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1 Introduction

Because of the rapid development of chaos–based cryptography in secure communication,
chaotic synchronization has become an active research area. Many results on all kinds of
chaotic synchronization and its applications have been systematically summarized in [1].
Synchronization is ubiquitous in many natural and engineering systems. Synchroniza-
tion literally means two identical, near-identical or even different chaotic systems tend to
move at the same state, velocity, acceleration and phase, if one of them is coupled or both
coupled with each other. The relevant research on synchronization can be dated back
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to Huygens who investigated frequency locking between two clocks, which is perhaps
the first synchronization phenomenon observed. Chaotic synchronization has become
an active research in nonlinear dynamics [2, 3] since the early 1990s when researchers
realized that chaotic dynamical systems can be synchronized and recognized its potential
applications to the secure communication. In addition to the classical complete synchro-
nization [3, 4], there are some other new types of synchronization, such as Pecora–Carroll
synchronization [5], phase synchronization [6], frequency synchronization [7], anticipat-
ing synchronization [8, 9], quasiperiodic synchronization [10], lag synchronization [11],
inverse synchronization [12] and generalized synchronization [13].

Synchronization of chaotic dynamical systems has received a lot of attention in recent
years. The potential application of chaotic synchronization to signal masking and private
communication [14, 15, 16, 17, 18, 19] is very interesting. Chaos in nonlinear dynamical
system is a well–established discipline in physics, chemistry, power, electronics, biology,
ecology, economics, etc in the meantime. Chaotic behavior can be found in systems
described by ordinary differential equations(ODE), discrete dynamical systems and delay
differential equations(DDE), etc [20]. In other words, chaos is a multidisciplinary research
field and ubiquitous phenomenon. The main property of chaotic dynamics is its critical
sensitivity to initial conditions in the systems’ evolution. For many years this property
made chaos unpredictable, since the sensitivity to initial conditions reduces the long-
terme predictability of such chaotic dynamical systems. But the recent investigations
have shown, in fact, this property of chaotic dynamical systems could practically be very
beneficial [21].

Time delay does also widely exist in the natural world and the human society. Finite
signal transmission, switching speeds and memory effects make it ubiquitous in nature,
technology and society [8]. Therefore the study of the effect of time delay on the systems’
dynamics is of considerable practical importance. Time–delayed dynamical systems are
also interesting since they have infinite-dimensional state spaces and the number of their
positive Lyapunov exponents can be made arbitrarily large because of the existence of
the time delay. From this point of view, such systems are especially appealing for secure
communication scheme [1].

The objective of this paper is to apply the Generalized Hamiltonian forms and ob-
server approach developed in [22] to the synchronization of some chaotic dynamical sys-
tems. Besides the observer perspective on synchronization, some works, such as the con-
cept of synchronization is revisited in the light of the classical notion of observers from
(non)linear control theory, are obtained in [23, 24]. As described in [25] this method
has several advantages over the exiting synchronization methods: (1) it enables syn-
chronization achieved in a systematic way; (2) it can be successfully applied to several
well–known chaotic or hyperchaotic oscillators; (3) it does not require the computation
of any Lyapunov exponent; (4) it does not require initial conditions belonging to the
same basin of attraction. In Section 2, the Generalized Hamiltonian forms and observer
approach [22, 25] are first introduced. Then the synchronization of some kinds of chaotic
dynamical systems such as Lü system, Van der Pol-Duffing system, Genesio system and
SMIB power system, which without time delay, employed by the Generalized Hamilto-
nian forms and observer approach is considered in Section 3. That of the delayed chaotic
dynamical systems, i.e., SMIB power system and Van der Pol–Duffing system, is also
investigated in Section 4. At last, the conclusion and discussion are presented.
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2 The design in Generalized Hamiltonian system

Consider a smooth nonlinear system given in the following “Generalized Hamiltonian”
canonical form,

ẋ = J (x)
∂H

∂x
+ S(x)

∂H

∂x
+ F(x), x ∈ Rn, (2.1)

where H(x) denotes a smooth energy function which is globally positive definite in Rn.
The column gradient vector of H(x), denoted by ∂H/∂x, is assumed to exist everywhere.
We usually use quadratic energy function H(x) = 1

