
Nonlinear Dynamics and Systems Theory, 8(3) (2008) 255–268

An Extension of Barbashin–Krasovskii–LaSalle

Theorem to a Class of Nonautonomous Systems

Radu Balan
∗

Department of Mathematics and CSCAMM, University of Maryland, College Park, MD 20742

Received: July 07, 2007; Revised: April 6, 2008
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1 Introduction and Main Results

Let us consider the following time-varying dynamical system:

ẋ = f(t, x), x ∈ D, t ∈ R, (1)

where D is a domain in Rn containing the origin (0 ∈ D ⊂ Rn). About f we suppose
the following:

1) f(t, 0) = 0, for any t ∈ R;
2) uniformly continuous in t, uniformly in x ∈ D, i.e. ∀ε > 0 ∃δε > 0 such that

∀t1, t2 ∈ R, |t1 − t2| < δε and ∀x ∈ D, ‖ f(t1, x) − f(t2, x) ‖< ε;
3) uniformly local Lipschitz continuous in x for any t ∈ R, i.e. for any compact set

K ⊂ D, there exists a positive constant LK > 0 such that:

‖f(t, x) − f(t, y)‖ ≤ LK‖x − y‖ for any x, y ∈ K and t ∈ R.
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4) bounded in time, that means there exists a continuous function M : D → R such
that:

‖f(t, x)‖ ≤ M(x) for any t ∈ R.

With these hypotheses we know that for any (t0, x0) ∈ R × D there exists a unique
solution of the Cauchy problem:

ẋ = f(t, x), x(t0) = x0, (2)

with the initial data (t0, x0). We denote by x(t; t0, x0) this solution. One can define
this solution for t ∈ (t0 − T, t0 + T ) where T = supr>0,Br(x0)⊂D

r
‖f‖Br(x0)

, the supremum

is taken over all positive radius such that the ball centered around x0, Br(x0) = {x ∈
Rn|‖x−x0‖ < r}, is completely included in D and ‖f‖Br(x0) = sup(t,x)∈R×B̄r(x0) ‖f(t, x)‖
is a supremum norm of f with respect to Br(x0) (where is no confusion we denote
Br = Br(0)). The function γt,t0(x0) = x(t; t0, x0) is well defined for some bounded open
set S, γt,t0 : S → U ⊂ D (with U open and bounded) and it is Lipschitz continuous
with a Lipschitz constant given by L = exp(LU |t− t0|) (LU being the Lipschitz constant
associated to f , as above, on the compact set Ū). All these results can be found in any
textbook of differential equations (for instance see [6]).

Our concern regards the stability behaviour of the equilibrium point x̄ = 0. First we
recall some definitions about stability (in Liapunov sense).

Definition 1.1 We say the equilibrium point x̄ = 0 for (1) is uniformly stable, if for
any ε > 0 there exists δε > 0 such that for any t0 ∈ R and x0 ∈ R with ‖x0‖ < δε the
solution x(t; t0, x0) is defined for all t ≥ t0 and furthermore ‖x(t; t0, x0)‖ < ε, for every
t > t0.

Definition 1.2 We say that the equilibrium point x̄ = 0 for (1) is uniformly asymp-
totic stable, if it is uniformly stable and there exists a δ > 0 such that for any t0 ∈ R

and x0 ∈ D with ‖x0‖ < δ the solution x(t; t0, x0) is defined for every t ≥ t0 and
limt→∞ x(t; t0, x0) = 0.

If in the definition of uniform stability we interchange ”there exists δε > 0” with
”for any t0 ∈ R” (thus δ will depend on ε and t0, δε,t0) then the equilibrium is said
(just) stable. If we proceed the same in the second definition we obtain that the equi-
librium is asymptotic stable. For time-invariant systems there is no distinction between
uniform stability and stability, or uniform asymptotic stability and asymptotic stability.
In general case, the uniform (asymptotic) stability implies (asymptotic) stability, but the
converse is not true (see for instance [7]).

We say that the dynamics (1) has a positive invariant set N if for any t0 ∈ R and
x0 ∈ N the solution x(t; t0, x0) ∈ N for all t ≥ t0 for which it is well-defined. Then it
makes sense to consider the dynamics restricted to N , i.e. the function:

X : R+ × R × N → N, X(τ ; t0, x0) = x(τ + t0; t0, x0),

where τ runs up to a maximal value depending on (t0, x0). Moreover, by considering the
case of f from (1) we obtain that X(τ ; t0, 0) = 0, for any τ > 0, t0 ∈ R. Therefore we
may define the corresponding stability properties of the restricted dynamics as above,
where we replace D by N .

The main result of this paper is given by the following theorem:
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Theorem 1.1 Consider the time-varying dynamical system (1) for which f has the
properties 1) − 4). Suppose there exists a function V : D → R of class C1 such that:

H1) V (x) ≥ 0 for every x ∈ D and V (0) = 0;
H2) There exists a continuous function W : D → R such that

dV

dt
(t, x) = ∇V (x) · f(t, x) ≤ W (x) ≤ 0.

