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1 Introduction

Let Z be the set of integers, Z[k, l] = {i ∈ Z|i = k, k + 1, ..., l} and Z[k,∞) =
{i ∈ Z|i = k, k + 1, ...} .

In [1], authors considered oscillations of the partial difference equation with several
nonlinear terms of the form

um+1,n + um,n+1 − um,n +

h
∑

i=1

pi(m, n) |um−ki,n−li |
αi sgnum−ki,n−li = 0.

In this paper, we investigate the equation of the following form

um+1,n+1+um+1,n+um,n+1−um,n +

h
∑

i=1

pi(m, n) |um−ki,n−li |
αi sgnum−ki,n−li = 0, (1)

where m, n ∈ Z[0,∞), Pi (m, n) ≥ 0 (i = 1, 2, · · · , h) and
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(H1) αh > αh−1 > · · · > αk > 1 > αk−1 > · · · > α1 > 0;
(H2) ki, li (i = 1, 2, · · · , h) are nonnegative integers.
Such an equation arises in several mathematical models (see e.g.[3]) including inter-

connected neuron units placed on an arbitrary large board, heat transfer in lattice of
molecules, population migration among cities, and discrete simulation of the heat equa-
tion et al.

The usual concepts of oscillation or stability of steady state solutions do not catch all
their fine details, and it is necessary to use the concept of frequency measures introduced
in [2] to provide better descriptions. In this paper, by employing frequency measures,
some new oscillatory criteria of (1) are established.

In addition to (H1) and (H2), we also assume
(H3) pi = {pi(m, n)}m,n∈Z[0,∞) (i = 1, 2, · · · , h) are real double sequences;

(H4) Suppose there exists ai > 0 (i = 1, 2, · · · , h) such that
∑h

i=1 ai = 1 and
∑h

i=1 aiαi = 1;
(H5) If pi = {pi(m, n)} has negative components, then ai is chosen such that ai is a

quotient of odd positive integers.
Let

k = max
1≤i≤h

{ki} > 0, l = max
1≤i≤h

{li} > 0, k = min
1≤i≤h

{ki} , l = min
1≤i≤h

{li}

and

γ = min

{

1

a1
, · · · ,

1

ah

}

.

Since 0 < ai < 1, we see that γ > 1.
Our plan is as follows. In the next section, we recall some of the terminologies and

basic results related to the frequency measures. Then we derive several criteria for all
solutions of (1) to be frequently oscillatory or unsaturated. In the final section, we give
some examples to illustrate our results.

For the sake of convenience, Z[−k,∞)×Z[−l,∞) will be denoted by Ω in the sequel.
Given a double sequence {um,n} , the partial differences um+1,n −um and um,n+1−um,n

will be denoted by ∆1um,n and ∆2um,n respectively.

2 Preliminaries

The union, intersection and difference of two sets A and B will be denoted by A + B,
A · B and A\B respectively. The number of elements of a set S will be denoted by |S| .
Let Φ be a subset of Ω. Then

XmΦ = {(i + m, j) ∈ Ω| (i, j) ∈ Φ} , Y mΦ = {(i, j + m) ∈ Ω| (i, j) ∈ Φ}

are the translations of Φ. Let α, β, λ and δ be integers satisfying α ≤ β and λ ≤ δ. The
union

∑β

i=α

∑δ

j=λ X iY jΦ will be denoted by Xβ
αY δ

λ Φ. Clearly,

(i, j) ∈ Ω\Xβ
αY δ

λ Φ ⇔ (i − s, j − t) ∈ Ω\Φ

for α ≤ s ≤ β and λ ≤ t ≤ δ.
For any m, n ∈ Z[0,∞), we set Φ(m,n) =

{

(i, j) ∈ Φ| − k ≤ i ≤ m,−l ≤ j ≤ n
}

. If

lim sup
m,n→∞

∣

∣Φ(m,n)
∣

∣

mn
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exists, then the superior limit, denoted by µ∗(Φ), will be called the upper frequency
measure of Φ. Similarly, if

lim inf
m,n→∞

∣

∣Φ(m,n)
∣

∣

mn

exists, then the inferior limit, denoted by µ∗(Φ), will be called the lower frequency mea-
sure of Φ. If µ∗(Φ) = µ∗(Φ), then the common limit is denoted by µ(Φ) and is called the
frequency measure of Φ.

