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Abstract: In order to study the changing dynamics of solutions of a dynamic equa-
tion on time scales as the time scales change, we must determine appropriate topolo-
gies on the set of time scales and the set of solutions of dynamic equations. As a first
step, we prove a natural characterization of the Fell topology on the space of time
scales.
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1 Introduction

Dynamic equations on times scales were introduced by S. Hilger in [10] in 1988. A
thorough introduction is contained in [2]. A time scale is a nonempty closed subset of
R. Hilger’s ∆-derivative is defined for a real-valued function f whose domain is a time
scale T and is denoted by f∆(t) at any t ∈ T, where t < sup T .

By design, f∆(t) mimics the standard right-hand derivative f ′(t) when there ex-
ists a strictly decreasing sequence convergent to t in T and a scaled difference operator
otherwise. In particular, f∆(t) = f ′(t) on R and f∆(t) = ∆f(t) on Z. While the ∆-
derivative is a “forwards” operator, an analogous “backwards” operator exists called the
∇-derivative.

Generalizing differential and difference equations are dynamic equations, which in-
volve ∆-derivatives (or ∇-derivatives, etc.). Given a dynamic equation, say the initial
value problem

x∆ = f(t, x), x(t0) = x0, (1.1)

the solution inherently depends on the time scale. Broadly, we would like to examine
how the solution of (1.1) depends on the time scale that is its domain.
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1.1 An example

The following illustrative example has been considered in [4], [8], [12], and [14]. Consider
the initial value problem:

x∆ = 4x
(

3

4
− x

)

, x(0) = x0.

Over the eulerian time scales µZ+ for 0 < µ ≤ 1, the solution is found by iterating

Lµ(x) = 4µx
(

3µ+1

4µ − x
)

.

starting from x(0) = x0. When µ = 1, the difference equation is solved by iteration of

L1(x) = 4x (1 − x)

over Z+. On the other hand, as µ → 0, the solutions appear to tend towards the solution
of the logistic differential equation over R+.

The dynamics of the quadratic polynomial Lµ is easily understood: Lµ is topologically
conjugate to

Qc(x) = x2 + c, where c =
1

4
(1 − 9µ2).

Every value of µ ∈ (0, 1] corresponds exactly to one value of c ∈
[

−2, 1/4
)

, with µ = 1
corresponding to c = −2 and c → 1/4 as µ → 0.

Note that the real interval
[

−2, 1/4
]

is the real part of the Mandelbrot set for the
family Qc. Hence, passing through the time scales µZ+—from a difference equation when
µ = 1 towards a differential equation as µ → 0—all of the interesting dynamics of real
quadratic polynomials, including all of their bifurcations, are displayed! (Of course, the
issue of µZ+ converging to R+ must be dealt with also.)

1.2 The goal

In the example of subsection 1.1, we have realized the domain of the solutions on eulerian
time scales as a parameter of a family of dynamical systems. This is a simple case. We
do not know what happens when non-eulerian time scales are used in this example. Also,
we have not dealt with an equation that has non-unique solutions.

As indicated in [14], we propose the following project. For any given initial value
problem, treat the time scales as a parameter. Let A denote the set of all time scales
and let B denote the set of all solutions of the initial value problem on all possible time
scales. Consider the canonical projection:

B




y

π

A

(1.2)

That is, an element of B, a solution f : T → R, projects to its domain, T. What can
be said about this projection? Hopefully, this approach will help explain the changes in
dynamics of solutions caused by changes in time scales and make for better modeling of
applications.

In Section 2, we examine the Fell topology on the space of time scales. We prove
a recent conjecture in [14] giving a natural characterization of convergence in the Fell
topology.
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Section 3 considers the compatible topology on the space of partial mappings, i.e.,
continuous function on time scales.

The first natural example, that of equations with unique solutions, is treated in
Section 3.3. Of course, the projection is a homeomorphism onto its image in this case.

2 Convergence of Sets in Terms of Convergence of Their Elements

A hyperspace is a set of closed subsets of a topological space X . The set of all closed
subsets of X is denoted CL(X). See [11] for an introduction. For example, CL(R) is the
set of all time scales.

Hausdorff (for metrizable X), Vietoris, and Fell defined topologies on hyperspaces in
[9], [15], and [6], respectively. These are all equivalent on a compact metrizable space.
However, the Vietoris and Fell topologies are not metrizable on CL(R).