H3) Let E = {x ∈ D|W (x) = 0} denote the zero-set (or kernel) of W ; suppose that
f restricted to E is time-invariant (i.e. f(t, x) = f(t0, x), for every t ∈ R and x ∈ E).
Let us denote by N the maximal positive invariant set in E, i.e. for any x0 ∈ N and
t0 ∈ R, x(t; t0, x0) ∈ N , for every t ∈ [t0, t0 + Tx0) in the maximal interval of definition
of the solution.

Then the dynamics (1) has at x̄ = 0 an uniformly asymptotic stable equilibrium point
if and only if the dynamics restricted to N has an asymptotic stable equilibrium at x̄ = 0.

Even if it has appeared in the literature in a more general setting (I refer to [23]), it
is worth mentioning the form the invariance principle takes in this context:

Theorem 1.2 (Invariance principle) Consider the time-varying dynamical sys-
tem (1) for which f has the properties 1)−4). Suppose there exists a function V : D → R

of class C1 such that:
H1) It is bounded below, i.e. V (x) ≥ V0 for any x ∈ D for some V0 ∈ R;
H2) There exists a continuous function W : D → R such that

dV

dt
(t, x) = ∇V (x) · f(t, x) ≤ W (x) ≤ 0.

H3) Let E = {x ∈ D|W (x) = 0} denote the zero-set (or kernel) of W ; suppose that f

resticted to E is time-invariant (i.e. f(t, x) = f(t0, x), for any t ∈ R and x ∈ E). Let us
denote by N the maximal positive invariant set included in E, i.e. for any x0 ∈ N and
t0 ∈ R, x(t; t0, x0) ∈ N , for any t ∈ [t0, t0 + Tx0) in the maximal interval of definition of
the solution.

Then any bounded trajectory of (1) tends to N , i.e. if (t0, x0) is the initial data for a
bounded solution included in D then:

lim
t→∞

d(x(t; t0, x0), N) = 0. (3)

Remark 1.1 There are two directions in which Theorem 1.1 generalizes the well-
known Barbashin–Krasovskii–LaSalle’s theorem (see [15], [16] or [14]); firstly it requires
V to be only nonnegative and not strictly positive, secondly it applies to the case of
time-varying dynamical systems. Several extensions were presented in literature dealing
with the stability result.

The first result that I am referring to is Lemma 5 from [5]. In that lemma only
autonomous systems are considered and the restricted dynamics is required to be attrac-
tive in the sense that all trajectories should tend to the origin. I point out that only
the requirement of attractivity is not enough; this can be seen in a trivial case, namely
the 2 dimensional system given by Vinograd (conform [7]), for which the origin is an
attractive equilibrium but not stable, and take V ≡ 0. I need to point out also that, for
the purposes of their paper [5], their Lemma 5 can be replaced by Theorem 3.1 of this
paper without affecting the other results from their paper.
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A second result has appeared in [22] but not in a general and explicit form as here.
In fact in [22] the author is concerned with the stability of the large-scale systems which
are already decomposed in triangular form. Thus, this result solves the problem only
in the case when we can perform the observability decomposition of the dynamics (1)
with respect to the output W (x). This case requires a supplementary condition, namely
the codistribution span by dW, dLfW, . . . , dLn

fW to be of constant rank on D (see [12]).
Among other requirements, this geometric condition implies also that N is a manifold,
whereas we do not assume here this rather strong assumption.

I acknowledge the existence of a recently published paper that deals with a similar
extension of the Liapunov theorem, yet only for autonomous systems ([10]). However,
we were unaware of this result at the time we were working in this field (i.e. 1993–
1995). More recently, in [11], the authors extended to time-varying systems these previous
results. It is interesting to note, based on this last paper and historical references therein,
the autonomous version of these results were first stated and proved by Boulgakov and
Kalitine in [3]. Compared to [11], here we present a stabilizability result (Theorem 4.1)
tailored specifically for affine nonlinear control systems.

Remark 1.2 Some other papers deal with extensions of the invariance principle for
nonautonomous systems. In two special cases, when the system is either asymptotically
autonomous (in [23]) or asymptotically almost periodic (in [19]), the bounded solution
tends to the largest pseudo-invariant set in E. However they use the classical Liapunov
theorems to obtain the uniform boundedness of the solutions. Thus they require the ex-
istence of a strictly positive definite function playing the rôle of Liapunov function, while
here we require only nonnegativeness of the Liapunov-like function. In other approaches
an additional auxiliary function is assumed and by means of extra conditions the time
in E is controlled (see the results of Salvadori or Matrosov, e.g. in [20]). In a third
approach an extra condition on V̇ is considered without any additional condition on the
vector field; such an approach is considered in [1].