2xTMx with M being a, constant,
symmetric positive definite matrix. So ∂H/∂x = Mx. The square matrices J (x) and
S(x) satisfy for all x ∈ Rn, the properties: J (x) + J T (x) = 0, and S(x) = ST (x). The
vector field J (x)∂H/∂x exhibits the conservative part of the system and it is also referred
to as the workless part, or workless forces of the system; and S(x) depicts the working
or nonconservative part of the system. For certain systems, S(x) is negative definite
or negative semi–definite. If, on the other hand, S(x) is positive definite, positive semi–
definite, or indefinite, it clearly represents, respectively, the global, semi–global, and local
destabilizing part of the system. And where F(x) is a locally destabilizing vector field.
Consider now the following dynamical system

ẋ = f(x, t). (2.2)

It can be rewritten as

ẋ = A
∂H

∂x
+ F(x, t). (2.3)

Since A = A−AT

2 + A+AT

2 , we have

ẋ =
A − AT

2

∂H

∂x
+

A + AT

2

∂H

∂x
+ F(x, t), (2.4)

Let J (x) = A−AT

2 ,S(x) = A+AT

2 . The equation (2.2) can be written in the Generalized
Hamiltonian canonical form (2.1). This form is not only used for autonomous systems,
but also for non-autonomous systems and delay differential equations.

In the context of observer design, we consider a special class of Generalized Hamilto-
nian systems with destabilizing vector field and liner output map, y(t), given by











ẋ = J (y)
∂H

∂x
+ (I + S)

∂H

∂x
+ F(y), x ∈ Rn,

y = C
∂H

∂x
, y ∈ Rm,

(2.5)

where S is a constant symmetric matrix, the matrix I is a constant skew symmetric
matrix. The vector variable y(t) is referred to as the system output. The matrix C is a
constant matrix.

We denote the estimate of the state vector x by ξ, and consider the Hamiltonian
energy function H(ξ) to be the particularization of H in terms of ξ. Similarly, we denote
by η the estimated output, computed in terms of the estimated state ξ. The gradient
vector ∂H/∂ξ is, naturally, of the formMξ with M being a constant symmetric positive
definite matrix.
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A dynamic nonlinear state observer for (2.5) is obtained as











ξ̇ = J (y)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F(y) + K(y − η), ξ ∈ Rn,

η = C
∂H

∂ξ
, η ∈ Rm,

(2.6)

where K is a constant matrix, known as the observer gain. The state estimation error,
defined as e = x− ξ and the output estimation error, defined as ey = y− η, are governed
by











ė = J (y)
∂H

∂e
+ (I + S − KC)

∂H

∂e
, e ∈ Rn,

ey = C
∂H

∂e
, ey ∈ Rm,

(2.7)

where the vector, ∂H/∂e actually stands, with some abuse of notation, for the gradient
vector of energy function, ∂H/∂e = ∂H/∂x− ∂H/∂ξ = Me. When needed, set I + S =
W .

Definition 2.1 (Synchronization) [1] We say that the receiver dynamics (2.6) syn-
chronizes with the transmitter dynamics (2.5), if

lim
t→∞

‖x(t) − ξ(t)‖ = 0, (2.8)

no matter which initial conditions x(0) and ξ(0) have.

Theorem 2.1 (Stability of the estimation/synchronization error [22])The state x of
the nonlinear system (2.5) can be globally exponentially asymptotically estimated by the
state ξ of the nonlinear observer (2.6) if and only if there exists a constant matrix K
such that the symmetric matrix

[W − KC] + [W − KC]T = [S − KC] + [S − KC]T = 2[S −
1

2
(KC + CT KT )]

is negative definite.

In the latter synchronized programs, we mainly use Theorem 2.1. Most time we only
consider the matrix S, but not the matrix I + S.

And a sufficient but not necessary condition based on the observability condition for
asymptotical stability of the synchronization was obtained.

Theorem 2.2 [22] The state x(t) of the nonlinear system (2.5) can be globally expo-
nentially asymptotically estimated by the state ξ of the nonlinear observer (2.6), if the
pair of matrices (C,W) or the pair (C,S), is either observable or, at least, detectable.