2.1 The Fell topology on CL(X)

We set the following notation that will assist in defining the Fell topology on CL(X).
For any E ⊂ X , let

E− = {A ∈ CL(X)|A ∩ E 6= ∅}

and

E+ = {A ∈ CL(X)|A ⊂ E}

= {A ∈ CL(X)|A ∩ (X − E) = ∅}.

We say that every A ∈ E− hits E and every A ∈ E+ misses X − E; E− and E+ are
called hit and miss sets, respectively. Note that E+ ⊂ E− for every E. Also, we call a
subset of X cocompact if its complement is compact.

The Fell, as well as the Vietoris, topologies are defined by hit and miss sets; these
topologies are called hit-and-miss topologies. (In fact, the Hausdorf metric topology is
also a hit-and-miss topology. See [13].) The Fell topology, denoted by τ(F ), is generated
by the hit sets U− for all open subsets U of X and the miss sets V + for all cocompact
subsets V of X . The Vietoris topology, denoted by τ(V ), is similarly generated except
that the V ’s need only be open. (If X is Hausdorff, then the Vietoris topology is finer
than the Fell topology.)

Remark 2.1 By convergence in CL(X), we will mean convergence with respect to
the Fell topology on CL(X) unless otherwise indicated.

2.2 Convergence through a sequence in CL(X)

In [14], we defined another kind of convergence. (This was also discussed in [12] and it
inspired [3] and [4].)

Let {Tn} be a sequence in CL(X) and let t ∈ X . t is called a sequential limit point

of the sequence {Tn} if there exists a sequence {tn} such that tn ∈ Tn for all n ∈ N

and tn converges to t in X . Analogously, t is called a subsequential limit point of the
sequence {Tn} if t is a sequential limit point of a subsequence {Tni

}. We denote the set
of all sequential limit points of {Tn} by T and the set of all subsequential limit points of
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{Tn} by T′. We say that {tn} converges to a sequential limit point t through the Tn’s.

Similarly, {tni
} converges to a subsequential limit point t through the Tni

’s.

It is always the case that T ⊂ T′. Two obvious questions are whether T is in CL(X)
and whether T is the limit of the sequence Tn.

Lemma 2.1 If X is metrizable, then T is closed in X.

Proof Choose a metric d on X . Suppose that a sequence {si} in T converges to t in
X . We wish to show that t ∈ T.

Since the sequence {si} converges to t, for every n ∈ N, there exists a natural number
Nn such that

d(si, t) <
1

2n
(2.1)

whenever i ≥ Nn.
Since, for each i ∈ N, si ∈ T, there exist sequences {ti,j} converging to si through the

Tj ’s. Set M0 = 1. For all i ∈ N, there exists a natural number Mi such that Mi > Mi−1

and

d(ti,j , si) <
1

2i
(2.2)

whenever j ≥ Mi.
We wish to construct a sequence {tj} converging to t through the Tj ’s. For each i,

for Mi−1 ≤ j < Mi, set tj = ti,j .
Take an arbitrary ε > 0. When i > 1/ε and i ≥ Nn, by (2.2) and (2.1),

d(tj , t) ≤ d(tj , si) + d(si, t)

<
1

2i
+

1

2n
< ε.

Therefore, the sequence {tj} converges to t through the Tj ’s and t ∈ T. 2

Remark 2.2 Therefore, in the setting of a metric space X , the sequential limit set of
a sequence in CL(X) is either empty or in CL(X). For example, the sequence of singleton
sets {{n}} in CL(R) has empty sequential limit set and ∅ /∈ CL(R) by definition.

2.3 A characterization of the Fell topology on CL(X)

In [14], it was conjectured that a sequence is convergent in CL(R) if and only if the
sequential and subsequential limit sets of the sequence are equal. We prove this in the
more general setting of a metric space X .

Theorem 2.1 Let X be metrizable. Let {Tn} be a sequence in CL(X). {Tn} con-

verges in CL(X) if and only if T = T′ 6= ∅. Moreover, in this situation, {Tn} converges

to T.

Proof Choose a metric d on X . First, let us suppose that T = T′ 6= ∅. We consider
two cases of subbasic open sets containing T in order to prove that {Tn} converges to T.

Case 1: Let U ⊂ X be open such that T ∈ U−. Choose t ∈ T ∩ U and ε > 0
sufficiently small such that

Bε(t) = { b ∈ X | d(b, t) < ε } ⊂ U.
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Since t ∈ T is a sequential limit point, there exists a sequence {tn} that converges to t
through the Tn’s. Therefore, there exists N such that tn ∈ Bε(t) ⊂ U for all n ≥ N .
Hence, Tn ∩ U 6= ∅ and Tn ∈ U− for all n ≥ N .