Clearly, µ(∅) = 0, µ(Ω) = 1 and 0 ≤ µ∗(Φ) ≤ µ∗(Φ) ≤ 1 for any subset Φ of Ω,
furthermore if Φ is finite, then µ(Φ) = 0.

The following results are concerned with the frequency measures and their proofs are
similar to those in [3].

Lemma 2.1 Let Φ and Γ be subsets of Ω. Then µ∗(Φ + Γ) ≤ µ∗(Φ) + µ∗(Γ).
Furthermore, if Φ and Γ are disjoint, then

µ∗(Φ) + µ∗(Γ) ≤ µ∗(Φ + Γ) ≤ µ∗(Φ) + µ∗(Γ) ≤ µ∗(Φ + Γ) ≤ µ∗(Φ) + µ∗(Γ),

so that
µ∗(Φ) + µ∗(Ω\Φ) = 1.

Lemma 2.2 Let Φ be a subset of Ω and α, β, λ and δ be integers such that α ≤ β
and λ ≤ δ. Then

µ∗
(

Xβ
αY δ

λ Φ
)

≤ (β − α + 1)(δ − λ + 1)µ∗(Φ)

and
µ∗

(

Xβ
αY δ

λ Φ
)

≤ (β − α + 1)(δ − λ + 1)µ∗(Φ).

Lemma 2.3 Let Φ1, ..., Φn be subsets of Ω. Then

µ∗

(

n
∑

i=1

Φi

)

≤
n
∑

i=1

µ∗ (Φi) − (n − 1)µ∗

(

n
∏

i=1

Φi

)

and

µ∗

(

n
∑

i=1

Φi

)

≤ µ∗ (Φ1) + µ∗

(

n
∑

i=2

Φi

)

− (n − 1)µ∗

(

n
∏

i=1

Φi

)

.

Lemma 2.4 Let Φ and Γ be subsets of Ω. If µ∗(Φ)+µ∗(Γ) > 1, then the intersection
Φ · Γ is infinite.

For any real double sequence {vi,j} defined on a subset of Ω, the level set
{(i, j) ∈ Ω| vi,j > c} is denoted by (v > c) . The notations (v ≥ c) , (v < c), (v ≤ c)
are similarly defined. Let u = {ui,j}(i,j)∈Ω be a real double sequence. If µ∗(u ≤ 0) = 0,

then u is said to be frequently positive, and if µ∗(u ≥ 0) = 0 , then u is said to be
frequently negative.

u is said to be frequently oscillatory if it is neither frequently positive nor frequently
negative.. If µ∗(u > 0) = ω ∈ (0, 1), then u is said to have unsaturated upper positive
part, and if µ∗(u > 0) = ω ∈ (0, 1), then u is said to have unsaturated lower positive
part. u is said to have unsaturated positive part if µ∗(u > 0) = µ∗(u > 0) = ω ∈ (0, 1).

The concepts of frequently oscillatory and unsaturated double sequences were in-
troduced in [2-6]. It was also observed that if a double sequence u = {ui,j}(i,j)∈Ω is

frequently oscillatory or has unsaturated positive part, then it is oscillatory, that is, u
is not positive for all large m and n, nor negative for all large m and n. Thus if we can
show that every solution of (1) is frequently oscillatory or has unsaturated positive part,
then every solution of (1) is oscillatory.
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3 Frequently Oscillatory Solutions

An inequality, which can be found in [7], will be used in deriving the following results:

h
∑

i=1

σixi ≥
h
∏

i=1

xσi

i , (2)

where σi > 0,
∑h

i=1 σi = 1, xi ≥ 0, i = 1, 2, · · · , h.

