


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(3) (2008) 269–286 283

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2

2.5

3

3.5

4

4.5

5

t(s)

Estimated stator resistance 

Figure 5.6: Estimated stator resistance.
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Figure 5.7: Estimation error.
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Figure 5.8: Performance of DSSM based on fuzzy control with estimated stator
resistance.



284 D. BOUDANA, L. NEZLI, A. TLEMÇANI, M.O. MAHMOUDI AND M. DJEMÄI
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Figure 5.9: Performance of conventional DSSM DTC with estimated stator resis-
tance.

DTC based on fuzzy logic for DSSM decrease the torque ripple and has a better dynamic
and static performance. Nevertheless the variations of the stator resistance cause the
DTC drive system to become unstable. So a PI stator resistance estimator is designed
and applied to eliminate the effect of the stator resistance variation. It is shown that the
stator flux and torque response is very satisfactory.

7 Appendix 1: List of Principal Symbols

va1, vb1, vc1 : simple voltage of stator three phase first winding.
va2, vb2, vc2 : simple voltage of stator three phase second winding.
ia1, ib1, ic1: stator current a, b, c phase of first winding.
ia2, ib2, ic2 : stator current a, b, c phase of second winding.
is, ı̂s: stator current vector, estimated stator current vector.
vs : stator voltage vector.
vd, vq : stator voltages d-q axis.
vα, vβ : stator voltages α-β axis.
vx, vy : stator voltages x-y axis.
[Lss] : stator inductance matrix.
[Msr]: stator-rotor mutual inductance matrix.
[Rs] : diag (Rs Rs Rs Rs Rs Rs).
Rs: stator resistance.
Ld, Lq : d-q inductances.
Rf : rotor resistance.
Te, T

∗

e
: electromagnetic torque, reference torque.

ϕs, ϕ
∗

s
: stator flux vector, reference flux vector.

ϕd, ϕq : stator flux d-q axis.
ϕα, ϕβ : stator flux α-β axis.
ϕx, ϕy : stator flux x-y axis.
w : stator voltages synchronous pulsation.
Φ: output of the flux hysteresis comparator.
τ : output of the torque hysteresis comparator.
δ: angle between rotor and stator flux linkage.
θs: angle of stator flux linkage.
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Θi : the region numbers for the stator linkage positions.
ET : torque error.
Eϕ : flux error.
J : friction coefficient.
fr : moment of inertia.
P : pole pairs number.

7.1 Appendix 2: DSSM Parameters

Pn = 5 kW, Uc = 232 V, if = 1 A, Rs = 2.35 Ω, Rf = 30.3 , Ld = 0.3811 H, Lq = 0.211
H, Lf = 15 H, Md = 2.146 H, J = 0.05 Nms2/rd, fr = 0.001Nms/rd, P = 1.
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tension d’une machine synchrone double étoile Revue Internationle de Génie Electrique
(RIGE) 1 (4) (1998) 457–470.

[16] Nezli, L., Mahmoudi, M.O., Boucherit, M.S. and Djemai, M. On vector control of double
star synchronous machine with current fed inverters The Mediterranean Journal of Mea-
surement and Control 1 (3) (2005) 118–128.

[17] Rasfesthain, T., Feuillet, R. and Perret, R. Double star synchronous machine modelisation.
Proc. of the 6th Conference on Power Electronics and Motion Control, PEMC’90, 686–689.

[18] Schiferl, R.F. and Ong, C.M. Six phase synchronous machine with AC and DC stator con-
nections IEEE Transaction on Power Apparatus and Systems PAS-102 (8) (1983) 2685–
2693.

[19] Sen, P.C. Electric motor drives and control — past present and future. IEEE Transaction
on Industrial Electronics 37 (6) (1990) 562–575.

[20] Terrien, F. Commande d’une machine synchrone double étoile, alimentée par deux ond-
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Abstract: In this paper, some sufficient conditions for the existence and ex-
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1 Introduction

Recently, the behavior of dynamical systems has been widely investigated [1, 2, 3, 4].
Cohen–Grossberg neural networks, which were first proposed by Cohen and Grossberg
in [5] are typical dynamical systems and have received increasing interesting due to their
promising potential applications in many fields such as optimization, associative memory,
pattern recognition, signal and image processing. The stability of Cohen–Grossberg
neural network with or without delays has been widely studied by many researchers
[6, 7, 8, 9]. Moreover, many sufficient conditions on the stability of equilibrium point for
Cohen–Grossberg neural networks with constant coefficients have been available [10, 11,
12].
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As is well known, the investigation on the neural dynamical systems not only involves
a discussion of stability, but also involves many other dynamical behavior such as periodic
oscillatory behavior, almost periodic oscillatory properties, chaos and so on. There exist
some results on the existence of periodic solutions of Cohen–Grossberg neural networks
with variable coefficients [13, 14, 15, 16]. In practice, almost periodic oscillatory is more
accordant. Some authors have researched almost periodic solutions for neural networks,
and obtained several interesting results [17, 18, 19, 20]. However, To the best of our
knowledge, few authors discuss almost periodic solutions for Cohen–Grossberg neural
networks with variable coefficients [21].

In this paper, our objective is to study further Cohen–Grossberg neural networks with
variable delays. By applying Banach fixed point theory, differential inequality techniques,
we get some sufficient conditions ensuring the existence and exponential stability of
almost periodic solutions for Cohen–Grossberg neural networks with variable delays.
These conditions obtained are easy to check and in practice. Moreover, in this paper,
the assumptions of boundedness, monotonicity, and differentiability for the activation
functions are not available.

The rest of the paper is organized as follows. In Section 2, some notations, defini-
tions and model description are given. The existence and uniqueness of almost periodic
solutions is established in Section 3. In Section 4, we derive some sufficient conditions
on exponential stability of almost periodic solutions. Finally, an example is given to
demonstrate the validity of our results in Section 5.

2 Model Description and Preliminaries

Consider the Cohen–Grossberg neural networks with variable delays as follows:

ẋi(t) = −ai(xi(t))

[

bi(xi(t))−

n
∑

j=1

cij(t)fj(xj(t))−

n
∑

j=1

dij(t)fj(xj(t−τj(t)))+Ii(t)

]

, (1)

where t ≥ 0, i = 1, 2, . . . , n; n is the number of neurons, xi(t) is the state of neuron i

at the time t; ai(xi(t)) and bi(xi(t)) represent an amplification function and an appro-
priately behaved function at the time t, respectively; fj(xj) is the activation function of
the j-th unit; cij(t) and dij(t) denote the neural connection at the time t; Ii(t) is the
external inputs at the time t, τj(t) > 0 is transmission delay.

The initial conditions of system (1) are of the form xi(t) = ϕi(t), t ∈ [−τ, 0], τ =
max1≤i≤n τj(t), ϕi ∈ C (C , C[[−τ, 0], Rn]), and ϕi is assumed to be bounded and
continuous on [−τ, 0].