Case 2: Let K ⊂ X be compact such that V = X − K and T ∈ V +. Assume that
there is no N such that Tn ∈ V + for all n ≥ N . So there exists a subsequence {Tni

} such
that Tni

/∈ V +. Therefore, for each i, there exists ti ∈ Tni
∩ K. If the set {ti} is finite,

then {ti} has a constant subsequence {t} for some t ∈ K. Alternatively, the infinite set
{ti} has a limit point t in the compact set K. In either case, t ∈ T′, but t /∈ T. This
contradicts the fact that T = T′.

Therefore, T = T′ 6= ∅ implies that {Tn} converges to T, which is in CL(X) by
Lemma 2.1.

Conversely, let us suppose that {Tn} converges to S in CL(X). We know that S 6= ∅
since S ∈ CL(X). We wish to show that S ⊂ T ⊂ T′ ⊂ S. We know that T ⊂ T′. It
remains to show that S ⊂ T and T′ ⊂ S.

First, we choose s ∈ S. For every m ∈ N, let

Um = B1/m(s) =

{

u ∈ X

∣

∣

∣

∣

d(u, s) <
1

m

}

.

For every m, S ∈ U−

m since s ∈ S∩Um. Since {Tn} converges to S, for every m, there exists
an integer Nm such that Tn ∈ U−

m whenever n ≥ Nm. If necessary, adjust the sequence
{Nm} to be increasing. For every m and every integer n such that Nm ≤ n < Nm+1,
choose tn ∈ Tn ∩ Um. This yields a sequence {tn} that converges to s through the Tn’s.
Therefore, S ⊂ T.

Next, we choose t ∈ T′. Thus, there exists a sequence tni
that converges to t through

the Tni
’s. Assume that t /∈ S. Choose a cocompact V such that S ⊂ V and choose ε > 0

such that
Bε(t) ∩ V = { u ∈ X |d(u, t) < ε } ∩ V = ∅.

Since {Tn} converges to S, there exists N such that Tn ∈ V + whenever n ≥ N . For
every n ≥ N and for every t′ ∈ Tn,

d(t′, t) ≥ ε > 0.

This contradicts that {tni
} converges to t through the Tni

’s. Therefore, T′ ⊂ S. 2

Remark 2.3 In particular, Theorem 2.1 characterizes convergence in CL(R), the
space of all time scales.

2.4 Examples

Example 2.1 The sequence of singleton sets {{n}} does not converge since its se-
quential limit set is empty. While we could say the sequence converges to the empty set,
we do not include the empty set in CL(X). Similarly, the sequence of intervals {[n, n+1]}
fails to converge.

Example 2.2 The sequence of intervals {[−n, n]} converges to its sequential limit set
R. This fails to converge in the Hausdorff topology since the distance between {[−n, n]}
and R is bounded away from 0. (See [14].) How about in the Vietoris topology?

Let us see if the proof of Theorem 2.1 holds for {[−n, n]} in the Vietoris topology
rather than the Fell topology. That is, we allow V to just be open rather than cocompact.
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The sequential limit set is R. If R ∈ V +, then V = R. But then {[−n, n]} ∈ V + for
every n and the convergence holds in the Vietoris topology.

Example 2.3 The sequence {Z + 1

n} converges to its sequential limit set Z. It also
converges in the Hausdorff topology, but not in the Vietoris topology. Here the proof
would break down for

V =

∞
⋃

k=1

(

k −
1

k
, k +

1

k

)

,

which is not cocompact. (See [14].)

Example 2.4 The sequence 1

nZ+ converges to its sequential limit set R+.

2.5 Properties of the Fell topology on CL(X)

Many properties of the Fell topology on CL(X) for a metrizable space X may be found
in [1], wherein references to primary sources can be found.

The Fell topology on the one-point compactification of CL(X)—extended to include
the empty set—is compact Hausdorff; we denote this by CL(X). The Fell topology on
CL(X) is locally compact Hausdorff. For example, this implies that the Fell topology on
CL(X) is completely regular.

Since CL(X) is compact, every sequence {Tn} in CL(X) or CL(X) must have a
convergent subsequence. So the subsequential limit set in CL(X) is never empty, but
may be {∅}.

Giving a subset S ⊂ CL(X), the induced topology, the Hausdorff, Vietoris, and Fell
topologies always agree if X is a compact metric space. So, when considering uniformly
bounded time scales, we can revert to Hausdorff metric.