Lemma 3.1 Suppose there exist m0 ≥ 2k and n0 ≥ 2l such that

pi(m, n) ≥ 0 for (m, n) ∈ Z[m0 − 2k , m0 + 1] × Z[n0 − 2l, n0 + 1], i = 1, 2, · · · , h.

Let {um,n} be a solution of (1). If um,n ≥ 0 for (m, n) ∈ Z[m0 − 2k, m0 + 1] × Z[n0 −
2l, n0 + 1], then

∆1um,n ≤ 0, ∆2um,n ≤ 0 for (m, n) ∈ Z[m0 − k, m0] × Z[n0 − l, n0],

and if um,n ≤ 0 for (m, n) ∈ Z[m0 − 2k, m0 + 1] × Z[n0 − 2l, n0 + 1], then

∆1um,n ≥ 0, ∆2um,n ≥ 0 for (m, n) ∈ Z[m0 − k, m0] × Z[n0 − l, n0].

Proof If um,n ≥ 0 for (m, n) ∈ Z[m0 − 2k, m0 + 1] × Z[n0 − 2l, n0 + 1], it follows
from (1) that

um,n = um+1,n+1 + um+1,n + um,n+1 +

h
∑

i=1

pi(m, n)uαi

m−ki,n−li

≥ um+1,n+1 + um+1,n + um,n+1

≥ um+1,n + um,n+1.

Hence ∆1um,n ≤ 0, ∆1um,n ≤ 0 for (m, n) ∈ Z[m0 − k, m0] × Z[n0 − l, n0].
Similarly, we also have ∆1um,n ≥ 0, ∆2um,n ≥ 0 for (m, n) ∈ Z[m0−k, m0]×Z[n0−

l, n0]. Let
h
∏

i=1

pai

i =

{

h
∏

i=1

pai

i (m, n)

}

m,n∈Z[0,∞)

.

Under the assumption (H5),
∏h

i=1 pai

i is well defined. We remark that if pi(m, n) ≥ 0,
the assumption (H5) is not needed.

Theorem 3.1 Suppose there exist constants ωi (i = 1, 2, · · · , h) and ω such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(

h
∏

i=1

(pi < 0)

)

= ω,

µ∗

(

γ

h
∏

i=1

pai

i > 1

)

> 4(k + 1)(l + 1)

(

h
∑

i=1

ωi − (h − 1)ω

)

.

Then every nontrivial solution of (1) is frequently oscillatory.
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Proof Suppose to the contrary that u = {um,n} is a frequently positive solution
of (1). Then µ∗(u ≤ 0) = 0. By Lemmas 2.1–2.3, we have

1 = µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

+µ∗

{

X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

≤ µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

+4(k + 1)(l + 1)

{

µ∗

(

h
∑

i=1

(pi < 0)

)

+ µ∗(u ≤ 0)

}

≤ µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

+ 4(k + 1)(l + 1)

(

h
∑

i=1

ωi − (h − 1)ω

)

< µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

+ µ∗

(

γ

h
∏

i=1

pai

i > 1

)

.

Therefore by Lemma 4, the intersection

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

·

(

γ

h
∏

i=1

pai

i > 1

)

is infinite. This implies that there exist m0 ≥ 2k and n0 ≥ 2l such that

γ
h
∏

i=1

pai

i (m0, n0) > 1 (3)

and

pi(m, n) ≥ 0 (i = 1, 2, · · · , h), um,n > 0. (4)

for (m, n) ∈ Z[m0−2k, m0+1]×Z[n0−2l, n0+1]. In view of (4) and Lemma 3.1, we may
then see that ∆1um,n ≤ 0 and ∆2um,n ≤ 0 for (m, n) ∈ Z[m0 − k, m0] × Z[n0 − l, n0],
and hence um0−ki,n0−li ≥ um0−k,n0−l ≥ um0,l0 (i = 1, 2, · · · , h), so that by (2) and (4),