Remark 1.3 The condition that the restricted dynamics to be uniformly asymptot-
ically stable is necessary and sufficient. Thus it is a center-manifold-type result where a
knowledge about a restricted dynamics to some invariant set implies the same property
of the whole dynamics. We point out here that the set N does not need to be a manifold.

Remark 1.4 One could expect that simple stability of the restricted dynamics would
imply uniform stability of the restricted dynamics. But this is not true as we can see
from the following example:

Example 1.1 Consider the following autonomous planar system:

{

ẋ = y2

ẏ = −y3 , (x, y) ∈ R2, (4)

The solution of the system is given by (x, y) →
(

x + ln(1 + y2t), y√
1+y2t

)

. It is obvious

that the equilibrium is not stable but if we take V = y2 we have dV
dt = −2y4 and on the

set E = N = {(x, 0), x ∈ R} the dynamics is trivial stable ẋ = 0.

The problem is not the nonisolation of the equilibrium, but the existence of some invariant
sets in any neighborhood of the equilibrium;



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(3) (2008) 255–268 259

Remark 1.5 Theorem 1.2 is the natural generalization of the invariance principle
to the class of systems considered in this paper. The conclusion of this theorem applies
only to bounded trajectories. Thus we have to know apriori which solutions are bounded.
Since they are bounded we can extend them indefinitely in positive time. Thus it makes
sense to take the limit t → ∞ in (3). We mention that a more general invariance principle
can be obtained even under weaker conditions than those from here (see [23]).

The organization of the paper is the following: in the next section we give the proof
of these results. In the third section we consider the autonomous case and we present
the systemic consequences related to the nonlinear Liapunov equation and a special type
of zero-state detectability. In the fourth section we consider a nonlinear Riccati equation
(or Hamilton-Jacobi equation) and we present a result of robust stabilizability by output
feedback. The last section contains the conclusions and is followed by the bibliography.

2 Proof of the Main Results

We prove by contradiction the uniform stability of the equilibrium. For this, we construct
a C1-convergent sequence of solutions that are going away from the origin and whose limit
is a trajectory, thus contradicting the hypothesis.

For the uniform asymptotic stability, we prove first that the ω-limit set of bounded
trajectories is included in N (implicitly proving the invariance principle — Theorem
1.2) and then we adapt a classical trick (used for instance in Theorem 34.2 from [7])
that the convergence of trajectories in ω-limit set will attract the convergence of the
bounded trajectory itself. In both steps we use essentially the time-invariant property of
f restricted to E. In proving the uniform stability we also obtain that the solution can
be defined on the whole positive real set (can be completely extended in future).

Theorem 1.2 (the invariance principle) will follow simply from a lemma that we state
during the proof of uniform attractivity.

First we need a lemma.

Lemma 2.1 Let f be a vector field defined on a domain D and having the properties
1-4 as above. Let (ti)i be a sequence of real numbers and (wi)i, wi : [a, b] → D be
a sequence of trajectories for the time-translated vector field f with ti, i.e. ẇi(t) =
f(t + ti, wi(t)).

If the trajectories are uniformly bounded, i.e. there exists M > 0 such that ‖wi‖∞ <

M , for any i, then we can extract a subsequence, denoted also by (wi)i, uniformly con-
vergent to a function w in C1([a, b]; D), i.e. wi → w and ẇi → ẇ both uniformly in
C0([a, b]; D).

Proof We apply the Ascoli-Arzelà lemma twice: first to extract a subsequence
such that (wi)i is uniformly convergent and second to extract further another subsequence
such that (ẇi)i is uniformly convergent. Then we obtain that limi

d
dtwi = d

dt limi wi.
1. We verify that (wi)i are uniformly bounded and equicontinuous. The uniformly

boundedness comes from ‖wi‖∞ < M . The equicontinuity comes from the uniformly
boundedness of the first derivative. Indeed, since ‖wi‖ ≤ M , the closed ball B̄M is
compact and f(t, ·) is continuous on B̄M , there exists a constant A such that ‖f(t, x)‖ ≤
A, for any (t, x) ∈ R × B̄M . Then

‖ẇi(t)‖ = ‖f(t + ti, wi(t))‖ ≤ A, for any i and t ∈ [a, b].
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Thus (wi)i is relatively compact and we can extract a subsequence, that we denote also
by (wi)i, which is uniformly convergent to a function w ∈ C0([a, b]; D).

2. We prove that (ẇi)i is relatively compact. We have already proved the uniform
boundedness ‖ẇi‖∞ ≤ A. For the equicontinuity we use both the uniform continuity in
t and uniform local Lipschitz continuity in x, of f . Let LM be the uniform Lipschitz
constant corresponding to the compact set B̄M . Then

‖ẇi(t1) − ẇi(t2)‖ = ‖f(ti + t1, wi(t1)) − f(ti + t2, wi(t2))‖ ≤

‖f(ti + t1, wi(t1)) − f(ti + t2, wi(t1))‖ + ‖f(ti + t2, wi(t1)) − f(ti + t2, wi(t2))‖.