Definition 2.1 [22, 23] Let x(t) : R → Rn be continuous in t. x(t) is said to be
almost periodic on R if, for any ε > 0, it is possible to find a real number l = l(ε) > 0
such that, for any interval with length l(ε), there is a number δ = δ(ε) in this interval
such that |x(t + δ) − x(t)| < δl, for any t ∈ R.

Throughout this paper, we assume that cij(t), dij(t), Ii(t), ϕi(t) are continuous almost
periodic functions. For an arbitrary continuous function f(t) : R → R, we define

f = sup
t∈R

|f(t)|, f = inf
t∈R

|f(t)|.

We list some assumptions which will be used in this paper as follows:
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(H1) ai(t) is continuous and 0 < a
i
≤ ai(t) ≤ ai for all t ∈ R, i = 1, 2, . . . , n.

(H2) There are positive constants ki such that ḃi(·) ≥ ki, ḃi(·) denotes the derivative of
bi(·), and bi(0) = 0, i = 1, 2, . . . , n.

(H3) There are constants αj > 0 such that |fj(x)− fj(y)| ≤ αj |x− y| for any x, y ∈ R,
and fj(0) = 0, j = 1, . . . , n.

Definition 2.2 The almost periodic solutions x∗(t) of system (1) is said to be global
exponentially stable, if there exist constants ε > 0 and M ≥ 1 such that

|xi(t) − x∗| ≤ M‖ϕ − ϕ∗‖e−εt, t > 0, i = 1, 2, . . . , n,

where ϕ∗ is the initial value of x∗, ‖ϕ − ϕ∗‖ = sup
−∞≤s≤0

max
1≤i≤n

|ϕi(s) − ϕ∗

i
(s)|.

Definition 2.3 [21] Let y ∈ Rn and P (t, y) be a n × n continuous matrix defined
on R × Rn. For any continuous function v(t) : R → Rn, the following system

ẏ(t) = P (t, v(t))y(t)

is said to be an exponential dichotomy on R if there exist constants k, l > 0, projection
S and the fundamental matrix Yv(t) satisfying

‖Yv(t)SY −1
v

(s)‖ ≤ ke−l(t−s) for t ≥ s,

‖Yv(t)(I − S)Y −1
v

(s)‖ ≤ ke−l(t−s) for t ≤ s.

Lemma 2.1 [21] If the linear system ẏ(t) = P (t, v(t))y(t) has an exponential di-
chotomy, then almost periodic system

ẏ(t) = P (t, v(t))y(t) + g(t, v(t))

has a unique almost periodic solution y(t) which can be expressed as follows:

y(t) =

∫

t

−∞

Yv(t)SY −1
v

(s)g(s, v(s)) ds −

∫

∞

t

Yv(t)(I − S)Y −1
v

(s)g(s, v(s)) ds.

Lemma 2.2 [22, 23] Assume that ei(t) is an almost periodic function and

lim
T→+∞

1

T

∫

t+T

t

ei(s) ds > 0, i = 1, 2, . . . , n.

Then the linear system ẏ(t) = e(t)y(t) admits an exponential dichotomy, where e(t) =
diag{ei(t)}.

Definition 2.4 [24, 25] A real n×n matrix W = (wij)n×n is said to be an M -matrix
if wij ≤ 0, i, j = 1, 2, . . . , n, i 6= j, and W−1 ≥ 0, where W−1 denotes the inverse of W .

Lemma 2.3 [24, 25] Let W = (wij)n×n with wij ≤ 0, i, j = 1, 2, . . . , n, i 6= j.
Then the following statements are equivalent:

(1) W is an M -matrix;
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(2) there exists a vector η = (η1, η2, . . . , ηn) > (0, 0, . . . , 0) such that ηW > 0;

(3) there exists a vector ξ = (ξ1, ξ2, . . . , ξn)T > (0, 0, . . . , 0)T such that Wξ > 0.

Lemma 2.4 [24, 25] Let A ≥ 0 be an n×n matrix and ρ(A) < 1, the (En−A)−1 ≥ 0,
where ρ(A) denotes the spectral radius of A.

From (H1), the antiderivative of 1
ai(xi)

exists. We choose an antiderivative gi(xi) of
1

ai(xi)
that satisfies gi(0) = 0. Obviously, ġi(xi) = 1

ai(xi)
. By ai(xi) > 0, we obtain

that gi(xi) is increasing with respect to xi, and the inverse function g−1
i

(xi) of gi(xi) is
existential, continuous, and differentiable. So, ġi

−1(xi) = ai(xi), where ġi
−1(xi) is the

derivative of g−1
i

(xi) with respect to xi, and composition function bi(g
−1
i

(z)) is differen-

tiable. Denote ui(t) = gi(xi(t)). It is easy to see that u̇i(t) = ġi(xi)ẋi(t) = ẋi(t)
ai(xi)(t)

and

xi(t) = g−1
i

(ui). Substituting these equalities into system (1) gives that

u̇i(t) = −bi(g
−1
i

(ui(t))) +

n
∑

j=1

cij(t)fj(g
−1
j

(uj(t)))

+

n
∑

j=1

dij(t)fj(g
−1
j

(uj(t − τj(t)))) − Ii(t), t ≥ 0

ui(t) = gi(ϕi(t)) , φi(t), −τ ≤ t ≤ 0.

(2)

Considering bi(g
−1
i

(ui(t))) = ḃi(g
−1
i

(ui(t)))|z=εi
· ui(t), system (2) can be written as

the following system:

u̇i(t) = −ei(ui(t))ui(t) +

n
∑

j=1

cij(t)fj(g
−1
j

(uj(t)))

+
n
∑

j=1

dij(t)fj(g
−1
j

(uj(t − τj(t)))) − Ii(t), t ≥ 0,

ui(t) = φi(t), −τ ≤ t ≤ 0,

(3)

where ei(ui)(t) , ḃi(g
−1
i

(ui(t)))|z=εi
, ḃi(g

−1
i

(ui(t)))|z=εi
denotes the derivative of

bi(g
−1
i

(z)) at point z = εi, z ∈ R, εi is between 0 and ui(t).

Let ei(ui)(t) be an almost periodic function, the system (1) has a unique almost
periodic solution which is globally exponentially stable if and only if system (3) has a
unique almost periodic solution which is globally exponentially stable.

It is easy to see that |g−1
i

(u)− g−1
i

(v)| = |ġ−1
i

(µ)(u − v)| = |ai(µ)||u− v| ≤ ai|u− v|,
where µ is between u and v.