0 ≥ um0+1,n0+1 + um0+1,n0
+ um0,n0+1 − um0,n0

+

h
∑

i=1

pi(m0, n0)u
αi

m0−k,n0−l

≥ um0+1,n0+1 + um0+1,n0
+ um0,n0+1 − um0,n0

+ γ

h
∏

i=1

pai

i (m0, n0)um0,n0

≥

(

γ

h
∏

i=1

pai

i (m0, n0) − 1

)

um0,n0
> 0,

which is a contradiction.
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In a similar manner, if u = {um,n} is a frequently negative solution of (1) such that
µ∗(u ≥ 0) = 0, then we may show that

{

Ω\X2k1

−1 Y 2l1
−1

[

h
∑

i=1

(pi < 0) + (u ≥ 0)

]}

·

(

γ

h
∏

i=1

pai

i > 1

)

is infinite. Again we may arrive at a contradiction as above. The proof is complete.

Theorem 3.2 Suppose there exist constants ωi (i = 1, 2, · · · , h) and ω such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(

γ

h
∏

i=1

pai

i ≤ 1

)

= ω,

µ∗





h
∏

i=1

(pi < 0) ·



γ

h
∏

j=1

p
aj

j ≤ 1







 >

h
∑

i=1

ωi + ω

h
−

1

4h(k + 1)(l + 1)
.

Then every nontrivial solution of (1) is frequently oscillatory.
Proof Suppose to the contrary that u = {um,n} be an eventually positive solution

of (1). Then µ∗(u ≤ 0) = 0. By Lemmas 2.1–2.3, we get

µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) +

(

γ
h
∏

i=1

pai

i ≤ 1

)

+ (u ≤ 0)

]}

= 1 − µ∗

{

X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) +

(

γ
h
∏

i=1

pai

i ≤ 1

)

+ (u ≤ 0)

]}

≥ 1 − 4(k + 1)(l + 1)

{

µ∗

[

h
∑

i=1

(pi < 0) +

(

γ

h
∏

i=1

pai

i ≤ 1

)]

+ µ∗ (u ≤ 0)

}

≥ 1 − 4(k + 1)(l + 1)

[

h
∑

i=1

µ∗ (pi < 0) + µ∗

(

γ

h
∏

i=1

pai

i ≤ 1

)

−hµ∗





h
∏

i=1

(pi < 0) ·



γ

h
∏

j=1

p
aj

j ≤ 1











 > 0.

Thus, by Lemma 2.4, the intersection

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) +

(

γ

h
∏

i=1

pai

i ≤ 1

)

+ (u ≤ 0)

]}

is infinite. This implies that there exist m0 ≥ 2k and n0 ≥ 2l such that (3) and

pi(m, n) ≥ 0 (i = 1, 2, · · · , h), um,n > 0

hold for (m, n) ∈ Z[m0 − 2k, m0 + 1] × Z[n0 − 2l, n0 + 1]. By similar discussions as in
the proof of Theorem 3.1, we may arrive at a contradiction against (3).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9(2) (2009) 209–218 215

In case u = {um,n} is eventually negative, then µ∗(u ≥ 0) = 0. In an analogous
manner, we may see that

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) +

(

γ

h
∏

i=1

pai

i ≤ 1

)

+ (u ≥ 0)

]}

is infinite. This can lead to a contradiction again. The proof is complete.

4 Unsaturated Solutions

The methods used in the above proofs can be modified to obtain the following results for
unsaturated solutions.

Theorem 4.1 Suppose there exist constants ωi (i = 1, 2, · · · , h), ω and ω0 ∈ (0, 1)
such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(

h
∏

i=1

(pi < 0)

)

= ω,

µ∗

(

γ

h
∏

i=1

pai

i > 1

)

> 4(k + 1)(l + 1)

(

h
∑

i=1

ωi + ω0 − (h − 1)ω

)

.

Then every nontrivial solution of (1) has unsaturated upper positive part.