Let ε > 0 be arbitrarily. Then we choose δ1 such that ‖f(s1, x) − f(s2, x)‖ <
ε
2 , for any |s1 − s2| < δ1 and x ∈ B̄M . On the other hand: ‖f(ti + t2, wi(t1)) − t(ti +
t2, wi(t2))‖ ≤ LM‖wi(t1)−wi(t2)‖ ≤ LMA|t1 − t2|. Then we choose δ = min(δ1,

ε
2LM A ).

Then the left-hand side from the above inequality is also bounded by ε
2 for any t1, t2 with

|t1− t2| < δ. Thus ‖ẇi(t1)− ẇi(t2)‖ < ε
2 + ε

2 = ε, for any i and t1, t2 ∈ [a, b], |t1− t2| < δ.

We can now extract a second subsequence from (wi)i such that (ẇi)i is also uniformly
convergent and this ends the proof of lemma. 2

Proof of uniform stability in Theorem 1.1.

Let us assume that the equilibrium is not uniformly stable. Then there exists ε0 > 0
such that for any δ, 0 < δ < ε0 there are x0, t and ∆ > 0 such that ‖x0‖ < δ and
‖x(t + ∆; t, x0)‖ = ε0, ‖x(t + τ ; t, x0)‖ < ε0, for 0 ≤ τ < ∆. We choose ε0 (eventually
by shrinking it) such that B̄ε0 ∩N is included in the attraction domain of the origin (for
the restricted dynamics).

By choosing a sequence (δi)i converging to zero we obtain sequences (x0i)i, (ti)i and
(∆i)i such that: ‖x0i‖ → 0 and ‖x(ti + ∆i; ti, x0i)‖ = ε0.

Let δ < ε0 be such that for any z0 ∈ Bδ ∩ N we have
‖x(t; 0, z0)‖ < ε0

2 for any t > 0 (such a choice for δ is possible since the dynam-
ics restricted to N is stable). Let i0 be such that δi < δ, for i > i0. We denote by
(ui)i>i0 the time moments such that ‖x(ti + ui; ti, x0i)‖ = δ and ‖x(t; ti, x0i)‖ > δ for
t > ti + ui. Since the spheres S̄ε0 and S̄δ are compact we can extract a subsequence
(indexed also by i) such that both xi = x(ti + ∆i; ti, x0i) and yi = x(ti + ui; ti, x0i)
are convergent to x∗, respectively to y∗; xi → x∗, yi → y∗, ‖x∗‖ = ε0, ‖y∗‖ = δ.
Since V is continuously nonincreasing on trajectories and limi V (x0i) = 0, we get
V (x∗) = V (y∗) = 0. Therefore x∗, y∗ ∈ N .

Suppose ‖f(x, t)‖ ≤ A on B̄ε0 , for some A > 0. Then one can easily prove that
∆i − ui ≥ ε0−δ

A = T1, for any i > i0 (i.e. the flight time between two spheres of radius δ

and ε0 has a lower bound).

Define now the time-translated vector fields fi(t, x) = f(t + ti + ui, x) and denote
by wi : [0, T1] → B̄ε0 the time-translated solutions wi(t) = x(t + ti + ui; ti, x0i). Then:
ẇi(t) = fi(t, wi(t)), 0 ≤ t ≤ T1. By applying Lemma 2.1 we get a subsequence uniformly
convergent to a trajectory w1 : [0, T1] → B̄ε0 ∩N , such that w1(0) = limi wi(0) = y∗ and

‖w1(t)‖ > δ, for 0 < t ≤ T1. If ‖w1(T1)‖ < ε0 we obtain that ∆i −ui −T1 >
ε0−‖w1(T1)‖

A ,

for some i ≥ i1 > i0. Then, we denote T2 = T1 + ε0−‖w1(T1)‖
A and we repeat the

scheme. We obtain another sequence which is uniformly convergent to a trajectory
w2 : [0, T2] → B̄ε0 ∩N such that w2(0) = y∗, ‖w2(t)‖ > δ, 0 < t ≤ T2 and w2(t) = w1(t),
for 0 ≤ t ≤ T1.
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Thus we extend each trajectory wk : [0, Tk] → B̄ε0 ∩ N to a trajectory wk+1 :
[0, Tk+1] → B̄ε0 ∩ N such that Tk+1 ≥ Tk, wk+1(t) = wk(t) for 0 ≤ t ≤ Tk and
‖wk+1(t)‖ > δ, for 0 < t ≤ Tk+1.

We end this sequence of extensions in two cases:

1) limk Tk = T ∗ < +∞ (the limit may be reached in a finite number of steps), in
which case we have limk ‖wk(Tk)‖ = ε0 and thus limk wk(Tk) = x∗; or:

2) limk Tk = +∞.