For convenience, we introduce some notations. We will use x = (x1, x2, . . . , xn)T ∈ Rn

to denote a column vector, in which the symbol (T) denotes the transpose of a vector.
For matrix A = (aij)n×n, AT denotes the transpose of A, and En denotes the identity
matrix of size n. A matrix or vector A ≥ 0 means that all entries of A are greater than or
equal to zero. A > 0 can be defined similarly. For matrices or vectors A and B, A ≥ B

(rep. A > B) means that A − B ≥ 0 (rep. A − B > 0).
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3 Existence and Uniqueness of Almost Periodic Solutions

In this section, we shall discuss the existence and uniqueness of the almost periodic
solution of system (3).

Theorem 3.1 Suppose that (H1)–(H3) are satisfied, and ρ(A−1(C + D)) < 1, where
C = (cijαjaj)n×n, D = (dijαjaj)n×n, A = diag(k1a1, k2a2, . . . , kna

n
). Then, there

exists exactly one almost periodic solution of system (3).

Proof Set the vector û(t) = (û1(t), û2(t), . . . , ûn(t))T, for ∀x ∈ Rn, we define
the norm: ‖û(t)‖ = max1≤i≤n |ûi(t)|. Let Λ = {û(t) = col{ûi(t) | û(t) : R → Rn, is
continuous almost periodic function}. For any û ∈ Λ, we define its induced model as
follows:

‖û‖ = sup
t∈R

‖û(t)‖ = sup
t∈R

max
1≤i≤n

|ûi(t)|.

Obviously, (Λ, ‖ · ‖) is a Banach space. For any {ûi(t)} ∈ Λ, consider the following
system:

u̇i(t) = −ei(ûi(t))ui(t) +

n
∑

j=1

cij(t)fj(g
−1
j

(ûj(t)))

+

n
∑

j=1

dij(t)fj(g
−1
j

(ûj(t − τj(t)))) − Ii(t),

(4)

where i = 1, 2, . . . , n. From H(1) and H(2), we get ei(ui(t)) ≥ kiai
> 0 and

lim
T→+∞

1

T

∫

t+T

t

ei(ui(s)) ds ≥ lim
T→+∞

kiai
> 0.

Similar to the analysis of [21], we know that following system:

U̇(t) = Q(û(t))U(t)

has an exponential dichotomy on R, where

Q(û)(t)) = diag(e1(û1(t)), e2(û2(t)), . . . , en(ûn(t))).

Thus by Lemma 2.1 and Lemma 2.2, system (4) has a unique almost periodic solution
uû(t) which can be expressed as follows:

uû(t) = col

{∫

t

−∞

e−
∫

t

s
ei(û(σ))dσ

[ n
∑

j=1

cij(s)fj(g
−1
j

(ûj(s)))

+

n
∑

j=1

dij(s)fj

(

g−1
j

(ûj(s − τij(s)))
)

− Ii(s)

]

ds

}

.

(5)

Now define a mapping T : Λ → Λ by setting

Tx̂(t) = xx̂(t), ∀ x̂ ∈ Λ.

Next, we prove that T is a contraction mapping. For any ∀ x̂, x∗ ∈ Λ, from (H3) we have

|T (û(t)) − T (u∗(t))|
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=

(

∣

∣

∣

∣

∫

t

−∞

e−
∫

t

s
e1(û(σ))dσ

[ n
∑

j=1

c1j(s)
(

fj(g
−1
j

(ûj(s))) − fj(g
−1
j

(u∗

j
(s)))

)

+

n
∑

j=1

d1j(s)
(

fj(g
−1
j

(ûj(s − τ1j(s)))) − fj(g
−1
j

(u∗

j
(s − τ1j(s))))

)

]

ds

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∫

t

−∞

e−
∫

t

s
en(û(σ))dσ

[ n
∑

j=1

cnj(s)
(

fj(g
−1
j

(ûj(s)) − fjg
−1
j

(u∗

j
(s))))

)

+

n
∑

j=1

dnj(s)
(

fj(g
−1
j

(ûj(s − τnj(s)))) − fj(g
−1
j

(u∗

j
(s − τnj(s))))

)

]

ds

∣

∣

∣

∣

)T

≤

(

∫

t

−∞

e−k1a
1
(t−s)

[ n
∑

j=1

c1jα1a1|ûj(s) − u∗

j
(s)| (6)

+

n
∑

j=1

d1jα1a1|ûj(s − τ1j(s)) − x∗

j
(s − τ1j(s))|

]

ds, . . . ,

∫

t

−∞

e−kna
n
(t−s)

[ n
∑

j=1

cnjαnan|ûj(s) − u∗

j
(s)|

+

n
∑

j=1

dnjαnan|ûj(s − τnj(s)) − u∗

j
(s − τnj(s))|

]

ds

)T

≤

(

n
∑

j=1

(k1a1)
−1(c1j + d1j)α1a1 sup

t∈R

|ûj(t) − u∗

j
(t)|, . . . ,

n
∑

j=1

(kna
n
)−1(cnj + dnj)αnan sup

t∈R

|ûj(t) − u∗

j
(t)|

)T

,

which implies that

(

sup
t∈R

|(T (û(t)) − T (u∗(t)))1|, . . . , sup
t∈R

|(T (û(t)) − T (u∗(t)))n|
)T

≤

( n
∑

j=1

(k1a1)
−1(c1j + d1j)α1a1 sup

t∈R

|ûj(t) − u∗

j
(t)|, . . . ,

n
∑

j=1

(kna
n
)−1(cnj + dnj)αnan sup

t∈R

|ûj(t) − u∗

j
(t)|

)T

(7)

≤ F

(

sup
t∈R

|û1(t) − u∗

1(t)|, . . . , sup
t∈R

|ûn(t) − u∗

n
(t)|

)T

where F = A−1(C + D). Let m be a positive integer. Then, from (7), we get

(

sup
t∈R

|(T m(û(t)) − T m(u∗(t)))1|, . . . , sup
t∈R

|(T m(û(t)) − T m(u∗(t)))n|
)T

=
(

sup
t∈R

|(T (T m−1(û(t)) − T m(u∗(t))))1|, . . . , sup
t∈R

|(T (T m−1(û(t)) − T m(u∗(t))))n|
)T
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≤ F

(

sup
t∈R

|(T m−1(û(t)) − T m−1(u∗(t)))1|, . . . , sup
t∈R

|(T m−1(û(t)) − T m−1(u∗(t)))n|
)T

≤ Fm

(

sup
t∈R

|(T (û(t)) − T (u∗(t)))1|, . . . , sup
t∈R

|(T (û(t)) − T (u∗(t)))n|
)T

≤ Fm

(

sup
t∈R

|û1(t) − u∗

1(t)|, . . . , sup
t∈R

|ûn(t) − u∗

n
(t)|
)T

. (8)

Since ρ(F ) < 1, we obtain limn→+∞ Fm = 0, which implies that there exists a
positive integer N and a positive integer β < 1 such that

FN = (A−1(C + D))N = (hij)n×n, and
n
∑

j=1

hij ≤ β, i = 1, 2, . . . , n. (9)

In view of (8) and (9), we have

|(T N(û(t)) − T N(u∗(t)))i| ≤ sup
t∈R

|(T N (û(t)) − T N(u∗(t)))i|

≤
n
∑

j=1

hij sup
t∈R

|ûj(t) − u∗

j
(t)|

≤
(

sup
t∈R

max
1≤i≤n

|ûj(t) − u∗

j
(t)|
)

n
∑

j=1

hij ≤ β‖û(t) − u∗(t)‖,

for all t ∈ R, i = 1, 2, . . . , n. It follows that

‖T N(û(t)) − T N(u∗(t))‖ = sup
t∈R

max
1≤i≤n

|(T N (û(t)) − T N(u∗(t)))i| ≤ β‖û(t) − u∗(t)‖.