Proof Let u = {um,n} be a nontrivial solution of (1). We assert that µ∗(u > 0) ∈
(ω0, 1). Suppose not, then µ∗(u > 0) ≤ ω0 or µ∗(u > 0) = 1. In the former case, applying
arguments similar to the proof of Theorem 3.1, we may then arrive at the fact that

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u > 0)

]}

·

(

γ

h
∏

i=1

pai

i > 1

)

is infinite and a subsequent contradiction. In the latter case, we have µ∗(u ≤ 0) = 0. By
Lemmas 2.1–2.3, we have

1 = µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

+µ∗

{

X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

≤ µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

+ 4
(

k + 1
)

(l + 1)µ∗

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]

≤ µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}
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+ 4
(

k + 1
)

(l + 1)

{

µ∗

[

h
∑

i=1

(pi < 0)

]

+ µ∗ (u ≤ 0)

}

≤ µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

+ 4
(

k + 1
)

(l + 1)

(

h
∑

i=1

ωi + ω0 − (h − 1)ω

)

< µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

+ µ∗

(

γ
h
∏

i=1

pai

i > 1

)

.

Therefore by Lemma 2.4, we know that the set

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) + (u ≤ 0)

]}

·

(

γ

h
∏

i=1

pai

i > 1

)

is infinite. Then by discussions similar to those in the proof of Theorem 3.1 again, we
may arrive at a contradiction. This completes the proof. Combining Theorem 3.2 and
4.1, we have the following theorem the proof of which is omitted.

Theorem 4.2 Suppose there exist constants ωi (i = 1, 2, · · · , h), ω and ω0 ∈ (0, 1)
such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(

γ

h
∏

i=1

pai

i ≤ 1

)

= ω,

µ∗





h
∏

i=1

(pi < 0) ·



γ

h
∏

j=1

p
aj

j ≤ 1







 >

h
∑

i=1

ωi + ω + ω0

h
−

1

4h(k + 1)(l + 1)
.

Then every nontrivial solution of (1) has unsaturated upper positive part.

Theorem 4.3 Suppose there exist constants ωi (i = 1, 2, · · · , h), ω′, ω′′ and ω0 ∈
(0, 1) such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(

γ

h
∏

i=1

pai

i ≤ 1

)

= ω′,

µ∗





h
∏

i=1

(pi < 0)·



γ
h
∏

j=1

p
aj

j ≤ 1







 = ω′′, 4(k + 1)(l + 1)

(

h
∑

i=1

ωi + ω′ + ω0 − hω′′

)

< 1.

Then every nontrivial solution of (1) has unsaturated upper positive part.

Proof We claim that µ∗(u > 0) ∈ (ω0, 1). First, we prove that µ∗(u > 0) > ω0.
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Otherwise, if µ∗(u > 0) ≤ ω0, by Lemmas 2.1, 2.2 and 2.3, we have

µ∗

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) +

(

γ
h
∏

i=1

pai

i ≤ 1

)]}

+ µ∗
{

Ω\X2k
−1Y

2l
−1 [(u > 0)]

}

= 2 − µ∗

{

X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) +

(

γ

h
∏

i=1

pai

i ≤ 1

)]}

− µ∗

{

X2k
−1Y

2l
−1 [(u > 0)]

}

≥ 2 − 4(k + 1)(k + 1)

{

h
∑

i=1

µ∗ (pi < 0) + µ∗

(

γ

h
∏

i=1

pai

i ≤ 1

)

+ µ∗ (u > 0)

−hµ∗

[

h
∏

i=1

(pi < 0) ·

(

γ

h
∏

i=1

pai

i ≤ 1

)]}

> 1.