In the first case we obtain a trajectory w∗ : [0, T ∗] → B̄ε0 ∩ N such that w∗(0) = y∗,
w∗(T ∗) = x∗ with ‖w∗(0)‖ = δ and ‖w∗(T ∗)‖ = ε0. But this is a contradiction with the
choice of δ (and of stability of the restricted dynamics).

In the second case we obtain a trajectory w∗ : [0,∞) → B̄ε0 ∩N such that ‖w∗(0)‖ =
δ < ε0 and ‖w∗(t)‖ > δ for t > 0. Thus limt→∞ w∗(t) 6= 0 contradicting the assumption
that B̄ε0∩N is included in the attraction domain of the origin. Now the proof is complete.
2.

For the proof of uniformly attractivity we recall a few definitions and results.

Definition 2.1 A point x∗ is called ω-limit point for the trajectory x(t; t0, x0) if there
exists a sequence (tk)k such that limk→∞ tk = ∞, x(t; t0, x0) is defined for all t > t0 and
limk x(tk; t0, x0) = x∗. The set of all ω-limit points is called the ω-limit set and is denoted
by Ω(t0, x0). It characterizes the trajectory x(t; t0, x0) and it depends on the initial data
(t0, x0).

Theorem 2.1 (Birkoff’s limit set theorem, see [4]) A bounded trajectory ap-
proaches its ω-limit set, i.e. limt→∞ d(x(t; t0, x0), Ω(t0, x0)) = 0, where d(p, S) =
infx∈S ‖p − x‖ is the distance between the point p and the set S.

There is also a very useful result about uniformly continuous functions.

Lemma 2.2 (Barbălat’s lemma, see [2]) If g : [t0,∞) → ∞ is a uniformly con-

tinuous function such that the following limit exists and is finite, limt→∞

∫ t

t0
g(τ)dτ , then

limt→∞ g(t) = 0.

Proof of uniform attractivity in Theorem 1.1

We already know that x̄ = 0 is uniformly stable. What we have to prove is the
uniform attractivity.

Let ε0 > 0 be chosen with the following properties: for any t0 and x0 ∈ D ∩ B̄ε0

the positive trajectory x(t; t0, x0) is bounded by ε1 (i.e. x(t; t0, x0) ∈ Bε1); for any t1
and x1 ∈ D ∩ Bε1 the trajectory x(t; t1, x1), t > t1, is bounded by some M ; and for any
x2 ∈ N ∩ Bε1 the trajectory x(t; t0, x2) tends to the origin limt→∞ x(t; t0, x2) = 0. We
are going to prove that limt→∞ x(t; t0, x0) = 0.

Let us consider the ω-limit set Ω(t0, x0). It is enough to prove that Ω(t0, x0) = {0},
because of Birkoff’s limit set theorem.

Let x∗ ∈ Ω(t0, x0) and suppose x∗ 6= 0. Let us denote by x(t) = x(t; t0, x0) and
g(t) = ∇V (x(t)) · f(t, x(t)). Since the solution is continuous and bounded, so is g(t). On
the other hand

V (x(t)) = V (x0) +

∫ t

t0

g(τ)dτ.
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Since ẋ(t) = f(t, x(t)) and x(t) is bounded we obtain that it is also uniformly contin-
uous. Thus g(t) is also uniformly continuous (recall we have assumed f(·, x) is uni-
formly continuous in t). Let (tk)k be a sequence that renders x∗ a ω-limit point. Then
limk V (x(tk)) = V (limk x(tk)) = V (x∗). Since V (x(t)) is a decreasing function bounded
below, there exists the limit: limt→∞ V (x(t)) = V (x∗). Now, applying Barbălat’s lemma
we obtain limt→∞ g(t) = 0 or W (x∗) = 0. Thus Ω(t0, x0) ⊂ E, the kernel of W .

In this point we need a result about the behaviour of solutions starting at x∗. We
mention that the following lemma is a consequence of Theorem 3 from [23]. But, since
we are under stronger conditions, we have found a simpler proof that we are going to
present here (our conditions are stronger because we need to obtain uniform stability
and consequently boundedness of the solutions when Liapunov function is only positive
semidefinite, which overall means a weaker condition).

Lemma 2.3 The positive trajectory starting at x∗ is included in E and thus the
Ω-limit set is a positive invariant set included in N .