3 Synchronization of some chaotic systems

3.1 Lü system

Consider Lü system [26]






ẋ1 = a(x2 − x1),
ẋ2 = −x1x3 + cx2,
ẋ3 = x1x2 − bx3.

(3.1)
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The system (3.1) can be easily written in the following Generalized Hamiltonian form,





ẋ1

ẋ2

ẋ3



 =









0
a

2
0

−
a

2
0 −x1

0 x1 0









∂H

∂x
+









−a
a

2
0

a

2
c 0

0 0 −b









∂H

∂x
, (3.2)

where H(x) is the Hamiltonian energy scalar function

H(x) =
1

2
[x2

1 + x2
2 + x2

3], (3.3)

we choose y = [x1, x2]
T =

(

1 0 0
0 1 0

)

∂H
∂x

as the output signal to be transmitted. The

matrices C, S, I, and J (y) are given by

C =

(

1 0 0
0 1 0

)

,S =









−a
a

2
0

a

2
c 0

0 0 −b









, I =









0
a

2
0

−
a

2
0 0

0 0 0









,J (y) =





0 0 0
0 0 −x1

0 x1 0



 .

Using Theorem 2.2 [22], the pair (C,W) or (C,S) already constitutes a detectable, but
not observable pair for the chaotic parameters a = 36, b = 3, c = 20. Because the output
contains two states, namely, x1 and x2, so the gain parameters should be chosen as K1,
. . . ,K6, this results in the receiver





ξ̇1

ξ̇2

ξ̇3



 =









0
a

2
0

−
a

2
0 −x1

0 x1 0









∂H

∂ξ
+









−a
a

2
0

a

2
c 0

0 0 −b









∂H

∂ξ
+





K1 K2

K3 K4

K5 K6



 (y − η),

(3.4)

where η = C ∂H
∂ξ

. One may now choose the gain vector K =

(

K1 K3 K5

K2 K4 K6

)T

. The

synchronization error, corresponding to this receiver, is





ė1

ė2

ė3



 =





0 a
2 − K2

2 + K3

2
K5

2

−a
2 + K2

2 − K3

2 0 −x1 + K6

2

−K5

2 x1 −
K6

2 0





∂H

∂e

+





−a − K1
a
2 − K2

2 − K3

2 −K5

2
a
2 − K2

2 − K3

2 c − K4 −K6

2

−K5

2 −K6

2 −b





∂H

∂e
. (3.5)

From Theorem 2.1, the following expression is obtained

2[S −
1

2
(KC + CT KT )] =





−2a − 2K1 −K2 − K3 + a −K5

−K2 − K3 + a −2K4 + 2c −K6

−K5 −K6 −2b



 ,

we may prescribe K1, K2, K3, K4, K5 and K6 in order to ensure asymptotic stability of
zero of the synchronization error. By applying the Sylvester’s Criterion–which provides
a test for definite negativity of a matrix–thus, this is achieved by setting
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K1 > −a,
(K2 + K3 − a)2 < 4(K1 + a)(K4 − c),
(K1 + a)[4b(K4 − c) − K2

6 ] − (K2 + K3 − a)[b(K2 + K3 − a) − K5K6]
−K5(K4 − c) > 0.

Figure 3.1 shows the performance of the designed receiver with the following param-
eter values and for the constant gains a = 36, b = 3, c = 20, K1 = 0, K2 = 3, K3 =
3, K4 = 30, K5 = 0, K6 = 2. From Figure 3.1, it can be easily known that after a very
short time, Lü system is synchronized.

3.2 Van der Pol–Duffing system

The initial mathematical model is Van der Pol–Duffing system with external excitation
given by

ẍ + ω2
0x − (α − γx2)ẋ + βx3 = k cos(Ωt). (3.6)

By setting x1 = x, x2 = ẋ1, we can write the system (14) in the following form

{

ẋ1 = x2,
ẋ2 = (α − γx2

1)x2 − ω2
0x1 − βx3

1 + k cos(Ωt).
(3.7)

Taking as a Hamiltonian energy function the scalar function

H(x) =
1

2
[x2

1 + x2
2], (3.8)

we write the system in Generalized Hamiltonian canonical form as

(

ẋ1

ẋ2

)

=

(

0
1+ω2

0

2

−
1+ω2

0

2 0

)