This implies that the mapping T N : Λ → Λ is a contraction mapping.
By Banach fixed point theorem, there exists a unique fixed point u∗ ∈ Λ∗ such that

Tu∗ = u∗. From (4) and (5), we know that u∗ satisfies system (3), therefore, it is the
unique almost periodic solution of system (3). We complete the proof. 2

4 Exponential Stability of Almost Periodic Solutions

In this section, we shall discuss the global exponential stability of the almost periodic
solution of system (3).

Theorem 4.1 Suppose that (H1)–(H3) are satisfied, and the condition in Theorem
3.1 holds, then there exists exactly one almost periodic solution of system (3) which is
exponentially stable, i.e. all other solutions of system (3) converge to this almost periodic
solution exponentially.

Proof By Theorem 3.1, we have known that system (3) has a unique almost periodic
solution, then we shall prove the exponential stability of almost periodic solution.

Let u(t) = (u1(t), u2(t), . . . , un(t))T be an arbitrary solution and u∗(t) =
(u∗

1(t), u
∗

2(t), . . . , u
∗

n
(t))T be an almost periodic solution of system (3) with initial val-

ues φ(t) = (φ1(t), φ2(t), . . . , φn(t))T and φ∗(t) = (φ∗

1(t), φ
∗

2(t), . . . , φ
∗

n
(t))T, respectively.

Set
yi(t) = ui(t) − (u∗

i
(t), Fj(yj(t)) = fj(yj(t) + (u∗

j
(t)) − fj(u

∗

j
(t)),
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where i, j = 1, 2, . . . , n. It is easy to see that system (3) can be reduced to the following
system:

ẏi(t) = −ei(ui(t))yi(t) +

n
∑

j=1

cij(t)Fj(yj(t)) +

n
∑

j=1

dij(t)Fj(yj(t − τij(t))). (10)

Since ρ(F ) = ρ(A−1(C +D)) < 1, it follows from Lemma 2.4 that En−A−1(C+D) is an
M -matrix. In view of Lemma 2.3, there exists a constant vector ξ = (ξ1, ξ2, . . . , ξn

)T >

(0, 0, . . . , 0)T such that

(En − A−1(C + D))ξ > (0, 0, . . . , 0)T.

That is,

−kiai
ξ

i
+

n
∑

j=1

ξ
j
(cij + dij)αiai < 0, i = 1, 2, . . . , n.

Therefore, we can choose a constant d > 1 such that

ξ = dξ > sup
τ≤t≤0

|yi(t)|, i = 1, 2, . . . , n,

and

−kiai
ξi +

n
∑

j=1

ξj(cij + dij)αiai =

[

− kiai
ξ

i
+

n
∑

j=1

ξ
j
(cij + dij)αiai

]

d < 0,

where i = 1, 2, . . . , n. Set

Mi(ε) = εξi − kiai
ξi +

n
∑

j=1

ξj(cij + dije
ετ )αiai, i = 1, 2, . . . , n.

Clearly, Mi(ε), i = 1, 2, . . . , n, are continuous functions on [0, ω0]. Since

Mi(0) = −kiai
ξi +

n
∑

j=1

ξj(cij + dij)αiai < 0, i = 1, 2, . . . , n,

we can choose a positive constant ω ∈ [0, ω0] such that

Mi(ω) = (ω − kiai
)ξi +

n
∑

j=1

ξj(cij + dije
ωτ )αiai < 0, i = 1, 2, . . . , n. (11)

We consider the Lyapunov functional

Vi(t) = |yi(t)|e
ωt, i = 1, 2, . . . , n. (12)

Obviously, for any yi(t) 6= 0, Vi(t) > 0. Calculating the upper right derivative of Vi(t)
along the solution y(t) = (y1(t), y2(t), . . . , yn(t))T of system (10) with the initial value
φ = φ − φ∗, we have

D+(Vi(t)) ≤ −kiai
|yi(t)|e

ωt +
n
∑

j=1

cij |yi(t)|e
ωt +

n
∑

j=1

dij |yi(t − τij(t))|e
ωt + ω|yi(t)|e

ωt

=

[

(ω − kiai
)|yi(t)| +

n
∑

j=1

cij |yi(t)|αiai +

n
∑

j=1

dij |yi(t − τij(t))|αiai

]

eωt

(13)
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where i = 1, 2, . . . , n. We claim that

Vi(t) = |yi(t)|e
ωt < ξi, for all t > 0, i = 1, 2, . . . , n. (14)

Contrarily, there must exist i ∈ {i = 1, 2, . . . , n} and ti > 0 such that

Vi(ti) = ξi and Vj(t) < ξj , ∀ t ∈ (−∞, ti), j = 1, 2, . . . , n, (15)

which implies that

Vi(ti) − ξi = 0 and Vj(t) − ξj < 0, ∀ t ∈ (−∞, ti), j = 1, 2, . . . , n. (16)

Together with (13) and (16), we obtain

0 ≤ D+(Vi(ti) − ξi) = D+Vi(ti)

≤

[

(ω − kiai
)|yi(t)| +

n
∑

j=1

cij |yi(t)|αiai +

n
∑

j=1

dij |yi(t − τij(t))|αiai

]

eωt

= (ω − kiai
)ξi + αiai

( n
∑

j=1

cij |yi(ti)|e
ωti +

n
∑

j=1

dij |yi(ti − τij(ti))|e
ω(ti−τij(ti))eωτij(ti)

)

≤ (ω − kiai
)ξi +

n
∑

j=1

ξj(cij + dije
ωτ )αiai.

(17)
Thus

0 ≤ (ω − kiai
)ξi +

n
∑

j=1

ξj(cij + dije
ωτ )αiai

which contradicts (11). Hence, (14) holds. It follows that

|yi(t)| < max
1≤i≤n

{ξi}e
−ωt. (18)

Letting ‖φ‖ = ‖φ−φ∗‖ > 0, it follows from (18) that we can choose a constant M > 1
such that

|xi(t) − x∗

i
(t)| = |yi(t)| ≤ max

1≤i≤n

{ξi}e
−ωt ≤ M‖φ − φ∗‖e−ωt, (19)

where i = 1, 2, . . . , n, t > 0. Thus, the almost periodic solution of system (3) is globally
exponentially stable.