Proof Let τ > 0 be an arbitrary time interval. Let (tk)k be the sequence that
renders x∗ a ω-limit point for the trajectory x(t) = x(t; t0, x0). Then, if we denote by
xk = x(tk) we have limk xk = x∗. Consider the following sequence of functions: wk :
[0, τ ] → D, wk(t) = x(t + tk; tk, x∗). We have chosen x0, t0 such that all these functions
are bounded by M , i.e. ‖wk‖∞ < M . We have wk(0) = x∗ and V (wk(t)) ≤ V (x∗). Let
us denote by yt

k = x(t+ tk), for any 0 ≤ t ≤ τ , and let LM be the Lipschitz constant of f

on the compact B̄M . Then: ‖yt
k−wk(t)‖ ≤ eLmt‖xk−x∗‖ and, since limk xk = x∗ we get

limk ‖yt
k −wk(t)‖ = 0. On a hand, since V (x∗) = limt→∞ V (x(t)) and V is nonincreasing

on trajectories we have V (yt
k) > V (x∗) and also limk V (yt

k) = V (x∗) = limk V (wk(t)). On
the other hand, since (wk)k are uniformly bounded we apply Lemma 2.1 and we obtain
a subsequence uniformly convergent to a function w ∈ C1([0, τ ]; D ∪ B̄M ). Obviously
V (w(t)) = V (x∗) for any 0 ≤ t ≤ τ . Thus W (w(t)) = 0 and w(t) ∈ E. On the other
hand, since f is continuous in (t, x) we obtain that w is an integral curve of f , i.e.
ẇ(t) = f(t∗, w(t)), for 0 ≤ t ≤ τ and any t∗. In particular, for t∗ = tk we get w(t) is
a solution of the same equation as wk(t) and w(0) = wk(0) = x∗. By the uniqueness of
the solution they must coincide. Then x(t + tk; tk, x∗) ∈ E for 0 ≤ t ≤ τ . But τ was
arbitrarily; thus x(t; t0, x

∗) ∈ E for any t and then x∗ ∈ N . 2

Since the trajectory starting at x∗ is included in N , it should converge to the origin

(the equilibrium point). Let us denote by ε = ‖x∗‖
2 . From uniform stability there exists

a δ > 0 such that for any x̃ ∈ D, ‖x̃‖ < δ implies ‖x(t2; t1, x̃)‖ < ε, for any t2 > t1.
Let ∆t be a time interval such that ‖x(t; 0, x∗)‖ < δ

2 for any t > ∆t. We consider the

compact set C, the δ
2 -neighborhood of the compact curve Γ = {x(t; 0, x∗)|0 ≤ t ≤ ∆t}:

C = {x ∈ D|d(x, Γ) ≤ δ

2
} =

⋃

t∈[0,∆t]

¯Bδ/2(x(t; 0, x∗))

which is the union of the closed balls centered at x(t; 0, x∗) and of radius δ
2 . We set

δ1 = δ
2exp(−LC∆t) where LC is the uniform Lipschitz constant of f on the compact

set C. Since the solution is uniformly Lipschitz with respect to the initial point x0 we
have that for any t1 ∈ R and x1 such that ‖x1 − x∗‖ < δ1 we get: ‖x(t1 + ∆t; t1, x1) −
x(∆t; 0, x∗)‖ < δ

2 and then ‖x(t1 + ∆t; t1, x1)‖ < δ. Furthermore, from the choice of δ

we obtain that ‖x(t1 + τ ; t1, x1)‖ < ε, for any τ > ∆t or ‖x(t1 + τ ; t1, x1) − x∗‖ > ε, for
any τ > ∆t.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(3) (2008) 255–268 263

Now we pick a tn such that ‖x(tn; t0, x0) − x∗‖ < δ1. Then, from the previous
discussion ‖x(tn + τ ; t0, x0) − x∗‖ > ε, for any τ > ∆t which contradicts the limit
limk x(tk; t0, x0) = x∗. This contradiction comes from the hypothesis that x∗ 6= 0. Thus
Ω(t0, x0) = {0} and now the proof is complete. 2

Proof of Theorem 1.2 (The invariance principle)
If x(t; t0, x0) is a bounded trajectory then, from Birkoff’s limit set theorem it ap-

proaches its ω-limit set. On the one hand we can use Barbălat’s lemma and prove that
W vanishes on ω-limit set of bounded trajectories. On the other hand, as we have
proved in Lemma 2.3, the ω-limit set is invariant and included in N . Thus the bounded
trajectory approaches the set N . 2

3 The Autonomous Case: Consequences in Nonlinear Control Theory

Consider the following inputless nonlinear control system:

S

{

ẋ = f(x)
y = h(x)

, x ∈ D ⊂ Rn, y ∈ Rp, (5)

such that f(0) = 0, h(0) = 0 and D a neighborhood of the origin. Suppose f is local
Lipschitz continuous and h continuous on D. Then denote by x(t, x0) the flow generated
by f on D (i.e. the solution of ẋ = f(x), x(0) = x0), by E = ker h = {x ∈ D|h(x) = 0},
the kernel of h and by N the maximal positive invariant set included in E, i.e. the set
N = {x̃ ∈ D|h(x(t, x̃)) = 0 for any t ≥ 0 such that x(t, x̃) has sense}.

We present two concepts of detectability for (5). The first one has been used by many
authors (see for instance [13]).