∂H

∂x
+

(

0
1−ω2

0

2
1−ω2

0

2 α

)

∂H

∂x

+

(

0
−γx2

1x2 − βx3
1 + k cosΩt

)

. (3.9)

The destabilizing vector requires two signals for complete cancellation at the receiver,
namely, the variables, x1 and x2. The output is then chosen as the vector y = [x1, x2]

T .
The matrices C, S and I are given by

C =

(

1 0
0 1

)

, S =

(

0
1−ω2

0

2
1−ω2

0

2 α

)

, I =

(

0
1+ω2

0

2

−
1+ω2

0

2 0

)

,

the pair (C,S) is observable, and hence detectable. In order to achieve chaotic behavior,
we should choose suitable parameters. The receiver would then be designed as follows

(

ξ̇1

ξ̇2

)

=

(

0
1+ω2

0

2

−
1+ω2

0

2 0

)

∂H

∂ξ
+

(

0
1−ω2

0

2
1−ω2

0

2 α

)

∂H

∂ξ

+





0

−γx2
1x2 − βx3

1 + k cosΩt



+

(

K1 K2

K3 K4

)

(y − η), (3.10)
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Figure 3.1: The synchronization of the Lü systems (3.2) and (3.4) with the following parameter
values and for the constant gains a = 36, b = 3, c = 20, K1 = 0, K2 = 3, K3 = 3, K4 =
30, K5 = 0, K6 = 2 and the initial conditions x(0) = (0.01, 0.1, 1)T , ξ(0) = (1, 0.5, 2)T .
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where η = C ∂H
∂ξ

, the synchronization error dynamics is governed by

(

ė1

ė1

)

=

(

0 1
2 + 1

2ω2
0 + K3

2 − K2

2

− 1
2 − 1

2ω2
0 + K2

2 − K3

2 0

)

∂H

∂e

+

(

−K1
1
2 − 1

2ω2
0 − K2

2 − K3

2
1
2 − 1

2ω2
0 − K2

2 − K3

2 −K4 + α

)

∂H

∂e
, (3.11)

we could prescribe K1, K2, K3, and K4, in order to ensure asymptotic stability of zero
of the synchronization error. By applying the Sylvester’s Criterion , this is achieved by
setting
K1 > 0,
K4 > α + 1

4K1
(K2 + K3 + ω2

0 − 1)2.

Figure 3.2 shows the synchronization of the systems (3.9) and (3.10), the chosen

parameters were set as following[27], α = 1, γ = 1, ω2
0 = 1, β = 0.01, k = 5, Ω = 2.463,

with receiver parameter gains K1 = 1, K2 = 0, K3 = 0, K4 = 9.
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Figure 3.2: The synchronization of the van der Pol–Duffing systems (3.9) and (3.10) with the
following parameter values and for the constant gains α = 1, γ = 1, ω2

0 = 1, β = 0.01, k = 5, Ω =
2.463, K1 = 1, K2 = 0, K3 = 0, K4 = 9 and the initial conditions x(0) = (0.1, 0.5)T , ξ(0) =
(2, 0.1)T .
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3.3 Genesio system

Genesio system, proposed by Genesio and Tesi [28], is one of paradigms of chaos since
it captures many features of chaotic systems. It includes a simple square part and three
simple ordinary differential equations that depend on three negative parameters.

The dynamic equations of the system is given by







ẋ1 = x2,
ẋ2 = x3,
ẋ3 = ax1 + bx2 + cx3 + x2

1,
(3.12)

where x1, x2, x3 are state variables, indeed





ẋ1

ẋ2

ẋ3



 =





0 1
2 −a

2

− 1
2 0 1−b

2
a
2 − 1−b

2 0





∂H

∂x
+





0 1
2

a
2

1
2 0 1+b

2
a
2

1+b
2 c





∂H

∂x
+





0
0
x2

1



 , (3.13)

taking the Hamiltonian energy function

H(x) =
1

2
[x2

1 + x2
2 + x2

3], (3.14)

the destabilizing vector field and the lacking damping in x2 variable, call for y = [x1, x2]
T

to be used as the output of the transmitter. The matrices C,S are found to be

C =

(

1 0 0
0 1 0

)

,S =





0 1
2

a
2

1
2 0 1+b

2
a
2

1+b
2 c



 , I =





0 1
2 −a

2

− 1
2 0 1−b

2
a
2 − 1−b

2 0



 .