We complete the proof. 2

Corollary 4.1 Suppose that (H1)–(H3) are satisfied, and En − A−1(C + D) is an
M -matrix, then there exists exactly an almost periodic solution of system (3) which is
exponentially stable, i.e. all other solutions of system (3) converge to this almost periodic
solution exponentially.

Proof Notice that En −A
−1(C + D) is an M -matrix, it follows that there exists a

vector η = (η1, η2, . . . , ηn)T > (0, 0, . . . , 0)T such that

(En − A−1(C + D))η > (0, 0, . . . , 0)T.
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That is,

−kiai
η +

n
∑

j=1

(cij + dij)αiaiη < 0, i = 1, 2, . . . , n.

Therefore, Corollary 4.1 follows immediately from Theorem 4.1. 2

Remark 4.1 In Theorem 4.1 and Corollary 4.1, we do not need the assumptions
on boundedness, monotonicity, and differentiability for the activation functions. Clearly,
the proposed results are different from those in [5, 6, 14] and the references cited therein.
Therefore, our results are new and they complement previously known results.

5 An Example

In this section, we give an example to illustrate that our results are feasible.

Example 5.1 Consider the following system with continuously distributed delays:

ẋi(t) = −ai(xi(t))

[

bi(xi(t)) −

2
∑

j=1

cij(t)fj(xj(t)) −

2
∑

j=1

dij(t)fj(xj(t − τj(t))) + Ii(t)

]

,

(20)
where i = 1, 2. Let fj(x) = 1

2 (|x + 1| − |x − 1|), we have αj = 1 (j = 1, 2).
Taking

(a1(x1(t)), a2(x2(t)))
T =

(

2 −
1

10π
arctanx1(t), 2 +

1

10π
arctanx2(t)

)T

,

(b1(x1(t)), b2(x2(t)))
T = (x1, x2)

T, I1(t) =
9

5
sin t, I2(t) =

9

5
cos t,

thus we obtain a1 = a2 = 1, a1 = a2 = 3, b1 = b2 = b1 = b2 = 1, I1 = I1 = 9
5 ,

k1 = k2 = 1. Let

(

c11(t) c12(t)
c21(t) c22(t)

)

=







1

13
sin t

1

13
sin 2t

1

13
sin 3t

1

13
sin 4t






,

(

d11(t) d12(t)
d21(t) d22(t)

)

=







1

13
cos t

1

13
cos 2t

1

13
cos 3t

1

13
cos 4t






.

Noting that c11 = c12 = c21 = c22 = d11 = d12 = d21 = d22 =
1

13
, we get

A−1(C + D) =







6

13

6

13
6

13

6

13






.

So, we have

ρ(A−1(C + D)) =
12

13
< 1.

Thus, it follows from Theorem 3.1 and Theorem 4.1 that system (20) has exactly a unique
almost periodic solution, which is globally exponentially stable.
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Remark 5.1 System (20) is a simple form of Cohen-Grossberg neural networks with
variable delays. In this system, La

1 = La

2 = 1
30 , Lab

1 = Lab

2 = 1. If we apply Corollary
4.1 in [15, 16], and choose η = (η1, η2) = (1, 1), we obtain δ = 26

5 , ρ(K) = 1800
1781 > 1,

this doesn’t satisfy the conditions in Corollary 4.1 in [15, 16]. So, the results in [15, 16]
cannot be applicable to this system. This implies that our results are essentially new.

Remark 5.2 Since f1(x) = f2(x) = 1
2 (|x + 1| − |x − 1|), we can easily verify that

the assumptions of boundedness, monotonicity, and differentiability for the activation
functions are not available. So, the proposed results in [5, 6, 14] and the references cited
therein can not be applicable to system (20).

6 Conclusion

In this paper, the existence and exponential stability of almost periodic solutions for
Cohen-Grossberg neural networks with variable delays are considered. Some new suf-
ficient conditions are obtained by applying Banach fixed point theory and differential
inequality techniques. Some previous results are improved and extended.
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1 Introduction

The development of mathematical models is a major problem for the application of ad-
vanced techniques for analysis, prediction, control, optimization, automatic fault detec-
tion and diagnostic in the industrial processes. Hence, there is a potential for improved
quality and flexibility of final product if the cost of the model development can be re-
duced. Consequently, a strong demand for advanced modeling and identification methods
arises. The multimodel approach is an efficient and a powerful way to resolve problem of
modeling and control of complex, non-linear and/or ill-defined processes. This approach
is based on a ”divide and conquer” strategy [23]. A complex modeling problem is divided
into a number of smaller sub-problems, which are solved independently by identifying
simple models (generally linear). The obtained group of models forms the so-called mod-
els base. Afterwards, it is necessary to compute coefficients called validities of models.
The simple models are, thereafter, combined, according to their estimated validities, to-
gether to obtain the global model. The past few years have shown an increase in the
use of the multimodel representation [16]. This concept includes a number of approaches
such as: Takagi and Sugeno Fuzzy Inference Systems [29], local model networks [16],
gain-scheduled control, statistical mixture models, Smooth Threshold Auto-Regressive
(STAR) models of Tong [30] and the state dependent models of Priestley [20]. For the
majority of these approaches, the model parameters are obtained from prior knowledge,
linearization of physical model or identified from measured data [21]. In many cases, the
local models can be quite simple, such as linear or affine models. Besides, the multimodel
concept coincides with engineering design in which the division of problems into man-
ageable parts is the major design methodology [23]. The multimodel approaches were
succeeded in different domains such as academic, biomedical, process industries, etc.
However, they remain so confronted with several difficulties such as the determination of
the models base. To resolve this problem, a modeling framework based on an operating
decomposition of the system’s operating range has interested Johansen in [10]. Indeed,
he has proposed an algorithm that able to identify decomposition into operating regimes
and local models on the base of empirical data. However, this algorithm requires that the
regime must be d-dimensional boxes with orthogonal edges. Besides, the introduction of
this last complex description of the regime limits will increase the number of parameters
necessary to represent theses boundaries or local model validity functions. This leads,
consequently, to a more complex identification problem [11]. Murray-Smith in [16] pro-
poses to use learning systems able to model unknown nonlinear dynamic processes from
their observed input-output behaviour. Local model networks use a number of simple
and locally accurate models to represent a globally complex process. A major difficulty
with local model nets is the optimization of the model structure. Heikki [8] has proposed
an evolutionary self-organizing map capable of creating an organized model bank from
a data set. However, the proposed algorithm is very complex and requires a very large
knowledge such as genetic algorithm, self-organizing card, etc. Besides, the computing
of one map is relatively very long. In 1995, Gawthrop considered the approximation of
the continuous-time non-linear system in the vicinity of the equilibrium operating points
by a continuous-time local model network [7]. One global inconvenience of most of these
last strategies, is that the determination of these local models needs to a certain extend
a priori knowledge of the system and its structure [3, 5, 1, 6, 2, 21, 19, 23]. Besides,
we cannot found a systematic method for local models determination; which supposes
several preliminary tests before its choice. Recently, it is proposed in [13] an approach
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of models base determination for the uncertain processes, which limit the number of
base models to four or five models. This method is inspired from the algebric stability
approach suggested by Kharitonov [13]. The models base is obtained by determining the
four extreme models, and the average model, determined as an average of the boundary
models. Mezghani in [17] proposed the extension of this last approach for discrete case
using the d operator. These last approaches require the knowledge of the variation do-
mains parameters of the uncertain process. But, this last information is always not still
possible. Another inconvenience is that the last models base will contain models with the
same structure. We propose, in this paper, a new systematic determination approach of
a models base for the representation of uncertain discrete linear systems. This approach
does not require the limits knowledge of the parameters. Besides, this method allows to
generate automatically the number, the structures and the parameters of the elaborated
models. Indeed, the proposed method requires three principle steps [25, 27, 28]. The
first step consists in classifying numerical data by using a Self-adapting artificial Kohonen
neural network. The second step is a structural and parametric estimations step in order
to determine the base models. Also, to resolve the problem of validities computation we
propose a new technique, based on the minimization of a quadratic criterion [26, 28].
This criterion exploits the centers of clusters obtained in the models base determination
step. By comparison with the residues approaches, used by many researchers, we have
demonstrated the efficiency and the precision of the suggested technique. In order to
highlight the good performance in precision and the robustness under particularly severe
conditions of the two suggested approaches, the theoretical study is, then, validated by
numerical simulation and by experiments. This paper is organized as follows: in the
section two, a principle of classification by using a Kohonen card is introduced. The
new systematic approach determination of a models base is developed with details in the
third section. The validities computation represents the subject of the fourth section.
The principle of computation of multimodel’output is given in section five. A numerical
example is presented in the section six. In section seven, an experimental validation,
carried out on an olive oil esterification reactor, is considered. We finish the present
work by a conclusion.

