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Abstract: Parametrization of nonunique linear equations solution via generalized
inversion is utilized in nonlinear spacecraft control system design. A stable linear
time-invariant ordinary differential equation in an attitude deviation norm measure
is formed and is evaluated along the trajectories defined by the spacecraft mathemat-
ical model, yielding a linear relation in the control variables. Generalized inversion
of the relation results in a control law that consists of auxiliary and particular parts.
The null-control vector in the auxiliary part is designed by solving a state dependent
Liapunov equation involving a perturbed nullprojector and by utilizing a damped con-

trols coefficient generalized inverse, yielding globally uniformly ultimately bounded
attitude trajectory tracking errors.
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1 Introduction

Throughout the second half of the twentieth century, numerous control methodologies
have been employed for spacecraft control, benefiting from the rapid development in
nonlinear system theory. Among the methodologies applied to the attitude control prob-
lem of rigid spacecraft with known inertia parameters were those based on geometrical
concepts, energy principles, optimal control, and feedback linearizing transformations.
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The present article introduces an algebraic control methodology that aims to utilize
the simplicity of linear system theory by casting the nonlinear spacecraft control problem
in a pointwise-linear form and utilizing a simple linear algebra relation to tackle the
control problem. The primary tool used is the Moore–Penrose generalized matrix inverse
(MPGI).

The procedure begins by defining a norm measure function of the spacecraft’s attitude
variables deviations from their desired values, and prespecifying a stable second-order
linear differential equation in the measure function, resembling the desired attitude devi-
ation dynamics. The differential equation is then transformed to a relation that is linear
in the control vector by differentiating the norm measure function along the trajectories
defined by the solution of the spacecraft’s state space mathematical model. The MPGI
is utilized thereafter to invert this relation for the control law required to realize the
desired stable linear attitude deviation norm measure dynamics.

In addition to its algebraic simplicity, the derived control law has a special geometrical
structure. It consists of auxiliary and particular parts, residing in the nullspace of the
controls coefficient row vector and the range space of its generalized inverse, respectively.
The auxiliary part contains a free nullvector, named the null-control vector, and is being
projected onto the controls coefficient nullspace by means of a nullprojection matrix.
Therefore, the choice of the null-control vector does not affect the dynamics of the attitude
deviation norm measure function, and it parameterizes all control laws that are capable
of realizing that dynamics.

The control problem is a problem of nonuniqueness; that is, if a dynamical system
is controllable then there exists no unique strategy to control it. The MPGI was rein-
troduced in [1] to parameterize this redundancy in control authority in the context of
program, or servo-constraints. The procedure is generalized in this work to the gas jet-
actuated spacecraft control problem by considering nulling the deviation from desired
spacecraft kinematics to be the servo-constraint that is to be realized.

Generalized inversion of the controls coefficient implies outer kinematics tracking
exponential stability. However, not all choices from the infinite set of null-control vectors
guarantee stability of the spacecraft internal dynamics. An observation is made in [1] that
the null-control vector choice substantially affects the inner system states. Therefore, the
primary objective in utilizing the null-control vector design freedom is to subdue internal
instability of the closed loop control system.

To fulfill the internal stability objective, and inspired by the control law’s affinity in
the null-control vector, the later is chosen in this work to be proportional to the spacecraft
angular velocity vector. The state dependent proportionality matrix is constructed by
solving a state dependent Liapunov equation that is produced by a quadratic Liapunov
function in the spacecraft angular velocity vector.

A fundamental property of the resulting Liapunov equation is its dependency on
the controls coefficient generalized inverse (CCGI) and the corresponding nullprojector.
This dependency is a source of two difficulties in the way of solving the equation. The
first difficulty is due to rank deficiency of the controls coefficient nullprojector, and it is
overcomed by perturbing the nullprojector to disencumber its rank deficiency.