Definition 3.1 The pair (h, f) is called zero-state detectable (or z.s.d.) if x̄ = 0 is
an attractive point for the dynamics restricted to N , i.e. there exists an ε0 > 0 such that
for any x0 ∈ N , ‖x0‖ < ε0, limt→∞ x(t, x0) = 0.

Definition 3.2 The pair (h, f) is called strong zero-state detectable (or strong z.s.d.)
if x̄ = 0 is an asymptotical stable equilibrium point for the dynamics restricted to N ,
i.e. it is zero-state detectable and for some ε0 and for any x0 ∈ N with ‖x0‖ < ε0,
limt→∞ x(t, x0) = 0.

We see that strong z.s.d. implies z.s.d., but obviously the converse is not true.
In this framework, as a consequence of the main result we can state the following

theorem.

Theorem 3.1 For the inputless nonlinear control system (5) with f local Lipschitz
continuous and h continuous, consider the following nonlinear Liapunov equation:

∇V · f + ‖h‖q = 0 (6)

or the following nonlinear Liapunov inequality:

∇V · f + ‖h‖q ≤ 0 (7)

for some q > 0. Suppose there exists a positive semidefinite solution of (6) or (7) of class
C1 defined on D such that V (0) = 0.

Then the pair (h, f) is strong zero-state detectable if and only if x̄ = 0 is an asymp-
toticaly stable equilibrium for the dynamics (5).
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Below we give an example.

Example 3.1 Consider the dynamics:

ẋ1 = −x3
1 + Ψ(x2)

ẋ2 = −x3
2

, (x1, x2) ∈ R2, (8)

where Ψ : R → R is local Lipschitz continuous, Ψ(0) = 0 and there exist constants a > 0,
b ≥ 1 such that:

|Ψ(x)| ≤ a|x|b, ∀x2.

If we choose as output function h(x) = x2
2 we see that the pair (h, f) is strong zero-state

detectable; indeed, the set E = {x ∈ R2|h(x) = 0} = {(x1, 0)|x1 ∈ R} and the dynamics
restricted to E is ẋ1 = −x3

1 which is asymptotically stable.

Now, if we choose V (x) =
x2
2

2 we have V̇ = −x4
2 and thus V is a solution of the

Liapunov equation (6) with q = 2. Then, the equilibrium is asymptotically stable, as a
consequence of the Theorem 3.1.

On the other hand we can explicitely solve for x2: x2(t) = x20√
2(1+x2

20t)
and then we

have: |Ψ(x2(t))| ≤ C(1 + Bt)−1/2 for some B, C > 0 and any t ≥ 0. Now the asymptotic
stability follows as a consequence of Theorem 68.2 from [7] (stability under perturbation).

4 An Application to Robust Stabilizability

We present here, as an application, a robust stabilizability result for a nonlinear affine
control system. In fact it is an absolute stability result about a particular situation. More
general results about absolute stability for nonlinear affine control system will appear in
a forthcoming paper. We base our approach on the existence of a positive semidefinite
solution of some Hamilton-Jacobi equation or inequality. Discussions about solutions of
this type of equation may be found in [21].

Consider the following single input–single output control system:
{

ẋ = f(x) + g(x)u
y = h(x)

, x ∈ D ⊂ Rn, u, y ∈ R, (9)

where f and g are local Lipschitz continuous vector fields on a domain D including the
origin, h is a local Lipschitz real-valued function on D, and f(0) = 0, h(0) = 0. Consider
also a local Lipschitz output feedback:

ϕ : R → R, ϕ(0) = 0. (10)

We define now two classes of perturbations associated to this feedback. Let a > 0 be a
positive real number. The first class contains time-invariant perturbations:

P1 = {p : R → R , p is local Lipschitz, p(0) = 0 and |p(y)| < a|ϕ(y)| , ∀y 6= 0}

while the second class is composed by time-varying perturbations:

P2 = {p : R×R → R , p(y, t) is local Lipschitz in y for t fixed and uniformly continuous in t

for any y fixed , p(0, t) ≡ 0 and there exists ε > 0 such that |p(y, t)| < (a−ε)|ϕ(y)| , ∀y 6= 0, t}
Now we can define more precisely the concept of robust stability.
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Definition 4.1 We say the feedback (10) robustly stabilizes the system (9) with re-
spect to the class P1 ∪ P2 if for any perturbation p ∈ P1 ∪ P2 the closed-loop with the
perturbed feedback ϕ + p has an asymptotically stable equilibrium at the origin.

In other words, we require that the origin to be asymptotically stable for the dynamics:

ẋ = f(x) + g(x)(ϕ(h(x)) + p(h(x), t)) (11)

for any p ∈ P1 ∪ P2. Since the null function belongs to P1, the feedback ϕ itself must
stabilize the closed-loop too.

With these preparations we can state the result.