2 Classification of the Numerical Data by Using the Kohonen Card

The self-organizing Kohonen map is a well-known unsupervised algorithm used frequently
for classification of data. The standard card can find the cluster centers and gives a
visual interpretation of the distribution and clusters of the data. This classification
strategy consists in applying the rule of Kohonen [18, 8, 22]. This rule is characterized
by an unsupervised competitive learning. Where, a competition takes place before the
modification of the network-weights. Only the neuron, which gained the competition,
has the right to change their weight. The Kohonen rule has the property of self-adapting,
which allows him to group together a set of data, presented to the corresponding network,
around a certain number of representative centroides of these data clusters. The used
neural network is formed by one input layer of p neurons and by one output layer of n
neurons corresponding to the Kohonen card [18, 22]. The architecture of this network
is given by (2.1) [25]. Each neuron of the Kohonen card receives p signals coming from
the input layer. The weight wpn is relative to the connection between the input neuron
p and the card neuron n. The weight vector Wi associated to neuron i is then composed
of p elements. The Kohonen rule works as follows [18, 22]:
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1. The network receives a data set Y .

2. Each card neuron calculates the Euclidean distance between the weight vector Wi

and the input vector Y .

3. The competition between card neurons starts. This competition is based on the
winner-takes-all strategy. The neuron having the nearest weight vector Wi to the
input Y wins the competition. The winner neuron output zi is putting at 1 and
the other ones are putting then at 0.

4. The different weights are modified according to the following relation:

Wnew

i
= W old

i
+ α

(

Y − W old

i

)

zi (1)

where α is a constant such that 0 < α < 1.

At the end of the training, the Kohonen network generates the representative vectors
of different clusters and their centers.

Figure 2.1: The retained architecture for the generation of different observations vectors for
modeling.

3 A Systematic Determination Approach of a Models Base

The application of this approach requires firstly the determination of the clusters num-
ber. The classification of numerical data is the second stage. Then, there is a stage of
structural and parametric estimation.

3.1 Determination of the clusters number

To classify the numerical data, it is necessary to pass throught the step of determination of
the adequate clusters number and as consequence, the number of base models. To resolve
the problem, we propose to consider a two-dimensional Kohonen card with a neurons
number n in the output-layer which is relatively important. At the end of training, if the
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network gives badly repartition clusters, it will remove the cluster i having an elements
number NCi verifying:

NCi <
1

2

NH

n
, (2)

where NH is the observations’number. Also, we increase the network structure and we
restart the training.

3.2 Classification of the numerical data by exploiting the Kohonen card

After determining the suitable number of classes, consequently the base models number,
it is the question of classifying the measurements. These last are related to the output of
an uncertain or ill-defined discrete linear system using the proposed method described in
Section 2. Therefore, we exploit a Kohonen network, which has neurons number in the
output-layer equal to the clusters number, determined by the method described in the last
section. This network is able of looking into the output of a set of representative vectors
of different clusters with their respective centers. These vectors are, then, exploited for
the structural and parametric identification of the elaborated base models.

3.3 Structural and parametric estimation

The order estimation method of the retained models is called instrumental determinants’
ratio-test [4, 25, 15]. This method consists in building an information matrix Qm, con-
taining the input-output measurements couples given by:

Qm =
1

NH

NH
∑

k=1















u(k)
u(k + 1)

...
u(k − m + 1)

u(k + m)





























y(k + 1)
u(k + 1)

...
y(k + m)
u(k + m)















T

. (3)

The instrumental determinants’ratio RDI(m) is given by the following relation:

RDI(m) =
∣

∣

∣

det(Qm)

det(Qm+1

∣

∣

∣. (4)

For every value of m, the order determination procedure computes Qm and Qm+1

matrices and estimates the ratio RDI, the retained order m is the value for which the
ratio RDI(m) quickly increases for the first time. Indeed, Qm+1 matrix becomes singular
when m becomes identified with the exact order.

The retained parametric estimation method is the Recursive Least Squares’ method
RLS [4].