The second difficulty is due to an inherent characteristic of the MPGI. Although well-
defined for any matrix, regardless of its size or rank, the MPGI mapping of a matrix that
is continuous in its elements suffers from a discontinuity, whenever the matrix changes
rank. This appears as a divergence of the generalized inverse matrix elements to infinite
values as the mapped matrix changes rank. Robustness against this generalized inversion
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instability is achieved by modifying the structure of the controls coefficient MPGI by
means of a damping factor that limits its growth as steady state response is approached.
Depending on the amount of modification, this damped CCGI results in a tradeoff between
trajectory tracking accuracy and generalized inversion stability.

Modifying the definition of the controls coefficient MPGI results in an approximate
realization of the desired spacecraft attitude deviation norm measure dynamics. It is
shown that the closed loop attitude trajectories tracking errors resulting from applying
the proposed generalized inversion-based control law are globally uniformly ultimately
bounded, and that the ultimate bound is inversely proportional to the damping factor
by which the generalized inverse is modified.

The present article introduces a nonlinear spacecraft attitude tracking control law,
derived in the generalized inversion framework via a novel state dependent Liapunov
equation, in a continuous development of Liapunov thoughts and results that remain
after a century and a half from his birth anniversary to be the most famous criteria for
nonlinear motion stability [2].

2 Spacecraft Mathematical Model

The spacecraft mathematical model is given by the following system of kinematical and
dynamical differential equations

ρ̇ = G(ρ)ω, ρ(0) = ρ0, (1)

ω̇ = J−1ω×Jω + τ, ω(0) = ω0, (2)

where ρ ∈ R
3×1 is the spacecraft vector of modified Rodrigues attitude parameters

(MRPs) [3], ω ∈ R
3×1 is the vector of spacecraft angular velocity components in its body

reference frame, J ∈ R
3×3 is a diagonal matrix containing spacecraft’s body principal

moments of inertia, and τ := J−1u ∈ R
3×1 is the vector of scaled control torques, where

u ∈ R
3×1 contains the applied gas jet actuator torque components about the spacecraft’s

principal axes. The cross product matrix x× which corresponds to a vector x ∈ R
3×1 is

skew symmetric of the form

x× =




0 x3 −x2

−x3 0 x1

x2 −x1 0




and the matrix valued function G(ρ) : R
3×1 → R

3×3 is given by

G(ρ) =
1

2

(
1 − ρT ρ

2
I3×3 − ρ× + ρρT

)
.

The MRPs are used as the attitude state variables, because of their validity in describing
any angular displacement about the spacecraft’s body axes up to 2π rad, such that G(ρ)
remains finite and invertible for any value of ρ that corresponds to such spacecraft angular
displacement.

3 Attitude Deviation Norm Measure Dynamics

Let ρd(t) ∈ R
3×1 be a prescribed desired spacecraft attitude vector such that ρd(t) is at

least twice continuously differentiable in t. The spacecraft attitude deviation vector from
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ρd(t) is defined as

z(ρ, t) := ρ − ρd(t). (3)

Define the scalar attitude deviation norm measure function φ : R
3×1 ×R → R to be half

the squared Euclidean norm of z(ρ, t)

φ =
1

2
‖ z(ρ, t) ‖2=

1

2
‖ ρ − ρd(t) ‖

2 . (4)

The first two time derivatives of φ along the spacecraft trajectories given by the solution
of Eqs. (1) and (2) are

φ̇ =
∂φ

∂ρ
G(ρ)ω +

∂φ

∂t
= zT (ρ, t) [G(ρ)ω − ρ̇d(t)] (5)

and

φ̈ = [G(ρ)ω − ρ̇d(t)]
T

[G(ρ)ω − ρ̇d(t)]

+ zT (ρ, t)
[
Ġ(ρ, ω)ω + G(ρ)

[
J−1ω×Jω + τ

]
− ρ̈d(t)

]
, (6)

where Ġ(ρ, ω) is the time derivative of G(ρ) obtained by differentiating the individual
elements of G(ρ) along the kinematical subsystem given by Eqs. (1). The procedure is
to prespecify a desired stable linear second-order dynamics of φ in the form