The pair (C,S) is observable, and hence detectable. The receiver would then be
designed as





ξ̇1

ξ̇2

ξ̇3



 =





0 1
2 −a

2

− 1
2 0 1−b

2
a
2 − 1−b

2 0





∂H

∂ξ
+





0 1
2

a
2

1
2 0 1+b

2
a
2

1+b
2 c





∂H

∂ξ

+





0
0
x2

1



+





K1 K2

K3 K4

K5 K6



 (y − η), (3.15)

where η = C ∂H
∂ξ

.
The synchronization error evolves according to





ė1

ė2

ė3



 =





0 1
2 − K2

2 + K3

2 −a
2 + K5

2

− 1
2 + K2

2 − K3

2 0 1
2 − b

2 + K6

2
a
2 − K5

2 − 1
2 + b

2 − K6

2 0





∂H

∂e

+





−K1
1
2 − K2

2 − K3

2
a
2 − K5

2
1
2 − K2

2 − K3

2 −K4
1
2 + b

2 − K6

2
a
2 − K5

2
1
2 + b

2 − K6

2 c





∂H

∂e
. (3.16)
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Figure 3.3: The synchronization of the Genesio systems (3.13) and (3.15) with the follow-
ing parameter values and for the constant gains a = −6, b = −2.92, c = −1.2, K1 =
2, K2 = 1, K3 = 1, K4 = 5, K5 = −6, K6 = −1.92 and the initial conditions x(0) =
(4, 0.1, 0.8)T , ξ(0) = (0.2, 1, 6)T .
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To guarantee asymptotic stability of zero of the error dynamics, we should choose
suitable K1, K2, K3, K4, K5, K6.By applying the Sylvester’s Criterion , this is achieved
by setting
K1 > 0,
(K2 + K3 − 1)2 < 4K1K4,
2K1[−4cK4 − (K6 − b − 1)2] + 2c(K2 + K3 − 1)2

+2(K5 − a)(K2 + K3 − 1)(K6 − b − 1) − 2K4(K5 − a)2 > 0.
Figure 3.3 shows the synchronization of the systems (3.13) and (3.15). The chosen

parameters were set, following [21], as a = −6, b = −2.92, c = −1.2, with receiver
parameter gains K1 = 2, K2 = 1, K3 = 1, K4 = 5, K5 = −6, K6 = −1.92.

3.4 SMIB power system

Consider SMIB power system [29], called swing equation






ẋ1 = x2,
ẋ2 = −cx2 − β sinx1 + f sin x3,
ẋ3 = ω.

(3.17)

Taking as a Hamiltonian energy function the scalar function

H(x) =
1

2
[x2

1 + x2
2 + x2

3], (3.18)

we write the system in Generalized Hamiltonian canonical form as




ẋ1

ẋ2

ẋ3



 =





0 1
2 0

− 1
2 0 0

0 0 0





∂H

∂x
+





0 1
2 0

1
2 −c 0
0 0 0





∂H

∂x
+





0
−β sin x1 + f sin x3

ω



 .(3.19)

The destabilizing vector field requires two signals for complete cancellation at the
receiver. Namely, the variables, x1 and x2. The output is then chosen as the vector
y = [y1, y2]

T = [x1, x3]
T , the matrices C, S and I are given by

C =

(

1 0 0
0 0 1

)

, S =





0 1
2 0

1
2 −c 0
0 0 0



 , I =





0 1
2 0

− 1
2 0 0

0 0 0



 .

The pair (C,S) is observable, and hence detectable, S is therefore of indefinite sign.
The receiver would then be designed as follows