4 A New Approach for Validities’ Computation

Several validities computation methods was proposed in the literature [5, 6, 12, 13, 16,
17, 19]. All these methods are based on the residues computation and they are based
on measuring the distance between the current state of the process and the considered
model Mi. The geometric distance can be calculated by several methods; the simplest
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one is the distance ri(k) between the process output y(k) and the base models outputs
yi(k):

ri(k) = |y(k) − yi(k)|. (5)

Frequently, we choose the validities such as all the time their sum is equal to the unity.
For example,

vi(k) =
|1 − r′

i
(k)|

C − 1
. (6)

C represents the retained number of base models and is a normalized distance given by

r′
i
(k) =

ri(k)
∑

C

i=1 ri(k)
. (7)

The proposed method of validities computation is inspired from the fuzzy version of
the ”k-means” algorithm[18]. This method is based on the minimization of the following
criterion:

J =

C
∑

i=1

NH
∑

k=1

v2
i
(k)‖y(k) − ci‖

2 (8)

with
C

∑

i=1

vi(k) = 1, (9)

where vi(k) represent the degree of validity of the model i at the instant k, ci is the
center of the class i.

It is a first order problem of optimization with equality constraint g(vi(k)). The
resolution of this type of problem requires the determination of the Lagrange’s equation.
In fact, so that vi(k) is a local extremum of the criterion J , it is necessary that there is
a real λ such that the Lagrangian L of the problem can be written as follows:

L(vi(k), λ) = J + λg(vi(k)) (10)

is stationary with regard to vi(k) and λ. This leads to

{

∂(L(vi(k),λ)
∂(vi(k)) = 0,

∂(L(vi(k),λ))
∂(λ) = 0,

(11)

where λ is the Lagrange’s multiplier associated to the constraint. The relations (11) lead
to the following system



















































2v1(k) ‖y(k) − c1‖
2
+ λ = 0,

2v2(k) ‖y(k) − c2‖
2
+ λ = 0,

...

2vi(k) ‖y(k) − ci‖
2

+ λ = 0,
...

2vC(k) ‖y(k) − cC‖
2

+ λ = 0,

v1(k) + v2(k) + . . . + vi(k) + · · · + vC(k) = 1.

(12)
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This problem becomes

{
{

vi(k), ‖y(k) − ci‖
2

+ λ = 0, i ∈ [1, C]
}

,
∑

C

l=1 vl(k) = 1.
(13)

The relations (13) give

vi(k) =
−λ

2 ‖y(k) − ci‖
2 . (14)

This relation becomes
C

∑

l=1

−λ

2 ‖y(k) − cl‖
2 = 1. (15)

Then λ is given from the relation (15) and replaced in the equation (14). Finally, we can
conclude that the expression of validity degree for a model Mi can be written as follows:

vi(k) =
1

∑

C

l=1(A
2
i
(k)/A2

l
(k)

, (16)

where A2
i
(k) = ‖y(k) − ci‖

2 (see (4.1)).

Figure 4.1: Euclidean distance illustrated by the new technique of validity computation.

5 Computation of Multimodel Output

The multimodel output is obtained by fusion of the local models pondered by their
respective validities. The next relation (17) gives the expression of the final multimodel
output:

yMM (k) =

C
∑

i=1

yi(k)vi(k). (17)
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6 Simulation Example in Stochastic Case

The object of this section is to demonstrate the interest and the robustness of both pro-
posed methods: the multimodel representation and the validities computation technique.
Let us consider a stochastic linear process with time varying parameters, described by
the following equation [25, 15]:

y(k) = −a1(k)y(k − 1) − a2(k)y(k − 2) + b1(k)u(k − 1) + b2(k)u(k − 2) + e(k), (18)

where e(k) is a white noise (0, σ2) with covariance σ equal to 0.2. The variation laws of
different parameters of the process are given by the Figure 6.1. The retained excitation
signal u(k) is a Pseudo Aleatory Binary Sequence.

Figure 6.1: The variation laws of the considered process parameters.

6.1 Classification of the numerical data by exploiting the Kohonen card

The suggested approach for the systematic determination of the models base has been
implemented. Indeed, the numerical noisy identification data obtained by exciting the
system (18) by a Pseudo Aleatory Binary Sequence are presented to a Kohonen card
formed by one input layer of two neurons and by one output layer of three neurons. The
Figure 6.2 shows that three data sets relative to the various clusters are obtained at the
end of learning of the neuronal network.

6.2 Structural and parametric estimation

From each of the data relative to the three clusters, we could determine the orders and
the parameters of the transfer functions H1(q

−1), H2(q
−1) and H3(q

−1) relative to the
base models. Figure 6.3 shows the evolutions of the Instrumental Determinants’ Ratio
RDIi(m)(i = 1, 2 or 3) for the three obtained clusters. We observe, clearly, that the
orders of the three models are equal to 2.
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Figure 6.2: Three sets of numerical data relative to the different base models.

Figure 6.3: Evolutions of the RDI for the three obtained clusters.
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After the parametric identification step, the obtained transfer functions
H1(q

−1), H2(q
−1) and H3(q

−1) can be written:

H1(q
−1) =

0.48765q−1 + 0.26243q−2

1 − 0.62912q−1 + 0.022475q−2
, (19)

H2(q
−1) =

0.49611q−1 + 0.22886q−2

1 − 0.70327q−1 + 0.019325q−2
, (20)

H3(q
−1) =

0.49987q−1 + 0.24861q−2

1 − 0.7443q−1 + 0.040774q−2
. (21)

6.3 Validation phase

The application of the following input sequence is the subject of validation step:

u(k) = 2 + sin k/20. (22)

The proposed approach for validities computation uses the clusters centers obtained in
the stage of determination of a models base. The coordinates of the three obtained centers
c1, c2, c3 are: c1(−0.412;−0.4020); c2(−0.0151; 0.0041); c3(0.4738; 0.4687). The results of
validation are given in the Figure 6.4. This figure shows that the multimodel output
yfn(k) obtained by fusion of base models outputs pondered by the new technique validi-
ties, follows the real output yr(k) of the stochastic uncertain process with a relatively
negligible error. In the case of modeling classical approach, we have exploited the same

Figure 6.4: Evolutions of the real and multimodel outputs (New technique).

numerical noisy identification data used for the multimodel representation. By recourse
to the instrumental determinants’ ratio for the structural estimation and to the recursive
least squares method for the parametric identification, the transfer function H(q−1) of
the global model ”M” can be written as follows:

H(q−1) =
0.49457q−1 + 0.28186q−2

1 − 0.60115q−1 + 0.043232q−2
. (23)
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The Figure 6.5 represents the evolutions of the relative errors between the real output and
the global model ”M” and the multimodel ”MMn”. This figure demonstrates that the
multimodel representation offers a very satisfactory precision and robustness relatively
to the case in which classical modeling, based on one global model ”M”, is considered.
The evolutions of different validities of models are given by the Figure 6.6. This figure

Figure 6.5: Evolutions of relative errors.

shows the complementarities of the different models in the different operation areas. It
shows, also, that it is possible that one model can describe correctly the system (validity
equal to the unity), the validities of the others models are equal to zero. This last result
is not possible when the residues approach is applied. Indeed, in the Figure 6.7, we have
presented the evolution of the three validities calculated by the residues approach in the
same conditions. This figure shows that these validities cannot exceed 0, 5. This can be
justified by the presence of term ′C − 1′ in the denominator of the validities expression
(6). As consequent, the residues approach cannot evaluate correctly the contribution of
every model of the base in the global behaviour of the system.