φ̈ + c1φ̇ + c2φ = 0, c1, c2 > 0. (7)

With φ, φ̇, and φ̈ given by Eqs. (4), (5), and (6), it is possible to write Eq. (7) in the
quasi-linear form

A(ρ, t)τ = B(ρ, ω, t), (8)

where the vector valued function A(ρ, t) : R
3×1 × R → R

1×3 is given by

A(ρ, t) = zT (ρ, t)G(ρ) (9)

and the scalar valued function B(ρ, ω, t) : R
3×1 × R

3×1 × R → R is

B(ρ, ω, t) = − [G(ρ)ω − ρ̇d(t)]
T

[G(ρ)ω − ρ̇d(t)]

− zT (ρ, t)
[
Ġ(ρ, ω)ω + G(ρ)J−1ω×Jω − ρ̈d(t)

]

− c1z
T (ρ, t) [G(ρ)ω − ρ̇d(t)] −

c2

2
‖ z(ρ, t) ‖2 .

The row vector function A(ρ, t) is named the controls coefficient of the attitude deviation
norm measure dynamics given by Eq. (7) along the spacecraft trajectories, and the scalar
function B(ρ, ω, t) is the corresponding controls load.

4 Linearly Parameterized Attitude Control Laws

The quasi-linear form given by Eq. (8) makes it feasible to assess realizability of the linear
attitude deviation norm measure dynamics given by Eq. (7) in a pointwise manner.
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Definition 4.1 For a given desired spacecraft attitude vector ρd(t), the linear atti-
tude deviation norm measure dynamics given by Eq. (7) is said to be realizable by the
spacecraft equations of motion (1) and (2) at specific values of ρ and t if there exists a
control vector τ that solves Eq. (8) for these values of ρ and t. If this is true for all ρ and
t such that z(ρ, t) 6= 03×1, then the linear attitude deviation norm measure dynamics is
said to be globally realizable by the spacecraft equations of motion.

Proposition 4.1 For any desired spacecraft attitude vector ρd(t), the linear attitude
deviation norm measure dynamics given by Eq. (7) is globally realizable by the spacecraft
equations of motion (1) and (2). Furthermore, the infinite set of all control laws realizing
that dynamics by the spacecraft equations of motion is parameterized by an arbitrarily
chosen nullvector y ∈ R

3×1 as

τ = A+(ρ, t)B(ρ, ω, t) + P(ρ, t)y, (10)

where A+ stands for the MPGI of the controls coefficient given by

A+(ρ, t) =

{
A

T (ρ,t)
A(ρ,t)AT (ρ,t) , A(ρ, t) 6= 01×3,

03×1, A(ρ, t) = 01×3,
(11)

and P(ρ, t) ∈ R
3×3 is the corresponding nullprojector given by

P(ρ, t) = I3×3 −A+(ρ, t)A(ρ, t). (12)

Proof A necessary and sufficient condition for the existence of a control vector τ
that solves Eq. (8) at specific values of ρ and t is consistency of the equation at these
values, i.e., B(ρ, ω, t) is in the range space of A(ρ, t). This is guaranteed for all values
of ω ∈ R

3×1, provided that A(ρ, t) does not vanish at the specified values of ρ and
t, at which the linear attitude deviation norm measure dynamics given by Eq. (7) is
realizable by the spacecraft equations of motion (1) and (2) according to definition 4.1.
Since the matrix G(ρ) is invertible for all values of ρ, it has a trivial nullspace, which
implies from Eq. (9) that A(ρ, t) vanishes if and only if z(ρ, t) does. Therefore, Eq. (8) is
consistent at all ρ and t such that z(ρ, t) 6= 03×1, and the linear attitude deviation norm
measure dynamics is globally realizable by the spacecraft equations of motion according
to definition 4.1. Consequently, the infinite set of all control laws that realize the linear
attitude deviation norm measure dynamics by the spacecraft equations of motion at all
ρ and t such that A(ρ, t) 6= 01×3 is given by Eq. (10) [4].