Hence, by Lemma 2.4, we see that

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) +

(

γ

h
∏

i=1

pai

i ≤ 1

)]}

·
{

Ω\X2k
−1Y

2l
−1 [(u > 0)]

}

is infinite. Then there exist m0 ≥ 2k and n0 ≥ 2l such that (3) and

pi(m, n) ≥ 0 (1, 2, · · · , h), um,n ≤ 0

hold for (m, n) ∈ Z[m0−2k, m0+1]×Z[n0−2l, n0+1]. Applying similar discussions as in
the proof of Theorem 3.1, we can get a contradiction. Next, we prove that µ∗(u > 0) < 1.
Otherwise, µ∗(u ≤ 0) = 0. Analogously, we see that

{

Ω\X2k
−1Y

2l
−1

[

h
∑

i=1

(pi < 0) +

(

γ

h
∏

i=1

pai

i ≤ 1

)]}

·
{

Ω\X2k
−1Y

2l
−1 [(u ≤ 0)]

}

is infinite. Then, we can also come to a contradiction. The proof is complete. We
remark that very nontrivial solution of (1) has unsaturated lower positive part under the
same conditions as in Theorem 4.1, Theorem 4.2 or Theorem 4.3.

5 Examples

We give two examples to illustrate our previous results.

Example 5.1 Consider the partial difference equation

um+1,n+1 + um+1,n + um,n+1 − um,n + p1(m, n)|um−4,n−3|
1

4 sgnum−4,n−3

+p2(m, n)|um−3,n−2|
1

2 sgnum−3,n−2 + p3(m, n)|um−1,n−1|
3

2 sgnum−1,n−1 = 0, (5)

where p1(m, n) = 2
1

4
(n−1) + 2

1

4
(5n−3) + 2

1

4
(3n+7), p2(m, n) = p3(m, n) = 1. Obviously,

α1 = 1/4, α2 = 1/2, α3 = 3/2. Let a1 = 1/5, a2 = 1/4, a3 = 11/20. It is easy to see that
∑3

i=1 aiαi = 1, γ = 20/11. It is clear that

µ∗

(

γ

3
∏

i=1

pai

i > 1

)

= 1, µ∗

(

3
∏

i=1

(pi < 0) ·

(

γ

3
∏

i=1

pai

i ≤ 1

))

= 0,
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µ∗(p1 < 0) = µ∗(p2 < 0) = µ∗(p3 < 0) = µ∗

(

3
∏

i=1

(pi < 0)

)

= µ∗

(

γ

3
∏

i=1

pai

i ≤ 1

)

= 0.

Therefore, by Theorem 3.1 or 3.2, every nontrivial solution of (5) is frequently oscillatory.
Furthermore, let ω0 ∈ (0, 1/80), we see that all conditions in Theorem 4.1, 4.2 or 4.3 are
satisfied. Thus, every nontrivial solution of (5) has unsaturated upper positive part.
Indeed, u = {(−1)m2n} is such a solution with µ∗(u > 0) = 1/2.

Example 5.2 Consider the partial difference equation

um+1,n+1 + um+1,n + um,n+1 − um,n + p1(m, n)|um−3,n−3|
1

3 sgnum−3,n−3

+p2(m, n)|um−3,n−2|
1

2 sgnum−3,n−2 + p3(m, n)|um−1,n−1|
2sgnum−1,n−1 = 0, (6)

where

p1(m, n) = p3(m, n) = 1, p2(m, n) =

{

−1, m = 10s and n = 13t, s, t ∈ Z[0,∞),
1, otherwise.

Choose a1 = 3/10, a2 = 1/3, a3 = 11/30. It is easy to see that
∑3

i=1 ai = 1,
∑3

i=1 aiαi =
1 and γ = 30/11. Clearly,

µ∗ (p1 < 0) = µ∗ (p3 < 0) = µ∗

(

3
∏

i=1

(pi < 0)

)

= µ∗

(

3
∏

i=1

(pi < 0)·

(

γ

3
∏

i=1

pai

i ≤ 1

))

= 0,

µ∗ (p2 < 0) = µ∗

(

γ
3
∏

i=1

pai

i ≤ 1

)

=
1

130
, µ∗

(

γ
3
∏

i=1

pai

i > 1

)

=
129

130
.

Then by Theorem 3.1 or 3.2, every nontrivial solution of (6) is frequently oscillatory.
Furthermore, when given ω0 = 1/4161, applying Theorem 4.1, 4.2 and 4.3, we may see
that every nontrivial solution of (6) has unsaturated upper positive part.
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