ξ̇1

ξ̇2

ξ̇3



 =





0 1
2 0

− 1
2 0 0

0 0 0





∂H

∂ξ
+





0 1
2 0

1
2 −c 0
0 0 0





∂H

∂ξ

+





0
−β sin x1 + f sin x3

ω



+





K1 K2

K3 K4

K5 K6



 (y − η), (3.20)

where η = C ∂H
∂ξ

, the synchronization error, corresponding to this receiver, is found to be





ė1

ė2

ė3



 =





0 K3+1
2

K5−K2

2

−K3+1
2 0 −K4

2
K2−K5

2
K4

2 0





∂H

∂e
+





−K1
1−K3

2 −K2+K5

2
1−K2

2 −c −K4

2

−K2+K5

2 −K4

2 −K6





∂H

∂e
,

(3.21)
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Figure 3.4: The synchronization of the SMIB power systems (3.19) and (3.20) with the
following parameter values and for the constant gains c = 1, β = 3, f = 5, ω = 1, K1 =
0.5, K2 = 1.5, K3 = 1, K4 = 0.1, K5 = −1.5, K6 = 0.75 and the initial conditions x(0) =
(1, 0.2, 3)T , ξ(0) = (0.2, 3, 0.1)T .
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we can easily know that x3 and ξ3 are synchronized with each other, so we only concern
the synchronization of other variables,this was achieved by setting
K1 > 0, (K3 − 1)2 < 4cK1,
K1(4cK6 − K2

4) + K4(K3 − 1)(K2 + K5) − K6(K3 − 1)2 − c(K2 + K5)
2 > 0

Figure 3.4 shows the performance of the designed receiver with the following param-
eter values for the system and for the constant gains: c = 1, β = 3, f = 5, ω = 1, K1 =
0.5, K2 = 1.5, K3 = 1, K4 = 0.1, K5 = −1.5, K6 = 0.75.

4 Synchronization of Time–Delay Chaotic Systems

Following [22], that the time–delay system, a mathematic description by a delay differ-
ential equation (DDE), which in its simplest form of a single fixed time–delay τ is given
by

ẋ = f(x, x(t − τ)), x ∈ Rn, (4.1)

can be written in the Generalized Hamiltonian canonical form,

ẋ = J
∂H

∂x
+ S(x)

∂H

∂x
+ F(x, x(t − τ)), x ∈ Rn. (4.2)

The properties of J ,S and F(x, x(t− τ)) as before in Section 2. The observer design
is also similar to (2.6). Now we use two examples to describe it.

4.1 Delayed Duffing–Van der Pol system

The system under consideration is a nonlinear oscillator governed by equation

{

ẋ1 = x2,
ẋ2 = −α(1 − x2

1)x2 + F cos(ωt) − βx3
1 + γx1(t − τ),

(4.3)

taking H(x) = 1
2 [x2

1 + x2
2] as the Hamiltonian energy function, we write the system in

Generalized Hamiltonian form as

(

ẋ1

ẋ2

)

=

(

0 1
2

− 1
2 0

)

∂H

∂x
+

(

0 1
2

1
2 −α

)

∂H

∂x

+

(

0
αx2

1x2 + F cos(ωt) − βx3
1 + γx1(t − τ)

)

. (4.4)

The destabilizing vector field requires for complete cancelation at the receiver, namely,
the variables x1 and x2. Then the output is chosen as y = [y1, y2]

T = [x1, x2]
T , the

matrices C, S and I are given by

C =

(

C1

C2

)

=

(

1 0
0 1

)

, S =

(

0 1
2

1
2 −α

)

, I =

(

0 1
2

− 1
2 0

)

.

The pair (C,S) is observable, and hence detectable. But we can observe that the
pair of matrices (C1,S) is also a detectable pair. An injection of the synchronization
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error e1 = x1 − ξ1 suffices to have an asymptotically stable trajectory convergence. The
receiver would then be designed, exploiting this last observation, as follows

(

ξ̇1

ξ̇2

)

=

(

0 1
2

− 1
2 0

)

∂H

∂ξ
+

(

0 1
2

1
2 −α

)

∂H

∂ξ

+

(

0
αx2

1x2 + F cos(ωt) − βx3
1 + γx1(t − τ)

)

+

(

K1

K2

)

(y − η),(4.5)

where η = C1
∂H
∂ξ

corresponding to this receiver, we can obtain the synchronization error
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Figure 4.1: Delayed Duffing–Van der Pol system (4.4) and (4.5) with the following param-
eter values and for the constant gains α = 1.2, β = 0.75, F = 0.2, γ = 0.4, ω = 0.5, τ =
25, K1 = 5, K2 = 2.5. and the initial conditions x(0) = (0.1, 0.5)T , ξ(0) = (1, 0.2)T .