Since any choice of the nullvector y in the control law expression given by Eq. (10)
yields a solution to Eq. (8), the choice of y does not affect realizability of the linear
attitude deviation norm measure dynamics given by Eq. (7). Nevertheless, the choice
of y substantially affects the spacecraft transient state response [1]. In particular, an
inadequate choice of y can destabilize the spacecraft internal dynamics given by Eq. (2)
or causes unsatisfactory closed loop performance. Due to the importance of the nullvector
y in the present control system design development as a control vector by itself, we name
it the null-control vector.

Corollary 4.1 The infinite set of spacecraft closed loop systems equations realizing
the linear attitude deviation norm measure dynamics given by Eq. (7) is parameterized
by the null-control vector y as

ρ̇ = G(ρ)ω, ρ(0) = ρ0, (13)

ω̇ = J−1ω×Jω + A+(ρ, t)B(ρ, ω, t) + P(ρ, t)y, ω(0) = ω0. (14)
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Proof Equations (13) and (14) are obtained by substituting the control laws expres-
sions given by Eqs. (10) in the spacecraft’s mathematical model given by Eqs. (1) and
(2).

5 Perturbed Controls Coefficient Nullprojector

The concept of perturbed controls coefficient nullprojector (PCCN) is crucial in the
present development of the generalized inversion-based spacecraft control law.

Definition 5.1 The PCCN P̃(ρ, δ, t) is defined as

P̃(ρ, δ, t) := I3×3 − h(δ)A+(ρ, t)A(ρ, t), (15)

where h(δ) : R
1×1 → R

1×1 is any continuous function such that

h(δ) = 1 if and only if δ = 0.

Proposition 5.1 The PCCN P̃(ρ, δ, t) is of full rank for all δ 6= 0.

Proof The singular value decomposition of A(ρ, t) is given by

A(ρ, t) = Σ(ρ, t)VT (ρ, t),

where

Σ(ρ, t) =
[
‖ A(ρ, t) ‖ 0 0

]

and V(ρ, t) ∈ R
3×3 is orthonormal, i.e.,

V−1(ρ, t) = VT (ρ, t), and detV(ρ, t) = 1.

By inspecting the four conditions defining the MPGI [4], it can be easily verified that it
is given for A(ρ, t) by

A+(ρ, t) = V(ρ, t)Σ+(ρ, t),

where Σ+(ρ, t) is the MPGI of Σ(ρ, t) given by

Σ+(ρ, t) =

[
1

‖ A(ρ, t) ‖
0 0

]T

.

Therefore,

A+(ρ, t)A(ρ, t) = V(ρ, t)Σ+(ρ, t)Σ(ρ, t)VT (ρ, t). (16)

The right hand side of Eq. (16) is a singular value decomposition of A+(ρ, t)A(ρ, t),
where the diagonal matrix Σ+(ρ, t)Σ(ρ, t) contains the singular values of A+(ρ, t)A(ρ, t)
as its diagonal elements

Σ+(ρ, t)Σ(ρ, t) =



1 0 0
0 0 0
0 0 0


 .
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Consequently, the PCCN P̃(ρ, δ, t) is

P̃(ρ, δ, t) = I3×3 − h(δ)A+(ρ, t)A(ρ, t)

= I3×3 − h(δ)V(ρ, t)Σ+(ρ, t)Σ(ρ, t)VT (ρ, t)

= V(ρ, t)[I3×3 − h(δ)Σ+(ρ, t)Σ(ρ, t)]VT (ρ, t)

= V(ρ, t)



1 − h(δ) 0 0

0 1 0
0 0 1


VT (ρ, t),

which is of full rank for all δ 6= 0.