Figure 6.8 presents the evolutions of the prediction errors er1(k) and er2(k) of the two
multimodel outputs respectively yfc(k) (residues approach) and yfn(k) (new technique)
with regard to the real output. This figure shows the performance in precision and
in robustness of the new technique of validities computation by comparison with the
residues approach.

7 Experimental Validation: Olive Oil Esterification-Reactor

In order to show the contribution in precision and robustness of the suggested modeling
strategy, we have implemented it practically in the case of modeling of an olive oil
esterification-reactor. This discontinuous reactor carries out, by an alcohol, a chemical
reaction of vegetable olive oil esterification. This type of reaction is given by the following
scheme: Acid+Alcohol ⇋ Ester +Water. The obtained product is an ester with a very
high benefit used mainly in the manufacture of cosmetic products. In previous work,
the dynamic behaviour of this reactor has been modeled by a set of complex differential
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Figure 6.6: Evolutions of the validities (new technique).

Figure 6.7: Evolutions of the validities (Residues approach).
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Figure 6.8: Evolution of the relative prediction errors.

equations. The static characteristic of the reactor is non-linear and, consequently, the
classical modeling, based on one global model cannot lead to satisfactory results. To
improve these results, we propose, in the next section, to use the suggested multimodel
representation.

7.1 A modeling phase

In Figure 7.1, we have presented the input-output measurements picked out experi-
mentally of the reactor for the identification step. By exploiting the last input-output

Figure 7.1: Evolutions of the input-output measurements u(k) and y(k).

measurements’ file, the suggested approach for the determination of the models base has
been implemented. Indeed, the experimental data are presented to a Kohonen network
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having two inputs and one-dimensional card with 3 neurons in the output layer. Figure
7.2 shows that three sets of data relative to the different clusters are obtained at the end
of the neural network training. From each of the data relative to a cluster c(c = 1, .., 3),

Figure 7.2: Three sets of the experimental data relative to the different base-models.

we could determine the transfer functions (H1(q
−1), H2(q

−1) and H3(q
−1)) relative to

the base-models. Figure 7.3 presents the evolutions of the Instrumental Determinants’
Ratio RDIi(m) (i=1, 2 or 3) for the three obtained clusters. This figure shows that the
adequate estimated orders of the three models are equal to 2. Finally, we have obtained

Figure 7.3: Evolutions of the RDI for the three obtained clusters.

the base formed by the models described by the following transfer functions:

H1(q
−1) =

0.0018269q−1 + 0.00043866q−2

1 − 1.3052q−1 + 0.32917q−2
, (24)
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H2(q
−1) =

0.0018804q−1 + 4.2569.10−5q−2

1 − 1.216q−1 + 0.24209q−2
, (25)

H3(q
−1) =

0.0011144q−1 + 0.00046594q−2

1 − 1.1185q−1 + 0.12743q−2
. (26)

In the case of modeling classical approach, the process is considered linear around an
operation point. The non-linearity is consequently interpreted, under these conditions,
as a parametric disturbance. By recourse to the instrumental determinants ratio test for
the structural estimation, and to the recursive least squares method for the paramet-
ric identification, the transfer function H(q−1)of the global model ”M”, worked out by
the exploitation of an input-output measurements’file experimentally picked out on the
reactor, can be written as follows:

H(q−1) =
−0.00010162q−1 + 0.0012255q−2

1 − 1.0425q−1 + 0.058094q−2
. (27)

7.2 Evaluation of the modeling results

To validate the obtained models, we have considered a new input-output measure-
ments’file picked out for the real system. The effective output yMM (k) of the multimodel
”MM” is calculated by fusion of the three base outputs pondered by their respective va-
lidities. Figure 7.4 represents the evolutions of the real, the global model ”M” and the
multimodel ”MM” outputs. This figure shows that the ”MM” approach, using the elab-
orated base, offers a very satisfactory precision relatively to the case in which classical
modeling, based on one global model ”M”, is considered. Indeed, the relative error be-
tween the real output and the model ”M” and the multimodel ”MM” outputs confirms
this last conclusion (Figure 7.5). The evolutions of the different validities relative to
the different models of the base are given on Figure 7.6. It gives information about the
complementarities of the different models in the operation area of the reactor which can
be divided into three zones of heating, reaction and cooling.

Figure 7.4: Experimental validation of the models (classical and multimodel approaches).
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Figure 7.5: Evolutions of relative errors.

Figure 7.6: Evolutions of different models validities of the elaborate base.
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8 Conclusion

In this paper, we have presented firstly a new systematic determination approach of
models base for multimodel approach. This approach does not require a priori knowledge
about the studied system and can generate automatically the number, the structures and
the parameters of base models. Indeed, it can be applied on three steps. The primary step
consists in determining the suitable number of base models. The second one consists in an
off-line classification of identification data. The structural and parametric estimations of
the base models from the obtained vectors in the classification step, form the third step.
Secondly, a new technique of validities computation is developed. This last technique
consists in minimizing a quadratic criterion exploiting the clusters centers obtained in
the stage of determination of the models base. The application of these contributions
is carried out, first, on a simulation example, then on a real process corresponding to
a semi-batch chemical reactor. These applications showed the efficiency and the very
good performances of the two proposed methods, with regard to the classical modeling
method based on unique model and to the residues approach.
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This self-contained book provides systematic instructive analysis of uncertain systems 
of the following types: ordinary differential equations, impulsive equations, equations 
on time scales, fuzzy differential equations, and set differential equations. Each 
chapter of the book contains new conditions of stability of unperturbed motion of 
above mentioned type of equations and some applications. As a relatively new area in 
applied mathematics, uncertain dynamical systems are still at a tender age and have 
not yet received much attention in the mathematical community. Without assuming 
specific knowledge of uncertain dynamical systems, the book includes many 
fundamental facts about dynamical behaviour of its solutions. Giving a concise review 
of current research developments, Uncertain Dynamical Systems: Stability and 
Motion Control 

• details all proofs of stability conditions for five classes of uncertain systems 
 

• clearly defines all used notions of stability and control theory 
 

• contains an extensive bibliography, facilitating quick access to specific subject 
areas of each of 10 chapters. 

 
Requiring only a fundamental knowledge of general theory of differential equations 
and calculus, this book serves as an excellent text for pure and applied 
mathematicians, applied physicists, industrial engineers, operations researchers, and 
upper-level undergraduate and graduate students studying ordinary differential 
equations, Impulsive equations, dynamic equations on time scales, fuzzy and set 
differential equations. 
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