as
(

ė1

ė1

)

=

(

0 1
2 + K2

2

− 1
2 − K2

2 0

)

∂H

∂e
+

(

−K1
1
2 − K2

2
1
2 − K2

2 −α

)

∂H

∂e
. (4.6)

We could prescribe K1, and K2, in order to ensure asymptotic stability of zero of the
synchronization error. By applying the Sylvester’s Criterion, this is achieved by setting
K1 > 0, 2K1α > (K2 − 1)2.
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Figure 4.1 shows the synchronization of the systems (4.4) and (4.5), the chosen pa-
rameters are set as the following α = 1.2, β = 0.75, F = 0.2, γ = 0.4, ω = 0.5, τ = 25,
with receiver parameter gains K1 = 5, K2 = 2.5.

4.2 Delayed SMIB power system

Let’s also consider the classical SMIB power system (3.17) with a time–delay τ ,






ẋ1 = x2,
ẋ2 = −cx2 − β sin x1 + f sin x3 + ǫ sin(Rx1(t − τ)),
ẋ3 = ω,

(4.7)

taking as a Hamiltonian energy function the scalar function

H(x) =
1

2
[x2

1 + x2
2 + x2

3], (4.8)

we write the system in the Generalized Hamiltonian canonical form as




ẋ1

ẋ2

ẋ3



 =





0 1
2 0

− 1
2 0 0

0 0 0





∂H

∂x
+





0 1
2 0

1
2 −c 0
0 0 0





∂H

∂x

+





0
−β sin x1 + f sinx3 + ǫ sin(Rx1(t − τ))

ω



 . (4.9)

Following the analysis in Section 3.4, taking the variable y = [y1, y2]
T = [x1, x3]

T as
the output, then the matrices C, S and I are given by

C =

(

1 0 0
0 0 1

)

, S =





0 1
2 0

1
2 −c 0
0 0 0



 , I =





0 1
2 0

− 1
2 0 0

0 0 0



 ,

the receiver would then be designed as follows




ξ̇1

ξ̇2

ξ̇3



 =





0 1
2 0

− 1
2 0 0

0 0 0





∂H

∂ξ
+





0 1
2 0

1
2 −c 0
0 0 0





∂H

∂ξ
+





0
−β sin x1 + f sin x3 + ǫ sin(Rx1(t − τ))

ω



+





K1 K2

K3 K4

K5 K6



 (y − η), (4.10)

Figure 4.2 shows the performance of the designed receiver with the following param-
eter values of the system and the constant gains: c = 2, β = 6, f = 9, R = 50, ω = 1, ǫ =
10, τ = 0.6, K1 = 0.5, K2 = 1.5, K3 = 1, K4 = 0.1, K5 = −1.5, K6 = 0.75.

5 Conclusion

In this paper, we have considered the problem of synchronization of several famous chaotic
dynamical systems, including two types of synchronization which are respectively the dy-
namical systems with time–delay and that without any time–delay, from the perspective
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Figure 4.2: The synchronization of the SMIB power systems (4.9) and (4.10) with the
following parameter values and for the constant gains c = 1, β = 3, f = 5, ω = 1, K1 =
0.5, K2 = 1.5, K3 = 1, K4 = 0.1, K5 = −1.5, K6 = 0.75 and the initial conditions x(0) =
(1, 0.2 , 3)T , ξ(0) = (0.2, 3, 0.1)T .
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of Generalized Hamiltonian systems (developed by Sira–Ramı́rez and Cruz[22]. Several
chaotic dynamical systems, consisting of ones which are without any time–delay and that
with time–delay, are analyzed from this perspective and their synchronization were both
confirmed. The six figures show that the chaotic systems under consideration achieved
synchronization with their receivers immediately, respectively.

In the course of applying this method to the synchronization of some dynamical sys-
tems, we confront one problem: for some systems as we choose one variable as the output
signal, we can’t find suitable values of Ki, i = 1, 2, · · · , for the receiver to synchronize
with the master. In order to overcome such problem we add one or more output signals,
to increase the number of the constants Ki, i = 1, 2, · · · , and extend the flexibility of
the constants to be chosen, easily we obtain the synchronization. But a small problem
is that the computation may be a little more complex.
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