Lemma 5.1 The controls coefficient nullprojector P(ρ, t) commutes with its pertur-

bation P̃(ρ, δ, t) for all δ ∈ R. Furthermore, their matrix multiplication is the controls
coefficient nullprojector itself, i.e.,

P(ρ, t)P̃(ρ, δ, t) = P̃(ρ, δ, t)P(ρ, t) = P(ρ, t). (17)

Proof Equations (17) are verified by direct evaluation of the P(ρ, t) and P̃(ρ, δ, t)
expressions given by Eqs. (12) and (15).

6 Null-Control Vector Design

The choice of the null-control vector y affects neither realizability of the attitude de-
viation norm measure dynamics given by Eq. (7) nor steady state spacecraft response.
However, the choice of the null-control vector y affects both of spacecraft internal dynam-
ics and spacecraft transient response. Hence, it provides a freedom that can be utilized
to stabilize internal states of the spacecraft. Internal dynamics stability and stability
robustness against controls coefficient singularity are the most important factors to be
considered in designing the null-control vector y.

The structure of the control law τ given by Eqs. (10) has a special feature, namely
the affinity of its auxiliary part in y, which provides a pointwise-linear parametrization
to the nonlinear control law. Hence, let y be chosen as

y = Kω,

where K ∈ R
3×3 is to be determined. With this choice of y, a class of control laws that

globally realize the attitude deviation norm measure dynamics given by Eq. (7) is given
by

τ = A+(ρ, t)B(ρ, ω, t) + P(ρ, t)Kω

= [H1(ρ, ω, t) + P(ρ, t)K]ω + H2(ρ, t), (18)

where

H1(ρ, ω, t) = −A+(ρ, t)zT (ρ, t)
[
Ġ(ρ, ω) + G(ρ)J−1ω×J + c1G(ρ)

]

−A+(ρ, t)
[
G(ρ)ω − ρ̇d(t)

]T

G(ρ) (19)
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and

H2(ρ, t) = −
c2

2
A+(ρ, t)zT (ρ, t)z(ρ, t) + A+(ρ, t)zT (ρ, t)

[
ρ̈d(t) + c1ρ̇d(t)

]

−A+(ρ, t) ‖ ρ̇d(t) ‖
2
2 . (20)

Hence, a class of closed loop dynamical subsystems realizing the dynamics given by
Eq. (7) is obtained by substituting the control law given by Eqs. (18) in Eqs. (2), and
it takes the form

ω̇ =
[
J−1ω×J + H1(ρ, ω, t) + P(ρ, t)K

]
ω + H2(ρ, t). (21)

The term H2(ρ, t) in the above closed loop dynamical subsystem can be viewed as a
forcing term that drives the internal dynamics of the spacecraft to realize the desired
attitude deviation norm measure dynamics.

7 Spacecraft Internal Stability

The cascaded nature of the spacecraft mathematical model given by Eqs. (1) and (2)
implies that coupling between the spacecraft kinematics and dynamics is unidirectional,
i.e., the open loop spacecraft dynamical subsystem is independent of the attitude param-
eters. This allows to independently analyze dynamical subsystem stability by using the
following squared Euclidean norm of the spacecraft angular velocity vector as a control
Liapunov function

V =‖ ω ‖2 .

Differentiating V along the trajectories of the unforced part of the closed loop dynamical
subsystem Eqs. (21) obtained by setting H2(ρ, t) = 03×1 and noticing skew-symmetry
of ω× yields

V̇ = 2ωT
[
J−1ω×J + H1(ρ, ω, t) + P(ρ, t)K

]
ω

= ωT
[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + P(ρ, t)K + KP(ρ, t)
]
ω,

where the matrix gain K is chosen to be symmetric. Global exponential stability of the
unforced part of the closed loop dynamical subsystem given by Eqs. (21) at ω = 03×1

is guaranteed if V̇ remains negative-definite as the spacecraft dynamics evolves in time,
which implies the existence of a positive-definite constant matrix Q ∈ R