3 The Topology on The Solution Spaces

Recall that for Hausdorff spaces X and Y , a subbasis for the compact-open topology on
the set, C(X, Y ), of continuous functions from X to Y is given by

S(K, U) = {f ∈ C(X, Y ) | K ⊂ X is compact, U is open in Y , and f(K) ⊂ U}.

If Y is a metric space, this is the topology of compact convergence, i.e., sequences
converge if and only if they converge uniformly on compact subsets. If X is compact and
Y is a metric space, this is the topology of uniform convergence.

3.1 The space of continuous functions on time scales

Since we are interested in function spaces over variable domains, we must unite the
standard function spaces.

For a closed subset K of X , a function f : K → Y can be thought of as a partial

function from X to Y —the domain of definition is K rather than X . By a partial

mapping, we will mean a continuous partial function. (See [7].) The set of all partial
mappings from X to Y is

CF (X, Y ) = ∪{C(K, Y ) |K ∈ CL(X) } .
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The subscript “F” is a reminder that we will be using the Fell topology to build a
compatible topology on this set. E.g., CF (R, R) is the set of all continuous real-valued
functions on time scales.

Suppose that X and Y are metric spaces. So X × Y is metrizable. We wish to give
a topology on CF (X, Y ) that is consistent with the compact-open topology on C(X, Y ).

Consider the function Gr : CF (X, Y ) → CL(X × Y ) that sends each partial mapping
to its graph. Since Gr is injective, we can pull back the Fell topology on CL(X × Y )
to give a topology on CF (X, Y ): S is open in CF (X, Y ) if and only if Gr(S) is open in
Gr(CF (X, Y )) as a subspace of CL(X × Y ).

Following [7], Theorem 3.1 follows from the facts that projection from X × Y to X
is continuous and induces a continuous mapping from CL(X × Y ) to CL(X).

Theorem 3.1 The canonical projection π : CF (X, Y ) → CL(X) is continuous.

3.2 The case of unique solutions

Recall the goal proposed in subsection 1.2. We examine the case of a dynamic equation
whose solutions are always unique (for example, x∆ = 0).

Let S denote the set of all solutions of a given initial value problem over all possible
time scales. Consider the restriction of the projection π:

πS : S → CL(R).

That is, an element of S, a solution f : T → R of the initial value problem, projects
to its domain, T. Since all solutions are unique on their domains, πS is a bijection onto
its range. The construction of the topology on CF (X, Y ) now shows the following:

Corollary 3.1 πS is a homeomorphism onto its range.

3.3 Open problem: the case of non-unique solutions

In the non-unique case, the projection πS may be far more interesting. Hopefully, the
topology will tell us something about the dynamics. A question to whet one’s appetite:
can there be monodromy ? Can we lift a loop with a base point in the space of time
scales so that we start and end at different solutions?
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Independent of this paper, Esty and Hilger have concluded, in [5], that the Fell topol-
ogy is best suited for the space of time scales. They give an interesting characterization
of the Fell topology that extends the topologies induced by the Hausdorff metric on com-
pact sets. The present paper seeks to extend the same topologies from the viewpoint
of the Vietoris topology as a hit-and-miss topology. This seems to be somewhat more
natural and dynamic. Probably that is because of the similarity of the hit-and-miss
constructions of the Vietoris and Fell topologies; it is far less natural to think of the
Hausdorff topology as a hit-and-miss topology.
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[9] Hausdorff, F. Grundzüge der Mengenlehre. Verlag von Veit, Leipzig, 1914.

[10] Hilger, S. Ein Masskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D.
Thesis, Universität Würzburg, 1988.

[11] Illanes A. and Nadler Jr., S. Hyperspaces: Fundamentals and Recent Advances. Marcel
Dekker, New York, 1999.

[12] Lawrence, B. and Oberste-Vorth, R. Solutions of dynamic equations with varying time
scales. In: Difference Equations, Special Functions and Orthogonal Polynomials (S. Elaydi,
J. Cushing, R. Lasser, A. Ruffing, V. Papageorgiou, W. Van Assche, eds.). World Scientific,
2007, 452–461.

[13] Naimpally, S. All hypertopologies are hit-and-miss. Appl. Gen. Topol. 3 (2002) 45–53.

[14] Oberste-Vorth, R. The Fell topology on the space of time scales for dynamic equations.
Adv. Dyn. Syst. Appl. 3 (2008) 177–184.

[15] Vietoris, L. Bereiche zweiter Ordnung. Monatsh. Math. 32 (1922) 258–280.