Theorem 4.1 Consider the nonlinear affine control system (9) and the feedback (10).
Suppose the pair (h, f) is strong zero-state detectable and suppose the following Hamilton-
Jacobi equation:

∇V · f + (
1

2
∇V · g + ϕ ◦ h)2 − (1 − a2)(ϕ ◦ h)2 = 0, V (0) = 0 (12)

or inequality:

∇V · f + (
1

2
∇V · g + ϕ ◦ h)2 − (1 − a2)(ϕ ◦ h)2 ≤ 0, V (0) = 0 (13)

has a positive semidefinite solution V of class C1 on D.
Then the feedback ϕ robustly stabilizes the system (9) with respect to the class P1∪P2.

Proof Let us consider a perturbation p ∈ P1∪P2. Then, the closed-loop dynamics
is given by (11). We compute the time derivative of the solution V of (12) with respect
to this dynamics:

dV

dt
= ∇V · f(x) + ∇V · g(x)(ϕ(h(x)) + p(h(x), t)).

After a few algebraic manipulations we get:

dV

dt
≤ −(

1

2
∇V · g − p ◦ h)2 + (p ◦ h)2 − a2(ϕ ◦ h)2.

Now, for p ∈ P1,
dV
dt is time-independent and we may take for instance:

W (x) = (p(h(x)))2 − a2(ϕ(h(x)))2 ≤ 0.

For p ∈ P2,
dV
dt is time-dependent and we define:

W (x) = −(2aε− ε2)(ϕ(h(x)))2 ≤ 0.

Either a case or the other, we obtain (recall the definitions of P1 and P2):

dV

dt
≤ W (x) ≤ 0.

The kernel-set of W is given by:

E = {x ∈ D| W (x) = 0} = {x ∈ D| h(x) = 0}.



266 R. BALAN

We see that the closed-loop dynamics (11) restricted to E is simply given by ẋ = f(x)
and is time-independent. Moreover, since we have supposed (h, f) is strong zero-state
detectable, it follows that the restricted dynamics to the maximal positive invariant set
in E has an asymptotically stable equilibrium at the origin. Now, applying Theorem 1.1,
the result follows. 2

Let us consider now an example.

Example 4.1 Consider the following planar nonlinear control system:







ẋ1 = −x3
1 + u,

ẋ2 = −x3
2,

y = x3
2.

(14)

We are interested to find how robust the feedback ϕ(y) = y is, i.e. how large we can
choose a such that ϕ robustly stabilizes the system (14) with respect to the class P1∪P2.

The Hamilton-Jacobi equation (12) takes the form:

−x3
1

∂V

∂x1
− x3

2

∂V

∂x2
+ (

1

2

∂V

∂x1
+ x3

2)
2 − (1 − a2)x6

2 = 0

or:

−x3
1

∂V

∂x1
− x3

2

∂V

∂x2
+

1

4
(
∂V

∂x1
)2 + x2

∂V

∂x1
+ a2x6

2 = 0.

A solution of this equation is:

V (x1, x2) =
a2

4
x4

2.

For any a > 0 it is positive semidefinite and the system (14) is strong zero-state de-
tectable. Thus, as a consequence of Theorem 4.1, we can choose a arbitrary large such
that ϕ robustly stabilizes the system (14) with respect to the class P1 ∪ P2.

On the other hand, for any feedback Φ, local Lipschitz and:

|Φ(y)| ≤ a|y| for some a > 0,

we have seen in the previous example that the closed-loop has an asymptotically stable
equilibrium at the origin.

5 Conclusions

In this paper we study an extension of Barbashin-Krasovskii-LaSalle and Invariance
Principle to a class of time-varying dynamical systems. We impose two type of conditions
on the vector field: one is regularity (we require uniformly continuity with respect to t

and uniformly local Lipschitz continuoity and boundedness with respect to x); the other
condition requires the vector field to be time-invariant on the zero-set E of an auxiliary
function. In this setting we find that the asymptotic behaviour of the dynamics restricted
to the largest positive invariant set in E determines the asymptotic stability character
of the full dynamics.

Then we study two applications in control theory. The first application concerns
the notion of detectability. We give another definition for this notion, called strong zero-
state detectability and we show how the existence of a positive semidefinite solution of the
Liapunov equation or inequation is related to the asymptotic stability of the equilibrium.
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We obtain a nonlinear equivalent of the linear well-known result: if the pair (C, A) is
detectable and there exists a positive solution P ≥ 0 of the Liapunov algebraic equation
AT P + PA + CT C = 0, then the matrix A has all eigenvalues with negative real part.

The second application is on the problem of robust stabilizability. We give sufficient
conditions such that a given feedback robustly stabilizes the closed-loop with respect
to two sector classes of perturbations (time-invariant and time-varying). The condition
is formulated in term of the existence of a positive solution of some Hamilton-Jacobi
equation or inequality.

Interesting open questions are to find extensions of the results presented here to the
class of switched linear systems (see [8] for an excellent starting point), and to the class
of large scale systems (see [18] for a novel approach).
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