3×3 such that
the Liapunov equation

H1(ρ, ω, t) + HT
1 (ρ, ω, t) + P(ρ, t)K + KP(ρ, t) + Q = 0 (22)

is satisfied for all t ≥ 0. Lemma 5.1 implies that Eq. (22) can be written as

H1(ρ, ω, t) + HT
1 (ρ, ω, t) + P̃(ρ, δ, t)P(ρ, t)K + KP(ρ, t)P̃(ρ, δ, t) + Q = 0. (23)

To solve the above matrix equation for the matrix gain K, the individual terms in the
equation are vectorized by stacking their columns above each others such that [5]

vec
[
P̃(ρ, δ, t)P(ρ, t)K

]
+vec

[
KP(ρ, t)P̃(ρ, δ, t)

]
= −vec

[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + Q
]
.
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Employing the relation between the matrix vectorizing operation and the Kronecker
product of matrices yields [5]

{
I3×3 ⊗ P̃(ρ, δ, t)

}
vec [P(ρ, t)K] +

{
P̃(ρ, δ, t) ⊗ I3×3

}
vec [KP(ρ, t)] =

− vec
[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + Q
]
.

Therefore, the unique matrix gain solution of Liapunov equation (22) for
P(ρ, t)K(ρ, ω, δ, t) is obtained as

P(ρ, t)K(ρ, ω, δ, t) = −vec−1

{[
I3×3 ⊗ P̃(ρ, δ, t) + P̃(ρ, δ, t) ⊗ I3×3

]−1

vec
[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + Q
]}

= −vec−1

{[
P̃(ρ, δ, t) ⊕ P̃(ρ, δ, t)

]−1

vec
[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + Q
]}

(24)

and the control law
τ = [H1(ρ, ω, t) + P(ρ, t)K(ρ, ω, δ, t)]ω

renders the equilibrium point ω = 03×1 for the unforced part of the closed loop spacecraft
dynamical subsystem equations (21) given by

ω̇ =
[
J−1ω×J + H1(ρ, ω, t) + P(ρ, t)K(ρ, ω, δ, t)

]
ω (25)

globally exponentially stable, where P(ρ, t)K(ρ, ω, δ, t) is given by Eqs. (24).

8 Controls Coefficient Singularity Analysis

If the controls coefficient A(ρ, t) is singular at specific values of ρ and t, i.e., has zero
elements, then its MPGI A+(ρ, t) given by Eqs. (11) is infinite. The following proposition
relates global realizability of the linear attitude deviation norm measure dynamics to
controls coefficient singularity.

Proposition 8.1 Given a desired spacecraft attitude vector ρd(t) satisfying the
smoothness assumption, a control law τ globally realizes the linear attitude deviation
norm measure dynamics given by Eq. (7) by the spacecraft equations of motion (1) and
(2) only if

lim
t→∞

A(ρ, t) = 01×3.

Proof Because of the equivalency of linear attitude deviation norm measure dynamics
given by Eq. (7) and its quasi-linear form given by Eq. (8), global realizability of of the
first implies the existence of a control law that drives φ according to the dynamics given
by Eq. (7) at all ρ and t such that z(ρ, t) 6= 03×1. The norm property of φ implies that
z(ρ, t) = 03×1 if and only if φ = 0. Therefore, global realizability of the stable dynamics
given by Eq. (7) implies that

lim
t→∞

φ = 0 and lim
t→∞

z(ρ, t) = 03×1.
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Since the matrix G(ρ) is nonsingular for all finite values of ρ, Eq. (9) implies that

lim
t→∞

z(ρ, t) = 03×1 if and only if lim
t→∞

A(ρ, t) = 01×3.

With the expression of A(ρ, t) given by Eq. (9), the MPGI controls coefficient given by
Eq. (11) can be written as

A+(ρ, t) =
GT (ρ)z(ρ, t)

‖ GT (ρ)z(ρ, t) ‖2
.

