6= 0,
∀ t ∈ I. Suppose if, y′′(t) = 0 for some t ∈ I, then from H1, H3 and (2.2), we have
g2(y(t)) = 0 as well, but this contradicts the non vanishing of y(t) in I. So y′′(t) 6= 0,
∀ t ∈ I. Similarly x′′(t) 6= 0, ∀ t ∈ I. From H1–H3, we have

g1(y
′′(t))/y′′(t) ≥ f1(x

′′(t))/x′′(t) > 0, ∀ t ∈ I

and f2(x(t))/x(t) ≥ g2(y(t))/y(t) > 0, ∀ t ∈ I.

From the above two inequalities and since 1/r(t) > 1/q(t) > 0, for all t ∈ I, we have

y(t)g1(y
′′(t))

g2(y(t))r(t)y′′(t)
>

x(t)f1(x
′′(t))

q(t)f2(x(t))x′′(t)
. (2.3)

Define m(t) = x(t)y′(t) − x′(t)y(t), t ∈ I. Then, m′(t) = x(t)y′′(t) − x′′(t)y(t).
Case 1. x(t) > 0, y(t) > 0 on I.
In this case, m(t1) > 0, m(t2) < 0. This implies that

m(t2) − m(t1) < 0. (2.4)

From (2.1) we have,
f1(x

′′(t)) < 0, t ∈ I.

The sector condition H3 on f1 now implies x′′(t) < 0 for all t ∈ I. Similarly y′′(t) < 0
for all t ∈ I. We notice that

m′(t) = −
x(t)f1(x

′′(t))y′′(t)

q(t)f2(x(t))
+

y(t)g1(y
′′(t))x′′(t)

g2(y(t))r(t)
∀ t ∈ I. (2.5)

By (2.3), we have m′(t) > 0, t ∈ I,

m(t2) − m(t1) > 0. (2.6)

Inequalities (2.4) and (2.6) lead to a contradiction. Thus, x vanishes at least once between
t1 and t2. The cases when x(t) > 0, y(t) < 0; x(t) < 0, y(t) > 0; x(t) < 0, y(t) < 0 are
similarly dealt. These proofs are omitted for brevity. 2

Remark 2.1 When f1, f2, g1 and g2 are identity functions, the celebrated Sturm’s
comparison theorem is a particular case of Theorem 2.1, see [3, 4]. Theorem 2.1 can also
be viewed as a nonlinear version of the Sturm’s comparison theorem.
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3 A Few Consequences

This section primarily deals with consequences concerning Theorem 2.1. We observe that
the hypotheses H1 and H2 can be relaxed. Let S1 = {x(t) : t ∈ I}, S2 = {y(t) : t ∈ I}
and S ⊇ S1 ∪ S2. Then the condition in H1 and H2, we can replace u ∈ ℜ by u ∈ S.
In practice it is hard to figure out what S is? For nonlinear equations these conditions
could be impracticable unless we have a prior bounds on the solutions. Secondly, none
of the condition have monotonicity criteria, see [1, 2] but sector condition is a part and
parcel of it. Thirdly, we can derive results by comparing the implicit equations with an
explicit equation for nonoscillation also, as shown below,

Proposition 3.1 Let y be any nontrivial solution of

y′′(t) + f(y′′(t)) +
1

5t2
y(t) = 0, t > 0, (3.1)

where, f : ℜ → ℜ be any continuous function satisfying uf(u) > 0, ∀ 0 6= u ∈ ℜ. Then
(3.1) is non oscillatory.

Proof Consider the differential equation

x′′(t) +
1

4t2
x(t) = 0. (3.2)

(3.1) and (3.2) can be identified as (2.2) and (2.1) respectively, with f1(u) = u = f2(u) =
u, q(t) = 1

4t2
, g1(u) = u + f(u), uf(u) > 0, ∀ 0 6= u ∈ ℜ, g2(u) = u, r(t) = 1

5t2
.

Equation (3.2) is nonoscillatory, as y(t) = t
1
2 is a solution of (3.2). It is easy to see that

f1, f2, g1 and g2 satisfy the hypotheses H1 − H3. So, Theorem 2.1 implies that (3.1) is
nonoscillatory.

Proposition 3.2 Let x be any nontrivial solution of

x′′(t) + 2(k2x(t) + f(x(t))) = 0, (3.3)

where, f : ℜ → ℜ be any continuous function satisfying uf(u) > 0 for all 0 6= u ∈ ℜ,
k > 0. Then (3.3) is oscillatory.

Proof Consider the differential equation

y′′(t) +
k2

4
y(t) = 0. (3.4)

With f1(u) = u, f2(u) = k2u + f(u), uf(u) > 0, ∀ 0 6= u ∈ ℜ, g1(u) = u, g2(u) = k2

4 u,
q(t) = 2, r(t) = 1 (3.3) and (3.4) can be identified as (2.1) and (2.2). It is easy to see
that f1, f2, g1 and g2 satisfy the hypotheses H1–H3. So, Theorem 2.1 implies that x
vanishes between any two consecutive zeros of y(t) = sin k

2 t. Since (3.4) is oscillatory.
So, by Theorem 2.1, (3.3) is oscillatory. 2

Remark 3.1 In proving (3.3) is oscillatory, we are using conditions different from
what has been used in [1, Remark 1] and [2].
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Example 3.1 Consider the differential equations

f1(x
′′(t)) + q(t)f2(x(t)) = 0, (3.5)

g1(y
′′(t)) + r(t)g2(y(t)) = 0, (3.6)

where, f1(u) = ue−|u|, f2(u) = u, q(t) = e−|sin t|, g1(u) = u = g2(u), r(t) = e−1.
Then, x(t) = sin t satisfies (3.5). Compare this with the equation

y′′(t) + r(t)y(t) = 0,

with the solution y(t) = sin(t/
√

e) on [0, π
√

e]. It is trivial to check that f1, f2, g1 and
g2 satisfy the hypotheses H1 − H3. Also q(t) > r(t) > 0. Theorem 2.1 implies that not
only must sin t vanish in [0, π

√
e], which is clear, but also so must every other nontrivial

solution of (3.5).

Example 3.2 Consider the differential equations

f1(x
′′(t)) + q(t)f2(x(t)) = 0, (3.7)

g1(y
′′(t)) + r(t)g2(y(t)) = 0, (3.8)

where f1(u) = u, f2(u) = ue|u|, q(t) = 2, g1(u) = u = g2(u), r(t) = 1. Here f1, f2,
g1 and g2 satisfy the hypotheses H1–H3. Also q(t) > r(t) > 0. Let x be a nontrivial
solution of (3.7). Then, Theorem 2.1 implies that x vanishes at least once between any
two consecutive zeros of y(t) = sin t. Since (3.8) is oscillatory, so (3.7) is oscillatory.
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