Therefore,

‖ A+(ρ, t) ‖=
‖ GT (ρ)z(ρ, t) ‖

‖ GT (ρ)z(ρ, t) ‖2
=

1

‖ GT (ρ)z(ρ, t) ‖
. (26)

Since G(ρ) is finite for all finite values of ρ, Eq. (26) implies that

lim
z(ρ,t)→03×1

‖ A+(ρ, t) ‖= ∞.

In other words, unbounded CCGI A+(ρ, t) in a control law given by Eqs. (10) is indis-
pensable to globally realize the associated attitude deviation norm measure dynamics.
For the purpose of controlling the growth of A+(ρ, t), a limited-growth modified CCGI
is introduced next.
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Figure 8.1: Damped CCGI.

Definition 8.1 The damped CCGI A+
d (ρ, β, t) is defined as

A+
d (ρ, β, t) :=






AT (ρ,t)

‖A(ρ,t)‖2 : ‖ A(ρ, t) ‖> β,

AT (ρ,t)

β2 : ‖ A(ρ, t) ‖< β,

where the scalar β is a positive generalized inverse damping factor.
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The above definition implies that

‖A+
d (ρ, β, t)‖ 6

1

β

and that

lim
z(ρ,t)→03×1

‖ A+
d (ρ, β, t) ‖= lim

z(ρ,t)→03×1

1

β2
‖GT (ρ)z(ρ, t)‖ = 0

and that A+
d (ρ, β, t) pointwise converges to A+(ρ, t) as β vanishes (see Figure 8.1). Ac-

cordingly, we define H1d(ρ, ω, β, t) and H2d(ρ, β, t) by replacing the CCGI A+(ρ, t) in
the H1(ρ, ω, t) and H2(ρ, t) expressions given by Eqs. (19) and (20) with the damped
CCGI A+

d (ρ, β, t). Consequently, Kd(ρ, ω, β, δ, t) is defined by replacing H1(ρ, ω, t) in the
expression of K(ρ, ω, δ, t) given by Eqs. (24) with H1d(ρ, ω, β, t).

9 Generalized Inversion-Based Attitude Tracking Control Law

Theorem 9.1 The control law

τd = A+
d (ρ, β, t)B(ρ, ω, t) + P(ρ, t)Kd(ρ, ω, β, δ, t)ω (27)

renders the trajectory tracking errors of the closed loop system given by Eqs. (1) and (2)
globally uniformly ultimately bounded. Furthermore, any closed loop spacecraft attitude
control trajectory with initial condition ρ(0) ∈ R

3 enters the domain defined by

‖z(ρ, t)‖ <
β

σ(G(ρ))
(28)

in finite time and remains in it for all future time, where σ(G(ρ)) is the three times-
repeated singular value of G(ρ).

Proof Let φd be a norm measure function of the attitude deviation obtained by
applying the control law given by Eqs. (27) to the spacecraft equations of motion (1)
and (2), and let φ̇d, φ̈d be its first two time derivatives. Hence,

φd := φd(ρ, t) = φ(ρ, t),

φ̇d := φ̇d(ρ, ω, t) = φ̇(ρ, ω, t),

φ̈d := φ̈d(ρ, ω, τd, t) = φ̈(ρ, ω, τ, t) + A(ρ, t)τd −A(ρ, t)τ, (29)

where τ is given by

τ = A+(ρ, t)B(ρ, ω, t) + P(ρ, t)K(ρ, ω, δ, t)ω.

Adding c1φ̇d + c2φd to both sides of Eq. (29) yields

φ̈d + c1φ̇d + c2φd = φ̈ + c1φ̇ + c2φ + A(ρ, t)τd −A(ρ, t)τ = A(ρ, t)[τd − τ ].

Therefore, let the state vector Φd ∈ R
2×1 be defined as

Φd :=
[
φd φ̇d

]T
.

The attitude deviation norm measure closed loop dynamics becomes

Φ̇d = Λ1Φd + ∆1(ρ, β, t), (30)
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where the asymptotically stable system matrix Λ1 ∈ R
2×2 is

Λ1 =

[
0 1

−c2 −c1

]

and the input matrix valued function ∆1 : R
5×1 → R

2×1 is

∆1(ρ, ω, β, t) =





02×1 : ‖ A(ρ, t) ‖> β,

[
0

1
β2B(ρ, ω, t) − B(ρ, ω, t)

]
: ‖ A(ρ, t) ‖< β.

On the other hand, the control law given by Eqs. (27) can be written as

τd = [H1d(ρ, ω, β, t) + P(ρ, t)Kd]ω + H2d(ρ, β, t).

Using τd with the dynamical subsystem given by Eqs. (2) results in the closed loop
dynamical subsystem

ω̇ = Λ2(ρ, ω, β, δ, t)ω + ∆2(ρ, β, t), (31)

where
Λ2(ρ, ω, β, δ, t) =

[
J−1ω×J + H1d(ρ, ω, β, t) + P(ρ, t)Kd

]

and
∆2(ρ, β, t) = H2d(ρ, β, t).

Let the augmented state space vector ξ be defined as

ξ :=
[
ΦT

d ωT
]T

,

then Eqs. (30) and (31) form the augmented state space model

ξ̇ = Λ(ρ, ω, β, δ, t)ξ + ∆(ρ, ω, β, t), (32)

where

Λ(ρ, ω, β, δ, t) =

[
Λ1 02×3

03×2 Λ2(ρ, ω, β, δ, t)

]
, ∆(ρ, ω, β, t) =

[
∆1(ρ, ω, β, t)
∆2(ρ, β, t)

]
.

Now consider the unforced system

ξ̇p = Λ(ρ, ω, β, δ, t)ξp

and consider the positive definite Va(ξ) = ‖Φd‖
2 +‖ω/ω0‖

2, where ω0 is a nondimension-
alizing scalar. It can easily be verified that V̇a is negative definite along the trajectories
of ξp satisfying ‖A(ρ, t)‖ > β, and that ∆(ρ, ω, β, t) is a norm bounded nonvanishing per-
turbation vector. Therefore, the trajectories of the augmented dynamical system given
by Eqs. (32) are globally uniformly ultimately bounded ([6], pp. 347). Furthermore,
since ∆1 = 02×1 in the domain defined by ‖A(ρ, t)‖ > β, it follows from Liapunov theory
that the closed loop attitude trajectories move in the direction of decreasing Va(ξ) and
must cross in finite time the boundary of the domain to its open complement domain
defines by ‖ A(ρ, t) ‖< β, which becomes an invariant set. Moreover, G(ρ) satisfies

σmin(G(ρ)) = σmax(G(ρ)) = σ(G(ρ)).

Therefore,
‖A(ρ, t)‖ = ‖zT (ρ, t)G(ρ)‖ = σ(G(ρ))‖z(ρ, t)‖,

and the bound estimate of the attitude deviation vector norm given by Eq. (28) follows.
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10 Numerical Simulations

The spacecraft model selected has inertia parameters I1 = 200 Kg-m2, I2 = 150 Kg-m2,
I3 = 175 Kg-m2. Values of c1 = 0.9 and c2 = 0.3 are chosen, and the desired MRPs
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Figure 10.1: MRP ρ1 vs. t: β = 0.1, 0.3.
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Figure 10.2: Attitude deviation norm measure φ vs. t: β = 0.1, 0.3.

trajectories are chosen to be ρdi(t) = cos 0.1t, i = 1, 2, 3, and Q = I3×3. All figures
correspond to δ = 0.01 and two values of β = 0.1, 0.3. Figure 10.1 shows the response of
ρ1(t). Similar figures are obtained for ρ2(t) and ρ2(t), but are not shown. Figures 10.2
and 10.3 reveal the tradeoff between generalized inversion stability robustness against
singularity and closed loop system tracking performance. The effect of changing δ on the
closed loop response is minor.
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Figure 10.3: Scaled controls moments norm ‖ τ (ρ,ω, t) ‖2 vs. t: β = 0.1, 0.3.
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